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Abstract

Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to 

develop and implement new therapies, patient outcomes have not measurably improved since 

the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases 

developing metastatic disease within 5 years of diagnosis. Research models are critical in the 

advancement of cancer research and include a variety of species. For example, xenograft and 

patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells 

in vivo while transgenic models have offered significant insight into the molecular mechanisms 

underlying OS development. A growing recognition of naturally occurring cancers in companion 

species has led to new insights into how veterinary patients can contribute to studies of cancer 

biology and drug development. The study of canine cases, including the use of diagnostic 

tissue archives and clinical trials, offers a potential mechanism to further canine and human 

cancer research. Advancement in the field of OS research requires continued development and 

appropriate use of animal models. In this review, animal models of OS are described with a focus 

on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
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Osteosarcoma (OS) is a locally aggressive, highly metastatic malignancy and the most 

common primary bone tumor of humans.128 As is the case for all pediatric cancers, OS 

is rare, affecting less than 1,000 people in the United States every year, with most cases 

being between 10 and 14 years of age. This time frame correlates with peak skeletal 

growth, and taller children tend to be at a higher risk.110,128,129 Most OS develop in the 

appendicular skeleton, specifically the metaphyseal region of long bones, adjacent to growth 

plates.77,128 The distal femur and proximal tibia are the most commonly affected sites in 

humans. Although the development of OS is considered multifactorial, germline cancer 
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predisposition syndromes111,112,169 and pre-existing skeletal abnormalities52 are known risk 

factors.129 Familial syndromes and mutations in genes controlling DNA repair and cell cycle 

progression, such as TP53111 and RB1,169 have been implicated in the development of OS. 

For example, approximately 4% of OS cases <30 years of age harbor a TP53 mutation that 

is either known or likely to be associated with Li-Fraumeni syndrome, while 6% carry an 

exonic variant of TP53 significantly associated with OS metastasis (odds ratio of 4.27).111

Regardless of the cause of OS, the biologic behavior tends to follow a similar course. 

The primary tumor is locally aggressive, often causing marked bone lysis and new bone 

proliferation.54,77 Metastatic spread occurs mainly to the lungs, with metastasis to bone, soft 

tissues, lymph nodes, and other visceral organs noted less commonly.61,65,109 The current 

standard of care focuses on both local tumor control via surgery and delaying or preventing 

metastatic spread with multiagent cytotoxic chemotherapy. Neoadjuvant chemotherapy is 

given 3 to 4 weeks before surgical removal of the tumor. This is most often achieved via 

a limb-sparing procedure and is followed by combination chemotherapy approximately 2 

weeks after surgery. If the percent necrosis of the tumor is >90% following the neoadjuvant 

chemotherapy, the same chemotherapy protocol will likely be used postoperatively.45,49,115 

The most common chemotherapy combinations involve doxorubicin, a platinum agent 

(cisplatin or carboplatin), and methotrexate, referred to as the MAP protocol.161,181

Although a multimodal approach is used routinely as front-line therapy, metastatic 

progression continues to be the leading cause of death in patients.54,109,164 The 5-year 

survival rate is less than 35% in pediatric patients who present with metastatic osteosarcoma 

at diagnosis.65,109 Critically, no significant improvements in median survival time have 

occurred in the last 30 years.54,141 As such, there is a critical need to better understand 

the biologic and molecular underpinnings of the disease process and to develop novel 

therapies in the hopes of providing more durable tumor control and improved long-term 

outcomes. In addition to in silico modeling strategies that involve cell lines and other ex 
vivo approaches, animal models play a crucial role in these studies of OS biology and drug 

development. Most models are murine including xenograft, allograft, and patient-derived 

xenografts (PDX) models. There are also transgenic mice that develop OS due to loss 

of genes frequently mutated in OS including TP53.11 In addition, the development of 

spontaneous OS in the pet dog may offer a unique animal model to study disease which 

more closely mimics clinical disease in humans. Using the appropriate animal model in 

which specific facets of the disease can be studied in a controlled environment is critical to 

advancing OS research.

Xenograft/Allograft Mouse Models

To understand the complex nature of tumor biology in OS, pre-clinical models are 

needed that accurately replicate the various aspects of the human disease state. Metastatic 

progression continues to be a critical determinant of patient outcome: limited event-free 

survival and overall survival are associated with the number of metastatic sites (>1 site), 

the presence of bone metastases, and the number or location of lung metastases (>8 or 

bilaterally affected).71,109 Mouse models have proven to be an important tool for unraveling 

the complex interactions involved in the metastatic cascade and delineating its many stages. 
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These models also allow researchers to examine the effects of therapeutic agents in vivo at 

the primary site and in metastases.40,47 Importantly, spontaneous OS development is rare 

in mice occurring in <1% of mice from most strains.68 As such, the study of OS tumor 

growth and metastasis in mice is routinely accomplished through orthotopic or heterotopic 

implantation of OS cell lines or patient-derived tumors in immunocompromised mice. The 4 

most commonly used injection sites for OS cell implantation are subcutaneous, para-tibial, 

intraosseous, and tail vein (Fig. 1).

The subcutaneous model is considered heterotopic because it uses a location in which OS 

do not naturally form. However, this model has several advantages and is frequently used by 

cancer researchers.59,116 First, the model is simple, requiring only a subcutaneous injection 

of tumor cells. Second, tumor growth can be noninvasively and regularly visualized, 

providing a quick and reliable means of assessing response to a given therapy. Third, 

the tumor can be easily biopsied before, during, and after therapy for various analyses. 

However, an important limitation to this model is its inability to fully recapitulate the 

appropriate tumor microenvironment. The specific site of tumor growth may also influence 

features of tumor biology including tumor size, metastasis, and chemosensitivity.27,32,63,180 

For example, tumors grown subcutaneously have slower growth rates and rarely metastasize 

compared to orthotopic models. These differences underscore the importance of considering 

mouse model techniques during the experimental design.

Intraosseous injection of human and murine OS cell lines is most frequently accomplished 

along the proximal tibia and distal femur. This orthotopic technique permits OS tumor 

cells to interact with their native microenvironment and potentially develop spontaneous 

pulmonary metastasis over time. However, there is substantial variation in reported 

efficiency of bone tumor establishment, tumor volumes, and metastatic efficiency across 

studies using intratibial injection models. A comprehensive examination of the mouse model 

of intratibial injection of a metastatic murine OS cell line (K7M2) showed that the maximum 

volume that can be instilled in the tibial bone marrow cavity is 10 μL.93 When more 

than this volume is injected, leakage of fluid into the adjacent soft tissue can occur. In 

studies using intratibial injections of tumor cells between 50 and 100 μL in volume, most 

tumor cells may seed in the surrounding musculature. In addition, immediate metastasis 

after intratibial injection of OS cells can occur independent of establishment of a primary 

tumor because tumor cells are inadvertently deposited within the bone marrow. This allows 

them to easily migrate into the blood stream and gain access to the lung and other highly 

vascularized distant sites. Therefore, this model is not recommended as the best model of 

spontaneous metastasis.

In the para-tibial model, tumor cells are injected within the caudal gastrocnemius muscle 

along the tibial periosteum. The studies using this approach have shown consistent results in 

primary tumor growth and lung metastasis.139 In contrast to the direct seeding observed 

in the intraosseous model,93 para-tibial injection allows OS cells to expand into the 

adjacent bone during progression where they may gain access to the vasculature and 

metastasize to distant sites including the lung.139 This process is referred to as “spontaneous 

metastasis.”138 The advantage of this model is that it more accurately recapitulates the 

metastatic cascade observed in clinical disease. However, depending on the tumor cell line, 
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metastases may be uncommon or develop slowly.139 In this case, metastatic lesions may 

be better studied by injecting tumor cells directly into the tail vein to induce “experimental 

metastasis.”138 This tail vein model of metastasis is quicker and often produces higher 

numbers of metastases in the lung; however, it does not allow researchers to study the 

prerequisite steps of metastasis prior to invasion of the intravascular space by tumor cells. 

Instead, the experimental metastasis model can be used to evaluate the capability of cancer 

cells to extravasate from vessels and proliferate in the lung. In addition to omitting the first 

steps of metastasis, this model involves the introduction of many tumor cells at one time 

into the circulation which does not accurately represent the multistep process of natural 

metastasis.

Choosing the appropriate model is also critically dependent on the experimental questions. 

For example, in the para-tibial model, the primary tumor initially develops along the 

periosteum and may not fully recapitulate the contributions of bone marrow cells to early 

tumor development. In contrast, the intraosseous model develops within the bone; however, 

the injection of tumor cells within vessel-rich regions of the bone may allow immediate 

vascular access and subsequent metastasis of OS cells.93 If the goal is to model these earlier 

stages of metastasis, the para-tibial model may be used to study spontaneous metastasis from 

the primary tumor growth at the injection site. Understanding the benefits and limitations 

of each model is critical to designing the appropriate experiment to address the research 

questions.

Many mouse and human OS cell lines are available through commercial vendors or research 

institutes. The biologic behavior of each cell line varies widely including different histologic 

patterns, tumor matrix, and metastatic potential. This can also be affected by experimental 

factors such as the mouse strain or by the method in which cells are introduced into the 

model. In addition to parental cell lines, multiple sublines are also available (Table 1). These 

sublines may be highly metastatic sub-clones or be transformed via genetic modulation. 

For example, the HOS cell line17,100 (ATCC CRL-1543) was derived from a fibroblast/

epithelial-like primary OS (13 year, female). This cell line was further transformed by the 

carcinogenic nitrosamine MNNG and by v-Ki-ras-oncogene to produce the MNNG/HOS140 

(ATCC CRL-1547) and KRIB10 cell lines. The SaOS-2142 (ATCC HTB-85), MG6312 

(ATCC CRL-1427), and HuO969 cell lines were similarly derived from OS in 3 different 

pediatric patients. These parental strains were re-passaged using mouse models to isolate 

metastases and create highly metastatic sublines including LM7182 (AKA SaOS-LM7), 

HuO9-M112,73 and HuO9-M132.73 Mouse cell lines have been similarly developed. For 

example, the murine DUNN cell line was originally derived from a spontaneous OS in the 

tail of C3H mouse. DUNN cells injected into a BALB/c mouse form a primary tumor at the 

site of injection. If allowed to grow, tumor cells invade the vasculature and form metastases 

in the lung (Figs. 2–7). Tumor cells collected from lung metastases can be reinjected into 

mouse models. This experimental method of re-passaging lung metastases can be used to 

enhance the metastatic potential of tumor cells. For example, the DLM8 cell line is a highly 

metastatic subline of the DUNN cell line derived from lung metastasis after 8 in vivo 
passages.5
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PDX Models

Patient-derived xenografts have been increasingly used in OS research, including some 

canine studies,21,23 and are particularly useful for preclinical testing of new therapeutic 

anticancer agents or drug repurposing. Generation of a PDX model begins with expansion 

of a tumor sample collected from a patient within 1 to 2 hrs of surgical resection.117,166 

Most studies engraft a small piece of fresh tumor tissue subcutaneously into the flank 

of an immune-compromised mouse59,143 or dissociate the tumor tissue enzymatically to 

allow injection of a single-cell suspension into an anatomically relevant location.165,166 

After sufficient growth, the tumor is harvested, fragmented, and either transplanted for 

further engraftment or collected for further analysis. Potential host animals include athymic 

nude mice,60,183 SCID mice,43,66,70,89 BRG mice,94,132 and NSG mice.88,117,124,126 Cell 

lines can also be generated from PDXs and are easy to cryopreserve and store for later 

applications.9,43,56,57,66,94,160 Interestingly, some cell lines are reported to carry specific 

drug resistance to the treatment to which the original tumor was exposed, suggesting that 

this may provide an important model to study treatment resistance, test novel therapeutic 

agents, or investigate combination therapies.

Studies have shown that the OS PDXs can recapitulate the gross, histologic, and 

radiographic features of primary OS tumors and that their genomic profiles maintain 

similarity to the original tumors even over multiple passages.14,76,79,88,108,166 Several 

research groups have developed patient-derived orthotopic xenografts, known as PDOX56 

or O-PDX.166 Instead of subcutaneous implantation, cells or tissues are engrafted into 

or around bone,46,56,166 which has the advantage of growing in the same anatomic 

microenvironment in which the original tumor developed. When compared to other pediatric 

O-PDX models, OS had the best preservation of the primary tumor’s clonal complexity.166 

Potential reasons for favoring orthotopic implantation include the presence of the tumor 

site-specific microenvironment, more relevant pharmacokinetics, and improved engraftment 

and subsequent dissociation of tumor cells from orthotopic sites as compared to tissue pieces 

engrafted in the flank.166 In addition, unlike the traditional subcutaneous implantation in 

which metastasis is rare, local recurrence and metastatic potential is enhanced by orthotopic 

implantation.46 Critically, the use of the orthotopic xenograft may lead to rapid pulmonary 

dissemination after injection, if tumor cells injected in the highly vascularized bone marrow 

cavity are able to gain direct access to the vasculature. In this case, PDXs form lung 

metastasis with moderate capacity.88,93

One resource for identifying PDX models is the PDX Finder (https://www.pdxfinder.org/). 

This comprehensive catalog of PDX models identifies relevant repositories for a variety 

of OS PDX models from the Pediatric Preclinical Tumor Consortium (PPTC), St Jude 

Children’s Research Hospital (Childhood Solid Tumor Network, https://cstn.stjude.cloud), 

The Jackson Lab, Charles River Lab, Patient-Derived Models Repository, and Washington 

University in St Louis. Most of the human OS tissues in this catalog were collected 

from primary or recurrent lesions at the primary site; few were from metastases. 

Although no differences were observed between metastatic and primary or pretreatment 

and posttreatment samples, PDXs derived from recurrent tumors were more successfully 

engrafted as compared to those obtained from the diagnostic samples.166
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Transgenic Mouse Models

Spontaneous OS are rare in mice,68 but transgenic mouse models have been developed 

and are an important resource used to study the mechanisms underlying OS initiation and 

progression. Features that separate transgenic models include differences in tumor latency 

and penetrance, tumor location, tumor types, and metastatic potential. Several transgenic 

models have a long latency period. For example, in Prx1-cre p53lox/+ mice, heterozygous 

deletion of p53 in primitive mesenchymal cells of the limb bud leads to development of 

OS at approximately 2 years of age.85 This tumor latency can be reduced by homozygous 

p53 deletion (Prx1-cre p53lox/lox) which leads to formation of OS by approximately 1 year. 

Although researchers may pursue methods to accelerate tumor development, it is important 

to consider that efforts to reduce tumor latency may be accompanied by altered biologic 

behavior. For example, compared to targeting p53 with shRNA, p53 loss in osteoblasts by 

Cre:lox results in shorter tumor latency (6 vs 14 months) but is associated with altered tumor 

cell morphology (fibroblastic vs osteoblastic), fewer long bone tumors (29% vs 60%), and 

reduced metastasis (29% and 70%).119

Interestingly, several transgenic OS mouse models develop tumors in uncommon locations 

such as along the jaw or snout.11,173 For example, expression of the intracellular domain of 

Notch1 (NICD) induces the formation of osteomas and OS primarily in the skull and femur, 

respectively.168 The development of OS in bones of the skull has been associated with 

reduced metastatic potential in some models.173 As metastasis is a major cause of cancer-

related death in humans,164 it is important to consider the ability of transgenic models 

to recapitulate the metastatic cascade. For example, while H2-c-fosLTR mice develop 

primary OS with 100% penetrance, no macroscopic lesions are described in nonbone tissues, 

suggesting that this model is best used for primary tumor research.50 In Osx-Cre mice 

deficient in p53 and/or Rb, metastatic potential varies by genotype.173 For example, 32% to 

40% of Osx-Cre+p53−/− mice develop metastatic tumors primarily in the lung and liver.11,173 

Reduced incidence of metastasis in some genotypes, such as Osx-Cre+p53−/−Rb−/−, may 

be due to short tumor latency, rapid tumor growth, and poor survival.11,173 This further 

illustrates the importance of weighing different model features such as tumor latency or 

penetrance and the development of metastatic disease.

Finally, transgenic mouse models continue to provide critical insight into the genetic 

alterations that promote the initiation and progression of OS. For example, human OS, 

particularly those that recur or metastasize, overexpress c-fos, a proto-oncogene that 

regulates cell functions and is thought to be critical to tumor growth.41,137 Consistent with 

this hypothesis, elevated expression of Fos protein in osteoblasts promotes the formation 

of OS with 100% penetrance in H2-c-fosLTR mice.50 In addition, familial syndromes and 

mutations in genes controlling DNA repair and cell cycle progression, such as TP53111 and 

RB1,169 have been implicated in the development of human OS. For example, in an Osx-Cre 

mouse model targeting osteoblast progenitors, formation of OS is dependent on p53 loss 

but can be potentiated by loss of Rb.173 In the Prx1-cre model, targeting p53 in primitive 

mesenchymal cells of the limb bud results in a tumor latency of approximately 1 year, while 

co-deletion of Rb and p53 (Prx1-cre p53lox/lox Rblox/lox) dramatically reduces this period to 

less than 5 months.85 In contrast, targeted deletion of Rb alone (Prx1-cre Rblox/lox) fails to 
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produce OS, further suggesting that loss of p53 is critical to OS initiation while co-deletion 

of Rb promotes progression.

Importantly, because different cancer types share overlapping genetic mutations, some 

transgenic mouse models develop multiple tumor types during their lifespan. For example, 

most mice deficient in p53 develop tumors by 6 months of age including lymphomas (77%) 

and hemangiosarcomas (27%).29 Approximately 35% of these mice develop multiple tumors 

types.29 In addition, double knockout of Rb and p53 in osteoblast progenitor cells (Osx-Cre) 

is associated with the development of OS (75%−100%),11,173 adipogenic tumors (e.g., 

hibernomas, 20%−44%),11,173 and neuroendocrine tumors (60%).11 Histologic examination 

of transgenic mice is critical to model development. High incidence of multiple tumor types 

may preclude the use of certain mouse models, particularly if the tumor of interest is not the 

most commonly observed tumor type.

Although this review focuses primarily on murine and canine models of OS, additional 

species are also used and may offer advantages in specific research contexts. For 

example, pigs deficient in p53 develop OS in the long bones and skull144 and may 

offer a unique opportunity to study cancer biomarkers, diagnostic imaging, and surgical 

intervention.145 In addition, zebrafish are frequently used in OS research, particularly to 

evaluate large drug libraries for novel anticancer therapeutics or to examine certain aspects 

of metastasis.113,114,133 Finally, virus-induced OS have also been described in rodents 

infected with retroviruses including Finkel Biskis Jenkins (FBJ) murine osteosarcoma 

virus and Moloney murine sarcoma virus (MSV).28,37,68 For example, inoculation of MSV 

directly into the tibia induces OS development in >90% of rats with metastases described 

in the lungs and regional lymph nodes.28 Following Injection of FBJ virus, mice develop 

chondroosseous tumors that do not metastasize but resemble primary parosteal OS in 

humans.175 These animal models are less frequently used but garnered great interest in 

human OS research. However, while an association has been suggested, the functional role 

of viruses in the development of human OS is less clear.25,99,103 As most animal models 

recapitulate a subset of OS biology or a critical component of clinical disease in humans, 

choosing the appropriate model is dependent on its ability to address the experimental 

questions.

The Pet Dog With Spontaneous OS: A Complementary Patient-Based Model

Mouse models offer a homogeneous population in which specific molecular processes can 

be manipulated and interrogated. In addition, the development of primary tumors and 

metastatic disease is rapid and relatively predictable in mouse models. However, using 

multiple and complementary animal models is an important and frequently used method 

to strengthen OS research. Similarities between canine and human OS have supported 

the ongoing characterization of the dog as a potential model of pediatric and adolescent 

OS. Several advantages in rodent models—for example, homogeneity and rapid tumor 

engraftment and growth—are not reflective of what occurs in the human cancer patient. 

Pet dogs with OS represent a heterogenous group of patients, more accurately representing 

outbred human patient populations. Osteosarcoma in dogs develops spontaneously but also 
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in the context of an intact immune system and complex tumor microenvironment, both of 

which are increasingly recognized as important facets of the disease.26,34,36,64,97,180

Many of the first canine OS studies examined the impact of radiation on tumor development 

as a model for accidental human exposure.163 In humans, exposure to environmental 

radiation or radiotherapy contributes to the development of several different sarcoma types 

including OS.96,84,129 Similar radiation-induced malignancy is observed in animals.19,101 

In dogs, OS can be induced through a variety of mechanisms163 including external beam 

radiation101 or ingestion of bone-seeking radionuclides.176 Although radiation-induced 

OS has clear relevance to environmental or therapeutic radiation exposure in people and 

animals, these tumors likely differ from their spontaneous counterparts.102 For example, 

most of the spontaneous OS in humans and dogs occur in long bones and involve the 

femur and radius, respectively.31,77,128,179 However, studies of radiation-induced tumors 

demonstrate an increase in incidence of pelvic OS, a location rarely affected by spontaneous 

tumors in humans (23.1% vs 9.7%).170 Interestingly, radiation is also associated with an 

increased incidence of pelvic OS in the dog (12.2% vs 1.0%).170

Critically, pet dogs are also known to naturally develop OS within their lifespan, with 

an estimated 10,000 or more cases in the United States each year.51,147 Most canine OS 

occur in the distal radius and proximal humerus.155 These sites correlate with the maximal 

skeletal load which is hypothesized to increase the risk for strain, microtrauma, and bone 

remodeling.33 In addition, large and giant breed dogs are predisposed to OS suggesting 

that, similar to humans,110 height appears to play a role in tumor development.30 The 

gross appearance of canine OS depends partly on whether the tumor is predominantly lytic, 

productive, or a mixture of both.98,106,158 Lytic OS are soft with red and yellow regions 

of hemorrhage and necrosis. In contrast, productive tumors are gray and firm or gritty 

due to the presence of OS-derived osteoid or cartilage. The gross appearance also varies 

with histologic subtype. For example, while chondroblastic OS with abundant chondroid 

matrix may be light gray and glistening, telangiectatic OS may contain multiple blood-filled 

cavities appearing grossly similar to hemangiosarcoma.98,106

There are 6 histologic subtypes of canine OS: osteoblastic, chondroblastic, fibroblastic, 

telangiectatic, giant cell-rich, and poorly differentiated.98,106,121 Osteoblastic is the 

most common subtype in the dog; however, similar to human tumors,77 many canine 

OS are heterogenous and contain multiple histologic patterns (Figs. 8–15).121 This 

tumor heterogeneity may complicate the prognostic value of histopathology in canine 

osteosarcomas. Histologic subtype and features used to grade OS including mitotic index, 

degree of necrosis, and cellular pleomorphism, have demonstrated variable success in 

predicting clinical outcome in canine cases.2,15,74,80,121,150 In human cases, treatment-

induced necrosis is a critical prognostic factor.45 Following neoadjuvant multiagent 

chemotherapy, tumors with less than 90% necrosis were twice as likely to recur.6

The histologic diagnosis of OS is dependent on the demonstration of tumor-derived 

osteoid.98,106 However, the amount of osteoid can vary dramatically between tumors or 

in different regions of the same tumor. Diagnosis can be hindered either by poor osteoid 

production or the inability to differentiate osteoid from collagenous fibrous tissue. For 
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example, identification of osteoid distinguishes chondroblastic and fibroblastic OS from 

chondrosarcomas and fibrosarcomas, respectively. Compared to collagen, osteoid is less 

fibrillar, may be mineralized, and is more likely to surround tumor cells forming lacunae. 

In addition, care should be taken not to confuse tumor-derived bone with reactive non-

neoplastic new bone which is typically more organized (interconnected) and is lined by 

a single layer of osteoblasts. Additional histologic considerations, including tumor cell 

morphology and differentiation from amyloid-producing tumors or early fracture calluses, 

are well-described in the veterinary literature.98,106

Fortunately, the histologic diagnosis is often supported by other factors including the 

patient’s clinical history and tumor imaging features. In addition, elevated serum alkaline 

phosphatase (ALP) or ALP staining of cytologic specimens may help to differentiate OS 

from other sarcomas.7,106 Immunohistochemistry can also eliminate differential diagnoses. 

For example, endothelial markers, such as von Willebrand factor (vWF), can be used to 

distinguish hemangiosarcoma from telangiectatic OS.44 Once diagnosed, the standard of 

care involves surgical removal of the tumor, followed by chemotherapy. In contrast to 

humans, canine patients are more likely to undergo limb amputation rather than limb-sparing 

procedures. Dogs also receive adjunctive chemotherapy, although no significant benefit 

to a multiagent approach over carboplatin has been observed.155,158,159 With surgery and 

adjuvant chemotherapy, the median survival time in dogs is approximately 1 year.82,155

The etiopathogenesis of OS in dogs, as in humans, is not fully characterized, but likely is 

a combination of physical, genetic, and environmental factors.33 Overlapping risk factors 

for OS development in human and canine cases have been reviewed previously33,92 

and include comparative environmental exposures, gene mutations, and familial or breed-

specific predisposition. In people with Li-Fraumeni Syndrome, germline mutations in TP53 
increases the risk for developing OS.111 Similarly, patients harboring an oncogenic variant 

of RB1169 may develop secondary OS after radiation or chemotherapy.169 These studies 

underscore the importance of tumor suppressor genes in oncogenesis in humans. While 

there are no well-recognized familial disorders leading to a heightened risk for OS in the 

dog, TP53 mutations are frequent in both human and canine OS.75,130,172 Compared to 

mice, dogs with OS represent a relatively outbred population, with the unique addition 

of subpopulations (breeds) carrying described genetic predispositions to OS (Table 2). 

Genomic analysis in Greyhounds, Rottweilers, and Irish Wolfhounds led to the identification 

of 33 inherited risk loci including one locus upstream of CDKN2A/B that may contribute 

to tumorigenesis by disrupting the critical balance between cellular proliferation and 

senescence.67 Interestingly, CDKN2A deletion and subsequent loss of p16 expression is also 

observed in human OS and may be particularly important in OS that lack Rb mutations.125 

In other breeds such as the Scottish Deerhound, Great Dane, and St. Bernard, hereditary 

predisposition is evident, but specific genes have not yet been implicated.16,127,136

Comparative Canine OS Research

The mouse and canine models offer distinct and complementary benefits for modeling OS in 

people (Fig. 16). To support comparative OS studies in the dog, canine OS cell lines have 

been developed by several research groups. These cell lines are derived from primary and 
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metastatic canine OS. Ongoing research aims to fully characterize the biologic activities and 

drug responses of these cell lines in a variety of models (Table 3). In addition, osteoblasts 

can be derived from normal canine bone (e.g., TNO178 or CnOb42) and are often used as 

a nontumor control in experiments. Efforts to study and compare these and other canine 

OS cell lines may help identify important features underlying the phenotypic heterogeneity 

of canine OS. For example, c-Fos expression has been associated with chondroblastic 

differentiation in human tissues.1,55 Critically, these types of comprehensive studies require 

a cooperative effort between scientific institutions because many canine cell lines are not 

commercially available.

In addition to basic research, clinical trials in pet dogs with OS offer valuable scientific 

and clinical insight. In general, canine OS trials fall into 1 of 4 major categories: 

cancer biology, drug development, diagnostics, and imaging (Table 4). Trials may also 

be designed to answer important questions in multiple categories. For example, collecting 

appropriate pretreatment and posttreatment biopsies may allow clinical researchers to 

evaluate the efficacy of a novel treatment while examining cancer biology or diagnostic 

features associated with treatment resistance. Enrollment in trials is frequently multicenter, 

may include academic institutions and veterinary referral centers, and is supported by 

veterinary clinical trial consortia such as the NCI-sponsored PRECINCT (PRE-medical 

Cancer Immunotherapy Network Canine Trials) or COTC (Comparative Oncology Trials 

Consortium).48,81 Trials can be structured to mirror their pediatric counterparts or designed 

to answer a veterinary-specific question or goal. Data generated from such trials can be used 

to advance a diagnostic or therapeutic procedure to directly benefit dogs, humans, or both 

species, if the hypothesis and generated data set have translational relevance.

Although clinical trials are valuable for advancing OS research, there are several important 

considerations and challenges specific to canine-focused research. For example, it is 

important to maintain a reasonable quality of life for veterinary patients. As such, the 

need to collect biologic samples, such as tumor biopsies, must be considered in the context 

of ethical patient care. Serial bone tumor biopsies may introduce additional pain and may 

predispose to infection or pathologic fracture. Trials must be designed to maximize sample 

collection while minimizing pain and stress to the canine patient. For example, in a Phase 

0 study of pharmacodynamics (PD), clinicians collect a single pretreatment biopsy. This is 

followed by drug treatment and limb amputation as part of the standard of care therapy. 

Posttreatment tumor tissue can then be harvested from the amputated limb. These samples 

are used to examine PD but can also be useful to study other features of OS biology such 

as histopathology or tumor-associated gene expression prior to and after treatment. During 

the design phase of clinical trials, thorough consideration of which assays are to be pursued 

is critical. For example, in situ hybridization and nucleic acid isolation from formalin-fixed 

paraffin-embedded (FFPE) tissues is dramatically improved if patient tissues are decalcified 

using EDTA.151 In addition, the ability to collect, store or ship RNA from a variety of 

tissues, including bone, may be improved by modifying tissue homogenization methods or 

using reagents such as RNAlater (Thermo Fis her).22,120,123,134

In addition to sample considerations, it is important to consider the applicability of clinical 

studies to human or canine disease. For example, effective treatment for metastatic OS 
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continues to be a critical unmet need in human research. Similar to human OS, canine 

OS can metastasize to multiple locations. Most metastasize to the lung (50%−85%); other 

reported locations include distant bone, regional lymph nodes, liver, and skin (dermis/

subcutis).24,35,105,131 Many canine patients develop metastases to multiple tissue sites (Figs. 

17–19).

In pediatric OS management, metastectomies are commonly carried out to rid patients of 

pulmonary nodules.87 In dogs, metastectomies are challenging. Many dogs are diagnosed 

with too many rapidly progressive metastatic lesions to reasonably undergo this procedure. 

However, survival benefit has been reported in dogs with less than 3 pulmonary lesions 

and a prior disease-free interval of over 275 days.171 The development of cost-effective, 

noninvasive techniques to aid in metastectomy, such as video-assisted thoracoscopy 

(VAT),174 could improve the ability of veterinary oncologists and surgeons to manage 

metastatic disease in canine patients. Advancing metastectomy techniques in dogs would 

allow for parallel clinical trials that use the time-to-first-event endpoint alongside their 

pediatric counterparts. This would facilitate comparative studies of OS biology in the 

context of metastatic OS progression and would represent a major advance in how dogs 

with OS could inform pediatric OS drug development.

Finally, another critical challenge is the relative paucity of canine-specific reagents and 

assays. For example, a lack of monoclonal antibodies validated in canine tissues inhibits the 

advancement of immunotherapies. This can also complicate canine clinical trial design such 

as the development of PD assays which often rely on diagnostic reagents validated solely in 

human cases. Importantly, resources for canine research continue to improve. For example, 

a multi-institutional effort through PRECINCT and NanoString has produced a canine 

immuno-oncology panel for transcriptional profiling of canine tissues. In addition, efforts 

by the Division of Cancer Treatment and Diagnosis (DCTD) led to the launch of an NCI-

sponsored publicly available data repository, the Integrated Canine Data Commons (ICDC; 

https://caninecommons.cancer.gov/), in 2020. This platform facilitates the comparative 

analysis of human and canine cancers by allowing researchers to query canine-focused 

data sets including RNA-seq and whole genome sequencing. These and similar efforts will 

help to improve canine genome annotation, expand studies of cancer-associated genes, and 

advance comparative cancer research.

Future Directions

The development of microarray technology in 1995,146 completion of the Human Genome 

Project, and numerous “-omics” tools available to researchers today have revolutionized 

the biological sciences and allowed an unprecedented understanding of the molecular 

underpinnings of biological systems. The impact of these technologies in cancer is no 

better illustrated than the genotypic classification of breast cancer135,162 which has had a 

considerable clinical impact on treatment strategies.90 The complete characterization of the 

human genome was closely followed by characterization of the canine genome published 

in 2005,86 enabling the use of “-omics” to study canine cancer. Since then, a number of 

genomic biomarkers have been proposed in several different canine cancers53 including 

OS. Copy number aberrations have been reported for several genes including ADAM15, 
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CDC5L, MYC, CTC1, MEN1, CDKY,4 RUNX2,3,4 TUSC3, and PTEN.3 In addition, 

deletion of bone tumor suppressor gene DGL2 has been reported,157 and mutations have 

been discovered in the genes DMD and SETD2.42

Several studies have highlighted multiple gene transcriptomic signatures, focusing on the 

comparative aspects between human and canine OS. For example, several gene profiles 

pertaining to cell cycle and immune response were common between canine, human, 

and mouse OS tumors and cell lines; furthermore, a cell cycle multigene signature was 

significantly associated with patient outcome in both canine and human OS.153 Another 

analysis looked at 32 canine OS cases and identified 51 genes differentially expressed 

between long- and short-term survivors, and gene enrichment analysis revealed overlapping 

pathway activity in 7 different pathways between canine and human studies.156 Comparative 

genomic approaches are essential for understanding the fundamental biology of cancer that 

is conserved across species.

In addition, statistical modeling and machine learning models that use genomic input to 

predict drug response both in in vitro and in vivo settings have become an important topic 

in the field of precision medicine.78,95,118 These methods have been extended to canine 

models using gene co-expression between NCI60 cancer cell lines and canine OS to build 

a predictive classifier of response to carboplatin and doxorubicin adjuvant chemotherapy.38 

Computational genomic and machine learning techniques are promising areas that will lead 

to better understanding and treatment options for canines and humans alike.

Canine OS shares clinical, histologic, and molecular features with humans, making it a 

highly advantageous species in which to study and develop therapeutic and diagnostic 

strategies with translational benefit. Novel treatment options such as immunotherapy are 

being investigated in canine patients and could prove to have significant implications for 

human patients in the future. Dogs provide an exciting model to see how these and other 

novel therapies may affect long-term survival, but it is also important to remember that there 

are still some limitations to using dogs as a comparative model. Differences in the age of 

onset, site predilection, and response to combination therapies must be considered. Whether 

these differences will impact the translation of treatments between species remains to be 

seen.
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Figure 1. 
Osteosarcoma (OS) mouse models. OS cell lines may be derived from spontaneous primary 

OS or metastatic tumors that develop in humans, mice, and dogs (Tables 1 and 3). Once 

cell lines are established, they can be introduced into mouse models by several injection 

techniques including intraosseous, para-tibial, tail vein, or subcutaneous. Tail vein injection 

is associated with production of pulmonary tumors. In contrast, the other 3 methods lead 

to the development of a large neoplastic nodule at the injection site. These can progress to 

metastatic disease which primarily affects the lung but may also involve other tissues or 

organs. Highly metastatic sublines can be developed by collecting and re-passaging tumor 

cells through the lung.
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Figures 2–7. 
Osteosarcoma, lung, mouse. Hematoxylin and eosin. Figure 2. Following para-tibial 

injection, SaOS-2 cells form pulmonary nodules with central mineralization (arrows). 

Figure 3. Lung metastasis of SaOS-2 cells with mitotic figures. Figure 4. Following tail 

vein injection, DLM8 murine OS cells form numerous pulmonary nodules. Tumor emboli 

are observed within pulmonary vessels (arrowheads). Figure 5. The remnants of a vessel 

wall (arrowhead) within a DLM8 cell tumor nodule. Figure 6. Para-tibial injection of 

MC-KOS canine OS cells forms multiple pulmonary tumors. Few tumor nodules contain 

central deposits of eosinophilic matrix (asterisk). Figure 7. Lung metastasis of MC-KOS 

cells with production of variably mineralized osteoid (asterisk).
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Figures 8–15. 
Osteosarcoma, dog (left column) and human (right column). Hematoxylin and eosin. 

Figures 8 and 9. Osteoid is a distinguishing tumor feature observed in canine (Figure 
8) and human (Figure 9) osteosarcomas. Figures 10 and 11. Some canine (Figure 10) 

and human (Figure 11) osteosarcomas also contain chondroid matrix (chondroblastic 

subtype). Figures 12 and 13. Giant cell-rich osteosarcomas are an uncommon histologic 

variant reported in both dogs (Figure 12) and humans (Figure 13). Figures 14 and 15. 

Telangiectatic osteosarcomas are histologically characterized by blood-filled spaces lined by 

tumor cells (dog, Figure 14; human, Figure 15).
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Figure 16. 
The murine and canine osteosarcoma models are complimentary models of human disease 

that can be used separately or in parallel to interrogate osteosarcoma biology. These 

models share several benefits including readily available biospecimens, the ability to 

develop drugs, and tumor biology that is similar to that observed in humans, including 

the development of pulmonary metastases. While the mouse model is rapid, reproducible, 

and can be experimentally modulated, the dog may be more representative of human clinical 

disease due to natural co-development of the tumor and tumor microenvironment, shared 

environmental exposures, a diverse genetic background, and the presence of an intact 

immune system.
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Figures 17–19. 
Metastatic osteosarcoma, dog. Hematoxylin and eosin. Figure 17. Lung. Alveoli along the 

edge of the metastasis are compressed; many contain erythrocytes. Inset: multinucleated 

cells are observed throughout the mass. Figure 18. Liver. There is mild lymphocytic 

infiltration of the hepatic parenchyma adjacent to the tumor. Many hepatocytes are 

vacuolated and contain brown pigment. Inset: The metastasis is comprised of polygonal 

to spindle-shaped cells. Figure 19. Brain. There is a well-demarcated OS metastasis with 

compression of the adjacent parenchyma. Inset: Osteoid is abundant within the tumor.
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Table 2.

Genetic alterations in canine osteosarcoma development.

Breed Genes

Greyhound COLI IA2, POSTN, CDKN2A/B

Rottweiler FOS, RUNX2

Irish Wolfhound RBI, CCNBI, POSTN
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