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Abstract

The survival benefit of proning patients with acute respiratory distress syndrome

(ARDS) is well established and has recently been found to improve pulmonary gas

exchange in patients with COVID-19-associated ARDS (CARDS). This review outlines

the physiological implications of transitioning from supine to prone on alveolar

ventilation-perfusion (V̇A–Q̇) relationships during spontaneous breathing and during

general anaesthesia in the healthy state, as well as during invasive mechanical

ventilation in patients with ARDS and CARDS. Spontaneously breathing, awake

healthy individuals maintain a small vertical (ventral-to-dorsal) V̇A∕Q̇ ratio gradient

in the supine position, which is largely neutralised in the prone position, mainly

through redistribution of perfusion. In anaesthetised and mechanically ventilated

healthy individuals, a vertical V̇A∕Q̇ ratio gradient is present in both postures, but

with better V̇A–Q̇ matching in the prone position. In ARDS and CARDS, the vertical

V̇A∕Q̇ ratio gradient in the supine position becomes larger, with intrapulmonary

shunting in gravitationally dependent lung regions due to compression atelectasis of

the dorsal lung. This is counteracted by proning, mainly through a more homogeneous

distribution of ventilation combined with a largely unaffected high perfusion dorsally,
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and a consequent substantial improvement in arterial oxygenation. The data regarding

proning as a therapy in patients with CARDS is still limited andwhether the associated

improvement in arterial oxygenation translates to a survival benefit remains unknown.

Proning is nonetheless an attractive and lung protectivemanoeuvre with the potential

benefit of improving life-threatening hypoxaemia in patients with ARDS and CARDS.

KEYWORDS

acute respiratory distress syndrome, COVID-19, gas exchange, gravity, respiratory failure,
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1 INTRODUCTION

Severe coronavirus disease 2019 (COVID-19) pneumonia commonly

manifests as acute respiratory distress syndrome (ARDS), i.e. acute

onset of hypoxaemia andbilateral opacities on chest imaging (Gattinoni

et al., 2020; Rello et al., 2020). In the initial reports fromChina, patients

with COVID-19-associated ARDS (CARDS) exhibited alarmingly high

short-term mortality rates of 60–70% (Wu et al., 2020; Yang et al.,

2020), much higher than those previously reported for severe non-

COVID-19 ARDS (Bellani et al., 2016). To improve outcome in

CARDS, clinical guideline committees were rapidly established and

recommendations were based on evidence established in non-COVID-

19 ARDS (henceforth designated ARDS for simplicity) (Alhazzani et al.,

2020; Matthay et al., 2020). These recommendations included lung

protective ventilation and placing patients with moderate to severe

ARDS in the prone posture for 12–16 h per day. From the early stages

of the COVID-19 pandemic, proning has thus been used for CARDS all

over the world (Langer et al., 2021).

Prior to the COVID-19 pandemic, the impact of proning on

intensive care unit (ICU) mortality was investigated in five randomised

controlled trials (Gattinoni et al., 2001; Guérin et al., 2004, 2013;

Mancebo et al., 2006; Taccone et al., 2009). Of these, the PROSEVA

(Proning Severe ARDS patients) trial showed a survival benefit when

proning patients with moderate to severe ARDS (Guérin et al.,

2013), which was confirmed in a corresponding meta-analysis with

an approximately 25% reduction in 28-day mortality (Li et al., 2018;

Munshi et al., 2017).

However, despite its potential benefits in treating patients

with CARDS, the underlying physiological mechanisms remain

obscure. Herein, this review outlines the fundamental pulmonary

adaptations, focusing primarily on alveolar ventilation-perfusion

(V̇A–Q̇) relationships, when transitioning (C)ARDS patients from

supine to prone.

2 PULMONARY MECHANICS IN THE HEALTHY
LUNG: SHAPE VERSUS GRAVITY

2.1 Upright lung

The upright human lung is shaped as a triangular-based pyramid,

which is conical in the transverse plane with the tip pointing ventrally

(Figure 1a). In the excised lung, the alveoli are homogeneously

expanded, but because the lungs are suspended in the thoracic cage,

which is shaped as an irregular and somewhat rectangular cylinder,

alveolar expansion gradually decreases in the apical-to-basal direction

at functional residual capacity (FRC) in vivo (Vawter et al., 1975).

The degree of alveolar expansion is closely related to the pressure

in the surrounding pleural space, which is sub-atmospheric at FRC

due to the opposing elastic recoil forces of the lung tissue and the

chest wall. This is more pronounced at the apex than at the base of

the lung, so that a vertical – i.e. parallel to the gravitational vector

– pleural pressure gradient of approximately 0.45 cmH2O/cm is pre-

sent (D’Angelo et al., 1970) with a concomitant gradual apical-to-

basal reduction in transpulmonary pressure (the alveolar-to-pleural

pressure difference) (Figure 1a).

2.2 Horizontal lung

When body position is shifted from upright to horizontal, the direction

of the gravitational vector relative to the lungs and chest cage

also changes (Figure 1b). Thus, in the supine position, the thorax

becomes slightly compressed in the ventral-to-dorsal direction, and

the abdominal contents are moved cranially, making the thorax

∼20% shorter in the apical-to-basal direction (Glazier et al., 1967),

so that FRC is reduced by at least 25% (Kaneko et al., 1966;

Moreno & Lyons, 1961). A vertical pleural pressure gradient of

∼0.45 cmH2O/cm remainswith a gradually reduced alveolar expansion

in the ventral-to-dorsal direction (D’Angelo et al., 1970; Henderson

et al., 2013; Tawhai et al., 2009; Wiener-Kronish et al., 1985)

(Figure 1b).

In the prone posture, the direction of the gravitational vector

becomes inverted compared to the supine posture (Figure 1b), andFRC

becomes ∼10 percentage points higher than in the supine position,

thus reaching ∼85% of the upright value (Moreno & Lyons, 1961;

Rohdin et al., 2003b), conceivably due to reduced compression of

the dorso-caudal lung regions by the heart and abdominal contents

described below. The vertical now dorsal-to-ventral pleural pressure

gradient is only ∼50% of that observed in both the upright and supine

posture (D’Angelo et al., 1970; Henderson et al., 2013; Tawhai et al.,

2009; Wiener-Kronish et al., 1985). Consequently, transpulmonary

pressure decreases less in the dorsal-to-ventral direction, so that

alveolar expansion becomes more homogeneous than in the supine
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posture (Figure 1b). This is also reflected by posture-dependent

differences in tissue density, i.e., the mass of lung tissue and blood

relative to air. Hence, when quantified by either computed tomography

(CT) or magnetic resonance imaging (MRI), the prone vertical tissue

density gradient is equivalent to 50% of that observed in the

supine position (Albert & Hubmayr, 2000; Hoffman, 1985; Kizhakke

Puliyakote et al., 2022; Prisk et al., 2007).

2.3 Why is the pleural pressure gradient
posture-dependent?

While the superimposed hydrostatic pressure on the pleural space

exerted by the weight of the lung itself is important for the pleural

pressure gradient (West & Matthews, 1972), another factor is the

additional hydrostatic pressure imposed by the weight of the heart

and abdominal contents (Albert & Hubmayr, 2000) (Figure 2). In the

supine position, more than 50% of the lung tissue is below the level

of the heart and is to some extent compressed, whereas the heart is

resting firmly on the sternum in the prone position (Albert &Hubmayr,

2000). The abdominal contents also contribute by generating an

intra-abdominal hydrostatic pressure, which greatly exceeds alveolar

pressure. Since the diaphragm is oriented obliquely in the sagittal

plane, this pressure compresses the dorso-caudal lung regions in the

supine, but not in the prone, position (Albert & Hubmayr, 2000).

Nevertheless, computer simulations predict that the effect of prone

posture on the vertical pleural pressure gradient is present even

when these factors are excluded, and appears to depend more on

the shape of the lung and thoracic cage relative to the direction

of the gravitational vector (Tawhai et al., 2009). Because the lung

is triangular in the transverse plane and constrained to remain in

contact with the thoracic wall, a greater volume of the lung tissue is

‘fixated’ at the posterior thoracic wall in the prone than at the anterior

thoracic wall in the supine position (Figure 1a, b). The gravitational

displacement of the lung tissue and thus the vertical pleural pressure

gradient is consequently smallest in the prone lung (Tawhai et al.,

2009).

3 V̇A–Q̇ RELATIONSHIPS IN THE HEALTHY
LUNG: AN EVOLUTIONARY TRAIT?

Even though FRC decreases substantially between the upright and

horizontal position during spontaneous breathing, pulmonary gas

exchange is improved in the latter, as indicated by a reduction in the

alveolar–arterial oxygen difference, and a corresponding increase in

pulmonary diffusing capacity with no apparent differences between

the supine and prone position (Lin et al., 2005; Rohdin et al.,

2003a; Stokes et al., 1981; Terzano et al., 2009). As will be outlined

below, differences between the supine and prone posture in V̇A–Q̇

relationships are nonetheless present.

New Findings

∙ What is the topic of this review?

The use of proning for improving pulmonary gas

exchange in critically ill patients.

∙ What advances does it highlight?

Proning places the lung in its ‘natural’ posture,

and thus optimises the ventilation-perfusion

distribution, which enables lung protective

ventilation and the alleviation of potentially life-

threatening hypoxaemia in COVID-19 and other

types of critical illness with respiratory failure.

3.1 Distribution of ventilation during
spontaneous breathing

The gradual reduction in alveolar expansion in the ventral-to-dorsal

direction at supine FRC expectedly causes regional ventilation to

increase in the same direction, as documented in several studies

using a wide range of methods (Table 1). In the majority of studies,

a gravitational shift in the distribution of ventilation was observed

when moving to the prone posture, so that ventilation became

higher ventrally. However, one study based on single-photon emission

computed tomography (SPECT) questioned these findings, as it was

found that the observed posture-dependent shift in ventilation was

primarily caused by the gravitational shift in lung tissue density

described above (Petersson et al., 2007). Hence, by use of transmission

tomography, SPECT-based ventilation on a ‘per alveolus’ basis was

found to be unaffected (Petersson et al., 2007). When using MRI-

based methodology which has a much higher spatial resolution than

SPECT, a shift in ventilation is nonetheless evident, even when lung

tissue density changes are taken into account (Henderson et al., 2013).

This encompasses a shift from a supine ventral-to-dorsal ventilation

gradient to a minuscule dorsal-to-ventral gradient in the prone

posture.

3.2 Distribution of pulmonary perfusion during
spontaneous breathing

Posture-dependent differences in pulmonary perfusion have been

examined in spontaneously breathing supine and prone humans using

several different methods (Table 1). Most studies have found that a

ventral-to-dorsal perfusion gradient is present in the supine position,

so that perfusion is higher below than above the heart. Although

findings vary between studies, forces are at play that serve to prevent

this from being converted to an equal dorsal-to-ventral gradient in the

prone position.



762 BERG ET AL.

F IGURE 1 Effects of posture on ventilation
and perfusion. (a) The upright lung. A vertical
pleural pressure gradient is present, which
causes apical alveoli to bemore expanded than
basal alveoli, and thus ventilation to increase in
the apical-to-basal direction. Meanwhile,
gravity also causes perfusion to increase in the
apical-to-basal direction. (b) The horizontal
lung. In the supine position, both ventilation
and perfusion increase in the ventral-to-dorsal
direction. In the prone position, the change in
ventilation is less pronounced because the
pleural pressure gradient is halved. In terms of
perfusion in the prone position, the higher
vascular density in the now non-dependent
dorsal lung regions alleviates the effect of
gravity on the perfusion distribution. Pleural
pressures are provided for each posture. Grey
areas within the pleural space illustrate areas
where the lung is ‘constrained’ at the thoracic
wall

3.3 V̇A∕Q̇ ratio during spontaneous breathing

According to SPECT and PET-based studies, no consistent change in

the V̇A∕Q̇ ratio is observed in the vertical direction, neither in the

supine or the prone lung, when the vertical tissue gradient is taken

into account (Musch et al., 2002; Petersson et al., 2007). However,

the high spatial resolution of MRI unveils a small albeit consistent

vertical gradient, with a decline in the V̇A∕Q̇ ratio from gravitationally

non-dependent to dependent lung regions in both postures, and with

slightly improved V̇A–Q̇ matching in the prone position (Henderson

et al., 2013) (Figure 3a).

3.4 Ventilation and perfusion in Mammalia

The postural changes in V̇A–Q̇ relationships are evident in various

Mammalia, regardless of the typical posture of the animal. Hence,

postural shifts in ventilation similar to those in humans are observed

in the sloth and the dog, even though the typical posture of the

two is supine and prone, respectively (Hoffman & Ritman, 1985). In

terms of perfusion, this has been studied in various species by the so-

called microsphere injection technique. Thus, excised lung from dog,

sheep and horse demonstrate relatively uniform pulmonary perfusion

distribution after microsphere injection when in their natural prone
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F IGURE 2 Posture-dependent displacements of the heart, abdominal contents and diaphragm

TABLE 1 Studies on postural shifts in ventilation and perfusion in awake healthy humans

Study n Method

Supine vertical

gradient

Prone vertical

gradient

Posture-dependent

gravitational shift

Ventilation

Kaneko et al. (1966) 3 Radiospirometry (133Xe) VD DV Yes

Rehder et al. (1978) 5 Radiospirometry (133Xe) VD DV Yes

Orphanidou et al. (1986) 2 SPECT (81mKr) VD VD Yes*

Mure et al. (2001) 8 SPECT (99mTc- DTPA) VD VD No

Musch et al. (2002) 6 PET (pulmonary 13N2

elimination)

VD DV Yes

Petersson et al. (2007) 7 SPECT (99mTc-Technegas) VD VD No

Henderson et al. (2013) 7 MRI-SVI VD DV Yes

Perfusion

Kaneko et al. (1966) 3 Radiospirometry (133Xe) VD DV Yes

Amis et al. (1984) 3 Radiospirometry (85mKr) None DV Yes

Orphanidou et al. (1986) 2 SPECT (81mKr) VD DV Yes

Nyrén et al. (1999) 8 SPECT (99mTc-MAA) VD None Yes

Mure et al. (2001) 8 SPECT (99mTc-MAA) VD VD Yes*

Jones et al. (2001) 6 Electron-beamCT VD DV Yes

Musch et al. (2002) 6 PET (13N2) VD DV Yes

Petersson et al. (2007) 7 SPECT (99mTc-MAA) VD VD No

Prisk et al. (2007) 6 MRI-ASL None None No

Henderson et al. (2013) 7 MRI-ASL VD DV Yes

Only studies inwhich assessmentswere done both in the supine and prone position are provided. *ReducedVD gradient in the prone compared to the supine

position. ASL, arterial spin labelling; CT, computed tomography; DTPA, diethylenetriamine penta-acetic acid; DV, dorsal-to-ventral; MAA, macroaggregated

albumin; MRI, magnetic ressonance imaging; PET, positron emission tomograpky; SPECT, single-photon emission computed tomography; SVI, specific

ventilation imaging; VD, ventral-to-dorsal.
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F IGURE 3 Impact of posture on the
vertical distribution of the ventilation/
perfusion (V̇A∕Q̇) ratio in the horizontal lung.
(a) The healthy lung during spontaneously
breathing wakefulness. (b) The healthy lung
during anaesthesia andmechanical ventilation.
(c) Acute respiratory distress syndrome
(ARDS) duringmechanical ventilation

posture in vivo,while a substantial ventral-to-dorsal perfusion increase

is evidentwhen they are supine, regardless ofwhether the excised lung

is prepared and studied using the sameorientation as in vivo (i.e. prone)

or not (Glenny et al., 1991;Hlastala et al., 1996;Walther et al., 1997). In

baboons, which, like humans, are mostly upright, perfusion is likewise

less uniform in the supine than in the prone posture (Glenny et al.,

1999).

The greater gravity-dependence of perfusion in the supine than

in the prone posture in mammals is likely caused by a greater

vascular density dorsally (Beck & Rehder, 1986; Nyrén et al., 2010).

This arrangement counteracts the impact of gravity on pulmonary

perfusion in the prone position, an adaptation that probably reflects

that the first terrestrial mammals that appearedmore than 200million

years ago were obligate quadrupeds and thus naturally prone. Given

that gross lung shape and structure remain remarkably conserved

across extant mammalian species, the smaller vertical V̇A–Q̇ gradients

in the prone compared to the supine posture observed in awake,

spontaneously breathing humans likely reflect that the mammalian

lung is phylogenetically set to function optimally in the prone posture.

4 PRONING, GENERAL ANAESTHESIA, AND
MECHANICAL VENTILATION: A GREAT MATCH?

In the clinical setting, proning is mostly instigated in anaesthetized

and mechanically ventilated patients. Mechanical ventilation imposes

a positive airway pressure, which may affect the V̇A–Q̇ distribution

per se, while sedation causes the diaphragm to deviate cranially, pre-

sumably due to a loss of respiratory muscle tone (Froese & Bryan,

1974; Krayer et al., 1989; Rehder et al., 1977). The latter reduces

FRCby approximately 15–20%compared to awake supine breathing in

the same position (Froese & Bryan, 1974; Krayer et al., 1989; Rehder

et al., 1977). Consequently, posture affects pulmonary gas exchange

somewhat differently than in the awake and spontaneously breathing

state.

4.1 Effects of anaesthesia on ventilation

In anaesthetised healthy individuals placed in the supine position,

ventilation exhibits a largely similar distribution to spontaneously

breathing wakefulness in the same position (Table 2). However, a

successive decrease in ventilation occurs in the dorsal regions during

prolonged anaesthesia due to a degree of airway collapse (Nyrén et al.,

2010; Tokics et al., 1996). Accordingly, attempts to open collapsed

alveoli by applying a sustained positive end-expiratory pressure (PEEP)

reestablishes the vertical ventilation gradient (Petersson et al., 2010).

During mechanical ventilation in the prone position, ventilation is

shifted dorsally (Table 2), and when a PEEP is applied, ventilation is

shifted in the ventral direction (Petersson et al., 2010).

4.2 Effects of anaesthesia on perfusion

During anaesthesia in the supine position, a perfusion gradient from

the gravitationally non-dependent ventral to dependent dorsal lung is

observed.When assuming the prone postion, perfusion either remains

highest in the now non-dependent dorsal lung regions or the vertical

perfusion gradient is abolished altogether (Table 2). Nonetheless, when

a PEEP of 10 cm H2O is applied, perfusion is redistributed to the

gravitationally dependent part of the lung in both the supine and

prone posture, conceivably due to compression of blood vessels in non-

dependent lung regions (Petersson et al., 2010).
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TABLE 2 Studies on postural shifts in ventilation and perfusion in anaesthetized healthy humans

Study n Method

Supine vertical

gradient

Prone vertical

gradient

Posture-dependent

gravitational shift

Ventilation

Rehder et al. (1978) 5 Radiospirometry (133Xe) VD DV Yes

Petersson et al. (2010) 6 SPECT (99mTc-Technegas) DV VD Yes

Nyrén et al. (2010) 7 SPECT (99mTc-Technegas) VD VD No

Perfusion

Petersson et al. (2010) 6 SPECT (99mTc-MAA) VD VD Yes*

Nyrén et al. (2010) 7 SPECT (113mIn-Technegas) VD None Yes

Only studies inwhich assessmentswere done both in the supine and prone position are provided. *ReducedVD gradient in the prone compared to the supine

position. DV: dorsal-to-ventral; MAA:macroaggregated albumin; SPECT: single-photon emission computed tomography; VD: ventral-to-dorsal.

4.3 Effects of anaesthesia and PEEP on the V̇A∕Q̇
ratio

A vertical V̇A∕Q̇ ratio gradient is observed during anaesthesia and

mechanical ventilation in both the supine and the prone position,

which decreases in the ventral-to-dorsal direction in the former and

in the dorsal-to-ventral direction in latter position (Nyrén et al., 2010;

Petersson et al., 2010). However, the gradient is lowest in the prone

position (Figure 3b).

In the supine posture, V̇A–Q̇ relationships are not affected when

a PEEP of 10 cmH2O is applied, since ventilation and perfusion are

redistributed similarly towards the gravitationally dependent dorsal

lung regions (Petersson et al., 2010). However, in the prone position,

the application of similar PEEP levels renders V̇A–Q̇ relationships sub-

optimal by redistributing ventilation towards ventral lung regions to a

much greater degree than perfusion (Petersson et al., 2010).

In summary, V̇A–Q̇ matching is improved upon a postural change

from supine to prone in healthy anaesthetised individuals, due to a

shift of both ventilation and perfusion towards the gravitationally

non-dependent dorsal lung areas. This may indeed improve pulmonary

gas exchange, as some, but not all, studies of anaesthetised and

mechanically ventilated healthy individuals show notable PaO2

increments within 30 min of proning (Pelosi et al., 1995, 1996;

Petersson et al., 2010; Soro et al., 2007; Stone &Khambatta, 1978).

5 DESTRESSING THE DISTRESSED ARDS LUNG
BY PRONING: A TURN FOR THE BETTER

Several studies on mechanically ventilated patients with ARDS have

provided evidence of improved pulmonary gas exchange in response

to proning as evaluated by an increased PaO2
/FIO2

ratio, possibly

persisting even after resupination (Mure et al., 1997; Pappert et al.,

1994; Gattinoni et al., 2001; Guérin et al., 1999, 2004, 2013; Lee

et al., 2002; Mancebo et al., 2006; Taccone et al., 2009). However,

although approximately 70% of ARDS patients exhibit a PaO2
increase

of ≥10 mmHg within 30 min after proning, improvements in blood

gases did not readily explain the improved survival observed in the

PROSEVA trial (Albert et al., 2014; Guérin et al., 2013).

5.1 Pathogenesis and pathophysiology of ARDS

Thehistopathological hallmarkofARDS is diffuse alveolar damagewith

protein-rich alveolar oedema and sequestration of immune cells in the

interstitial and alveolar spaces (Matthay et al., 2012). This renders

the lung less compliant with a four to five time increase in its mass,

so that the superimposed pressure increases the pleural pressure

gradient substantiallywith consequent severe compression atelectasis

in gravitationally dependent lung regions (Crotti et al., 2001; Gattinoni

et al., 1988, 1994, 2006; Pelosi et al., 1994). Apart from the increased

lungmass, an additional contributor is probably also a notable increase

in cardiac mass, which may double, and in some cases also abdominal

distension (Albert & Hubmayr, 2000; Malbouisson et al., 2000; Mure

et al., 1998).

Imaging studies of the pulmonary V̇A–Q̇ relationships in ARDS are

scarce, but the physiological consequences of the severely atelectatic

and oedematous lung regions have been elucidated by the multiple

inert gas elimination technique (Dantzker et al., 1979; Ralph et al.,

1985). In these studies, the main mechanism of impaired pulmonary

gas exchange was found to be intrapulmonary shunting, which often

exceeded 30% of cardiac output.

5.2 Proning in ARDS

When patients with ARDS are moved from the supine to the prone

position, atelectatic areas shift from dorsal to ventral regions, so that

the dorsal lung regions receive (near-)normal aeration (Gattinoni et al.,

1991; Guérin et al., 1999), while the FRC also increases (Aguerre-

Bermeo et al., 2018), and the shunt fraction typically decreases by

approximately 10 percentage points (Lee et al., 2002; Pappert et al.,

1994).However, theassociatedchanges in V̇A–Q̇ relationshipshavenot

been examined in humans.
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In animal studies of experimental ARDS triggered either by intra-

pulmonary oleic acid injection or by surfactant depletion, a reduction

in intrapulmonary shunt similar to that of ARDS patients has been

observed in the prone compared to the supine posture (Lamm et al.,

1994; Richter et al., 2005; Wiener et al., 1990). The atelectatic

regions in gravitationally dependent lung regions are the principal

cause of intrapulmonary shunting in both postures (Lamm et al., 1994;

Richter et al., 2005). Hence, in the supine posture, severe V̇A–Q̇

mismatching is evident with a steep ventral-to-dorsal reduction in

ventilation, including entirely absent ventilation in the most dorsal

atelectatic areas, and with a concomitant ventral-to-dorsal increase

in perfusion (Lamm et al., 1994; Richard et al., 2008; Richter et al.,

2005; Scaramuzzo et al., 2020; Wiener et al., 1990). In the prone

position, ventilation and to a lesser extent perfusionbothbecomemore

uniformly distributed with less steep vertical gradients, and although

collapse occurs in the now gravitationally dependent ventral lung

regions, it is much reduced (Lamm et al., 1994; Richard et al., 2008;

Richter et al., 2005; Scaramuzzo et al., 2020; Wiener et al., 1990)

(Figure 3c).

However, proning does not appear to be sufficient to reduce

intrapulmonary shunting per se. According to PET-based studies on

piglets with oleic acid-induced lung injury, PEEP was found to be a

necessary prerequisite to achieve this (Richard et al., 2008). Indeed,

the application of PEEP is themain therapeutic procedure for reducing

atelectasis in ARDS, mainly by maintaining alveolar patency at end-

expiration (Crotti et al., 2001; Gattinoni et al., 2006; Ralph et al.,

1985). However, the ideal PEEP titration strategy, i.e., achieving

optimal alveolar ventilation while preventing hyperinflation, is still

not clear.

Together, the available animal studies indicate that the postural

improvements in pulmonary V̇A–Q̇ relationships between the supine

and prone position in ARDS are mostly driven by a redistribution

of ventilation to the dorsal region of the lungs and less atelectasis.

Furthermore, the reduction in the pleural pressure gradient imposed

by proning will reduce the PEEP required tomaintain alveolar patency.

Accordingly, proning is mainly thought to offer a survival benefit in

ARDS by rendering the intrapulmonary distribution of tidal volume

more homogeneous, thus preventing alveolar (over-)distension of non-

atelectatic lung tissue, and reducing the risk of ventilator-induced lung

injury (Albert et al., 2014; Hepokoski et al., 2018).

6 COVID-19-ASSOCIATED RESPIRATORY
FAILURE

Both ARDS and CARDS are associated with interstitial and alveolar

accumulation of immune cells (Matthay et al., 2018; Ronit et al., 2021),

but a distinct feature prominent in CARDS is pulmonary micro- and

macrovascular disease with in situ thrombosis and/or thromboemboli

(Ackermann et al., 2020). This sets in from the early stages of

disease,indicated by chest CT findings typical of pulmonary vascular

disease, such as ground glass opacities, septal thickening and linear

opacities, which is currently thought to be a main contributor to the

conspicuous hypoxaemic respiratory failure of CARDS (Rubin et al.,

2020; Simonson et al., 2021;Wu et al., 2020).

The pulmonary predilection for thrombosis and thromboemboli

appears to be related to the presence of severe pulmonary vasculitis,

most likely because of viral invasion of the endothelium and the pre-

cipitation of immune complexes in the vasculature (Ackermann et al.,

2020; Roncati et al., 2020). Accordingly, a relatively large proportion

of CARDS patients have been reported to present with severe hypo-

xaemia despite near-normal pulmonary compliance (and lung weight),

a combination that is otherwise rare in ARDS (Gattinoni et al., 2020;

Rello et al., 2020). Nonetheless, with the progression of disease,

many patients with moderate to severe CARDS eventually exhibit

a phenotype that is clinically indistinguishable from non-COVID-19

ARDS (Gattinoni et al., 2020; Rello et al., 2020).

6.1 Proning in CARDS

The initial clinical experiencewith proning in CARDS showed amarked

increase in the PaO2
/FIO2

ratio of ∼60 mmHg (Carsetti et al., 2020;

Pan et al., 2020; Perier et al., 2020), and findings from a recent

observational study furthermore suggest thatproning is independently

associatedwith improved 28-day survival in this setting (Ferreira et al.,

2021). Studies based on electrical impedance tomography in CARDS

have reported that, similar to patients with ARDS, proning shifts

ventilation dorsally, and because perfusion remains predominantly in

the dorsal lung regions, V̇A–Q̇matching is improved (Perier et al., 2020;

Zarantonello et al., 2020).

When considering the effects of proning on healthy anaesthetised

humans, the postural shift in the V̇A–Q̇ distribution may also exert

clinical benefits in the hypoxaemic CARDS patient with normal lung

weight and compliance. Indeed, to prevent ICU transfers in over-

loaded health systems, proning is now also used even in non-intubated

COVID-19 patients with hypoxaemic respiratory failure, in which it is

generally well tolerated and may lead to substantial increases in PaO2

(Damarla et al., 2020; Elharrar et al., 2020).

7 CONCLUSION AND FUTURE DIRECTIONS

The human lung, as with other mammalian lungs, is structurally

optimised to function in the prone posture, both in terms of both

gross lung shape and vascular architecture. Consequently, ventilation

and perfusion are better matched in the prone than in the supine

posture despite an identical gravitational vector. Thus, in the supine

position, gravity and lung structure cause regional ventilation and

perfusion to diverge, and this posture is thus suboptimal in disease

states with pathological V̇A–Q̇ mismatching, such as ‘classic’ ARDS

and CARDS. The improvement in arterial oxygenation observed upon

proning in these conditions likely reflects that the lung assumes its

phylogenetically ‘natural’ posture.

While the impact of proning on mortality is well-established

in classical ARDS, mainly due to lung protective effects involving
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a reduced risk of ventilator-induced lung injury, the data regarding

CARDSare still limited, includingwhether the associated improvement

in oxygenation offers any survival benefit per se. Proning is

nevertheless an attractive therapeutic intervention for providing

lung protective ventilation and alleviating life-threatening hypoxaemia

rapidly, effectively, and safely. A better understanding of the effects of

proning on V̇A–Q̇ relationships as well on clinically relevant endpoints,

such as the need for intubation, mortality and length of ICU or hospital

stay, is, however, necessary and should be explored in prospective

clinical studies.
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