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Abstract
Malignancies and diseases of various genetic origins can be diagnosed and classified with
microarray data. There are many obstacles to overcome due to the large size of the gene
and the small number of samples in the microarray. A combination strategy for gene
expression in a variety of diseases is described in this paper, consisting of two steps:
identifying the most effective genes via soft ensembling and classifying them with a novel
deep neural network. The feature selection approach combines three strategies to select
wrapper genes and rank them according to the k‐nearest neighbour algorithm, resulting in
a very generalisable model with low error levels. Using soft ensembling, the most effective
subsets of genes were identified from three microarray datasets of diffuse large cell
lymphoma, leukaemia, and prostate cancer. A stacked deep neural network was used to
classify all three datasets, achieving an average accuracy of 97.51%, 99.6%, and 96.34%,
respectively. In addition, two previously unreported datasets from small, round blue cell
tumors (SRBCTs)and multiple sclerosis‐related brain tissue lesions were examined to
show the generalisability of the model method.

1 | INTRODUCTION

Microarray data structures are critical for diagnosing and clas-
sifying various types of malignant tissues and diseases; however,
the high dimension of the genes and the limited number of
samples are effective at overcoming the challenges of gene
expression and classification [1–3]. It is difficult and time‐
consuming to interpret disease‐causing genes since only a
small number of genes accurately characterise the disease bio-
logically [4]. When diseases such as cancer are detected early,
effective medications can be developed. Moreover, discovering
efficient genes in a laboratory is difficult, time‐consuming, and
expensive. By automating the separation of genes from micro-
array data, it is possible not only to reduce the classification
errors, but also to reduce the time factor involved in completing
the processing to the desired level [5]. A feature selection in
machine learning aims to obtain the smallest possible subset of
problem space features while still achieving the highest level of
recognition and classification [6–8]. Also for many approaches
for selecting features, such as filter models, wrapper models, and

embedded procedures, an optimization strategy can give
acceptable results. Nevertheless, they are time consuming and
have a low potential for universal optimization. The computa-
tional cost of filter models is lower than that of wrapper and
integrated models [8, 9]. Filtering and wrapper are commonly
used strategies for gene selection. According to the filtering
methods, each feature is assigned a value based on its association
with a class label and a single variable scoring criterion.
Consequently, the genes with the highest ranking are selected
and classified. In contrast, wrapper techniques require a
collection of classifications to assess each gene's performance
during the ranking process. Thus, the optimal subcategory of
the genes is determined based on the performance rankings/
scoring in all discovered subcategories. Although filtering
methods cannot quantify genomic relationships, wrapper stra-
tegies may be limited by their high processing costs [10, 11].
Combining wrapper methods with quick classification models
enables ranking of features even when microarray data is
associated with a large number of genes. A properly modified
classifying parameter establishes the foundation for achieving
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the desired accuracy and precision, which is why various studies
have investigated k‐nearest neighbour (k‐NN) bracing adjust-
ment [12]. Along with the selection of features in microarray
data, efficient classifications improve accuracy and efficiency. In
fact, artificial neural networks (ANNs) are a class of efficient
algorithms that, with appropriate adjustment and learning, can
produce optimal results regardless of the complexity of the
problem domain. There are maximum‐learning‐potential neural
networks [13], border class regression classification [14], logistic
regression [15], random decision trees [16], and Bayesian theory
[17]. Breast cancer, colon cancer, lymph node cancer, and lung
cancer can all be diagnosed using gene expression analysis.
Machine learning techniques and feature selection in gene
expression are recommended for the detection of lung cancer
[18].

Machine learning (especially deep learning (DL)) has
become a popular tool among studies for classification in many
applications [19]. Recently, DL has had a significant impact on
microarray data processing. With the recent availability of these
datasets, DL approaches can be used to speed up the analysis
of data and improve the accuracy of cancer diagnosis, prog-
nosis, and treatment response. There seems to be an urgent
need for accurate and fast approaches to automatically model
gene expression using microarray data. By combining fastening
methods with fast binding classes, we can increase the time and
rank selected genes at the same time. Furthermore, by imple-
menting an efficient DL model, it is possible to significantly
and easily improve the accuracy of gene expression.

Using a soft homogenization method and three wrapper
strategies, the present study provided a successful combination
technique of gene expression for a variety of diseases. When
selecting effective genes subsets, the k‐NN method can be
used for decision‐making in the features selection part. The
purpose of this paper is to provide a unique method of clas-
sifying with a reasonable amount of error as a generalizable
approach to creating gene expression models. Using the soft
search strategy, the effective genes from the microarray dataset
can be identified. Another component of the suggested
method's originality is the stacked autoencoder (SAE). The
following contributions are made by this work:

(1) Using supervised learning with a K‐NN classifier to
evaluate the weights of the genes, we propose a modifi-
cation approach to gene selection. The improved gene
selector and stacked auto‐encoder (SAE) classifier
combine the statistical findings of relevant genes using an
objective ranking technique, which eliminates the need for
potentially inept and biased expert knowledge.

(2) We present a deep stacked auto‐encoder model that
achieves robust classification with low computational
consumption while maintaining accuracy under severe test
conditions.

(3) The methods for disease classification outlined earlier are
very dependent on the selection strategy for genes and the
classifier used. Consequently, the fundamental objective of
this research is to construct a generalisable and precise
method for studying genes using microarray data.

The rest of the paper is structured as follows: Related
work is discussed in Section 2 of this paper. Section 3
describes the proposed strategy for identifying diseases based
on the genes selected and DL approach. Section 4 explains
the dataset used in our study, as well as the results and dis-
cussion. Section 5 presents the investigation's findings and
possible strategies.

2 | RELATED WORK

A review of the recent machine and DL‐based cancer predic-
tion and biomarker gene identification studies will be
conducted. Utilising data on cancer gene expression from
highlighted resources, researchers will be able to evaluate and
assess their proposed analytical approaches.

2.1 | Classical gene selection and learning

As described in their study, Nguyen et al. [20] selected features
for microarray data, selected genes, and classified the data
using a fuzzy standard additive model in combination with
correction of the analytic hierarchy process [21]. Furthermore,
they used genetic algorithm optimization to enhance and
change the parameters of the unsupervised classification
structure.

Momenzadeha et al. [22] used Markov's hidden model and
t‐test of two samples, entropy test, receiving agent character-
istic curve, and Wilcoxon test to choose features based on
wrapper approaches.

Using a graph‐embedded deep feed forward network
(GEDFN), Kong et al. [23] created a gene expression model.
Lu et al. [24] proposed an adaptive genetic and mutual infor-
mation maximization (MIM) algorithm algorithm for micro-
array data on colorectal, leukaemia, prostate, lung, breast, and
small, round blue cell tumor (SRBCT). By selecting a feature
from many data arrays, Sun et al. [25] quantified uncertainty
using neighbour entropy. Sayed et al. [26] used the Nested
Genetic Algorithm (NGA) to select features from a large
volume of microscopic data in order to identify the condition.
Deng et al. [27] developed a two‐step system for cancer clas-
sification that combines the XGBoost method with a multi‐
objective evolutionary algorithm.

Using an optimised gene subset selection method, Tavasoli
et al. [28] introduced a modified approach for microarray data
classification. According to their study, five microarray datasets
were classified using an optimised support vector machine
using a modified Water Cycle Algorithm (WCA).

2.2 | Deep learning

Using the stacked deep autoencoder algorithm, a DL technique
has been proposed for identifying genes that can be used for
identifying malignant tissue from healthy tissue. Gene expres-
sion analysis using RNA‐Seq data has been conducted [29].
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The authors of the study [30] used multi‐model ensembles
based on DL to investigate three cancer types (Stomach,
Breast, and Lung).

In Matsubara et al. [31], gene expression data and a protein
interaction network were used to classify 639 lung cancer
samples (487 malignant, 152 benign).

To assess data from eight different malignancies, Zeebaree
et al. [32] proposed a DL approach using Convolutional Neural
Networks.

The multimodal deep neural network algorithm developed
by Sun et al. [33] allows early detection of breast cancer. Based
on microRNA (miRNA) gene expression data and classifiers
such as the long short‐term memory (LSTM) and Matthews
correlation coefficient (MCC), five distinct subtypes of kidney
cancer were identified [34].

Anika et al. [35] suggested a CNN‐based approach for pre-
dicting the presence of 20 various types of cancer using gene
expression data (from The Cancer Genome Atlas [TCGA]). The
researchers evaluated 60,383 genes in all, using 1881 samples
from each of the 20 cancers.

Using TCGA RNA‐Seq data, a new Deep Flexible Neural
Forest (DFNForest) approach was evaluated [36] to replace
deep neural networks in the classification of three distinct
tumour subtypes (Glioblastoma multiforme, Breast, and Lung).

To predict the outcome of liver cancer, a differential reg-
ulatory network integrated deep neural network (DRE‐DNN)
was constructed using a standard DNN (hepatocellular
carcinoma) [37].

Several approaches use the feature selection and classifica-
tion procedure to classify microarrays. Since gene selection is
crucial to gene expression analysis, a number of studies havebeen
conducted on the various aspects of this fundamental problem.
Microarray data may contain a significant number of genes that
are redundant or unsuitable for predictive design. However,
given the volume of data in microarray data, a small number of
related genes may provide more benefits for learning. Previous
studies have sought to identify genes that are related to eachother
based on their significant class correlations.

3 | PROPOSED METHOD

The suggested approach is shown in Figure 1. Pre‐processing,
Feature (gene) selection, and classification are the main steps of
the proposed method.

3.1 | Pre‐processing

During pre‐processing, we shuffled the data in order to
prevent the automatic classification model from becoming

over‐trained. Although the samples are mixed randomly, the
label positions can vary depending on the classes represented
by each analysed sample. The combination of samples and
adjusting the label corresponding to the sample’s position
during the validation stage allow the learning algorithm to
adjust to only one class of genes or a subset of them. This
method improves classification accuracy by avoiding over‐
fitting [38, 39]. The positions of the corresponding samples
are shifted at random, and the labels are shifted as well. Each
gene in each dataset is naturally highly dispersed and utilises a
diverse set of genes, so they must be normalised in the pre-
processing stage. Gene normalisation reduces processing costs
and optimises gene expression. The appropriate normalising
range is (0–1) based on the min‐max normalisation. Hence, the
minimum‐maximum method is applied for normalisation as
follows:

Ynorm ¼ ðYs − YsminÞ� ðYsmax − YsminÞ
−1 ð1Þ

This indicates that all numbers are scaled between 0 and
1. While the variables Ysmin and Ysmax reflect the values of
the minimum and maximum, a normalised value is called
Ynorm. In addition, Ys denotes the gene's current expression
level.

3.2 | Gene selection

Three methods are used to choose features: Signal‐to‐noise
ratio (SNR), Wilcoxon method, and receiver operating char-
acteristic (ROC). The ROC curves are representations of the
true positive rate versus the false positive rate in the first
approach. The area under the curve (AUC) may be determined
using this illustration using Equation (2) [40]:

AUC ¼
Z 1

0
T1
�
T−1

2 ðtÞ
�
dt ⇒ t ∈ ð0; 1Þ ð2Þ

T is a complement/supplement to Fi, where F1(x) and F2(x)
are the distribution functions of x in two different statistical
communities Fi(x). Only genes with a higher AUC are consisted
in the gene selection vector because their high AUC value
indicates that the labels containing the gene in the samples
have a low degree of overlap. The Mann‐Whitney test, which
determines if two populations are comparable statistically, is an
analogue of the Wilcoxon test. While the null hypothesis as-
serts that the distribution functions of the two populations are
identical, the alternative hypothesis asserts that the distribution
functions of the two populations are not same. This test is

F I GURE 1 Schematic diagram of the proposed algorithm in gene selection and classification
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preferred in many practical scenarios since it does not need a
basic assumption about the difference between the two sam-
ples. Here's how to do the Wilcoxon test:

(1) Superimposing all observations from both groups and
putting them in an ascending order based on their total
number.

(2) Wilcoxon's statistic is based on the total of all the ranks
included in smaller groups.

(3) Based on the overall distribution table, p‐values are
calculated and used to make assumptions.

For gene selection, the absolute values of the standardized
Wilcoxon statistic are more effective and beneficial in the
Wilcoxon test than the Wilcoxon coefficients.

The SNR methodology, which measures the difference
between gene labels expressed in terms of connection (3), is a
third method used [41].

SNR
�
f i; c
�
¼
�
μ1 − μ2

�
� ðσ1 þ σ2Þ

−1
ð3Þ

where μ1 and μ2, as well as σ1 and σ2, denote the mean and
standard deviation of the samples, respectively. The variables
and fi are regarded as vectors containing the gene labels and
the ith characteristic vector, respectively. SNRs are expected to
select a feature from each gene in order to solve the gene
selection problem and classify the microarray data [42]. Finally,
during the training phase, the genes that earn the most votes
among the three related classes are chosen as the most relevant
traits. The training data is divided into new and validation and
training sets using the K‐fold method (CV = 10) and the most
often occurring feature is used to represent the selected gene.
The primary gene predicts the classification class, and k is the
closest picked neighbour, which is fast and delivers a good
response for the huge data gene set. The proposed method was
used to improve the performance of k‐NNs in this study [12],
utilising a query and k‐d algorithm to minimise calculations
and improve class performance. The trend of gene selection is
revealed in Figure 2 in a gentle method, taking into account the
precision gained during the training phase.

3.3 | Stacked auto‐encoder

Stacked Auto‐encoders (SAE) are constructed using auto‐
encoders. Each auto‐encoder's hidden layer is connected to
the hidden layer of the next auto‐encoder in a neural network.
Throughout the training phase, the hidden layer of the prior
auto‐encoder must be used as input to the subsequent one.
Figure 3 depicts the SAE architecture employed in this
experiment.

Using the SAE, you may create new abstractions by
layering them on top of existing ones. When rebuilding, the
final hidden layer output contains the high‐level attributes of
the gene data. In the object field, an object's properties define
its conductivity distribution. We used the Logistic Regression
layer to determine the conductivity distribution.

We feed the DNN with normalised gene selections. It is
denoted by the symbol U = {G(1), G(2),…, G(M)}, where M
denotes the number of training sets and G(k) ∈ [0,1]m denotes
the number of normalised genes. The letter m indicates that
there are an unknown number of gene values in a collection of
randomly chosen gene sequences.

Internal conductivity distribution sample (U = {σ(1), σ(2),
…, σ(M)}), where σ(k) ∈ [0,1]n and n denote the probability of
each class. To seed the weight and bias matrices and vectors,
unsupervised layer‐by‐layer learning is used. The DNN is
entrusted with the duty of digesting the gene with the value
U = {G(1), G(2),…, G(M)}. The entire technique is summarised
below: It is important to train the first hidden layer first, using
the previous one's output. The same procedure is repeated
until all concealed layers are taught. To initialise the whole
DNN during the supervised fine‐tuning phase, the pre‐trained
network parameters from the final hidden layer of a DNN are
fed into a Logistic Regression model. The network takes its
name from a representative sample of the real conductivity
distribution. The top‐down approach to fine‐tuning network
parameters is based on a back‐propagation algorithm based on
the technique of gradient optimization. A more generalisable
model can be enhanced by reducing overfitting through the use
of “dropout.” 0.5% of the network's hidden units are randomly
deleted from the network's network during each training ses-
sion. Simplifying neuronal coadaptation enables the construc-
tion of a more resilient network. The dropout layer performs
admirably when trained on huge datasets. As seen in a typical
auto‐encoder, dropout has an effect on Equations (4) and (5).

yi ¼ f

0

@
Xm

j¼1
wijBernoulliðpÞ ∗ xi þ bi

1

A ð4Þ

zj ¼ f

0

@
Xm

j¼1
wT

ijBernoulliðpÞ ∗ yi þ b0i

1

A ð5Þ

Bernoulli() is defined as a function that generates a random
vector of either zero or one with a probability of p equal to 0.50.

4 | RESULTS

This section describes the outcomes of the gene selection and
classification scheme, as well as the outcomes of the proposed
DL model that was implemented.

4.1 | Datasets

The study is descriptive‐analytical investigation in which data
are gathered from library‐library databases, mostly gene de-
scriptions. These records are frequently accessible via a free
online medical search portal equipped with dynamic search and
browse features. The authors collected gene expression data
through laboratory operations such as microsurgery chip
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fabrication, sample collection of various samples including
cancer and healthy specimens, RNA extraction, and DNA
supplementation. The experiments were conducted using three
sets of data: diffuse large B‐cell lymphomas (DLBCL) [43],
leukaemia [42], and prostate cancer [44]. Each data sample in
the dataset contains information about the sampling technique
and reliability of the instrument, and there are two types of
malignancies classified in relation to DLBCL and follicular
lymphoma (FL). The DLBCL dataset contains 7070 genes
from 77 samples, of which 58 were positive for DLBCL and
the remaining samples were positive for FL. To differentiate
the two lymphomas, classification models are developed uti-
lising gene expression data. The leukaemia dataset contains
bone marrow and blood samples from patients with acute
lymphoblastic leukaemia (ALL) and acute myeloid leukaemia

(AML). This data collection contains 72 samples (47 ALL and
25 AML), each of which had 7129 gene samples. The third
dataset contains 102 samples (50 from natural sources and 52
from prostate tissue), each of which contains 125,333 genes. In
the cross‐section, all gene data are normalised [45].

4.2 | Setting

Data analysis took place in the 2022 MATLAB programing
environment, and statistical tests include quantitative and
qualitative results that follow the simulation of a software
model. The system used for modelling has properties with
Intel (R), Core (TM) and Core i7 processors with 8 gigabyte of
RAM and a 64‐bit operating system.

F I GURE 2 In our soft ensembling method between selected genes, the following three methods are applied: receiver operating characteristic (ROC),
Wilcoxon, and SNR; the classification accuracy of the training data is multiplied by the gene weight, and the best genes are then selected based on their weighted
average among all the weighted genes

F I GURE 3 The configuration of the proposed Stacked Auto‐encoder
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In the feature selection stage, a range of settings were
considered and by selecting a much smaller number of initial
features with the aim of reducing the processing cost of the
initial data set and without changing the initial features, the
appropriate set was selected. To compare the proposed
feature selection model and other methods of selecting a
feature,certain number of features (from 5 to 45 genes) are
given to the k‐NN classification each time the accuracy is
evaluated. To prevent overfitting, we utilized the algorithm to
find the least Mean Square Error (MSE) through multiple
repetitions (among all the tested structures). Its performance
for the sample data was such that if the mean error square
factor is less than the specified value (0.05), the corre-
sponding network is selected as the base network, otherwise,
the minimum MSE and the corresponding structure are
selected.

The number of hidden layers in the DNN model has a
significant effect on the model's capacity to learn. Generally,
we'll adjust the learning rates and number of iterations for
each layer to fine‐tune our model. Three to five layer neural
networks have been constructed. Each layer contained 208
nodes in the input layer, 812 in the output layer, and 150 in
the hidden layer. Between 0.1 and 0.01, rates of learning
varied from pre‐to in‐training. The fine‐tuning method
consisted between one and five hundred iterations. Addi-
tionally, the following network configurations were used:
The pre‐training session was divided into 10 groups of 10
persons each, with each group receiving a 100‐epoch
training epoch. At this point, the batch size was lowered
to 40. The MSE was used to evaluate the network's
performance.

4.3 | Assessments

In Tables 1 to 3, the results of the simulation for 5 folds (each
fold include 10 divisions) are shown for DLBCL data,
leukaemia and prostate cancer, respectively, and the outputs are
calculated for the experimental data.

In Figure 4, the box‐plot of the feature selection method
and its analogies for duplication are demonstrated in all the
three data models. The minimum and maximum distance to
find the optimal subset of soft genes in all the three models of
gene expression data possess a smaller width. In these tables,
the dynamics of the network in case of changing the number of
layers and also the change in the number of neurons are
assumed and different corresponding accuracies are estimated.
In most cases, adjustment based on low and high neurons has
led to good accuracy, and the scattering of accuracy is less.

The number of low layers is assumed to be one to three
hidden layers for the network, and the large number of layers
varies from 4 to 8 layers. The low number of neurons varies
from 5 to 15 neurons and the large number from 20 to 30
neurons, and the process of layer and neuron stabilisation
was performed according to the incremental‐estimation
method. The number of input and output layer nodes was
adjusted based on the number of genes selected and the
number of classes related to gene expression, respectively. To
compare the performance of the feature selection, the
proposed method at this stage is compared with a single
wrapper method. In addition to reducing the scatter between
the accuracy, the output is also significantly improved. On
average, the application of a soft homogenisation method has
resulted in optimization at a distance of 4%–6%, and among

TABLE 1 Estimation of the accuracy of the gene expression test for diffuse large B‐cell lymphomas (DLBCL) data under different conditions of gene
selection and classification

Data dividing No. Layers

Feature selection by wrapper method Feature selection by ensemble model

Max Mean Min Max Mean Min

10‐fold (1) Low 0.90 � (0.045) 0.87 � (0.078) 0.85 � (0.118) 0.92 � (0.021) 0.90 � (0.056) 0.89 � (0.072)

Med 0.95 � (0.022) 0.91 � (0.034) 0.89 � (0.044) 100 0.97 � (0.011) 0.95 � (0.016)

High 0.93 � (0.034) 0.90 � (0.042) 0.87 � (0.078) 0.95 � (0.034) 0.94 � (0.032) 0.93 � (0.036)

10‐fold (2) Low 0.92 � (0.036) 0.88 � (0.064) 0.86 � (0.084) 0.93 � (0.029) 0.92 � (0.043) 0.91 � (0.065)

Med 0.94 � (0.032) 0.89 � (0.051) 0.88 � (0.064) 100 0.98 � (0.017) 0.96 � (0.026)

High 0.94 � (0.029) 0.92 � (0.038) 0.89 � (0.060) 0.96 � (0.027) 0.98 � (0.042) 0.94 � (0.051)

10‐fold (3) Low 0.91 � (0.045) 0.85 � (0.084) 0.83 � (0.096) 0.94 � (0.018) 0.92 � (0.033) 0.90 � (0.065)

Med 0.95 � (0.025) 0.89 � (0.041) 0.87 � (0.085) 0.99 � (0.007) 0.96 � (0.014) 0.94 � (0.022)

High 0.92 � (0.037) 0.87 � (0.055) 0.84 � (0.086) 0.95 � (0.026) 0.93 � (0.035) 0.92 � (0.044)

10‐fold (4) Low 0.89 � (0.073) 0.85 � (0.089) 0.82 � (0.124) 0.96 � (0.028) 0.94 � (0.054) 0.91 � (0.075)

Med 0.94 � (0.031) 0.90 � (0.046) 0.88 � (0.067) 100 0.98 � (0.013) 0.96 � (0.024)

High 0.93 � (0.048) 0.88 � (0.076) 0.84 � (0.109) 0.95 � (0.031) 0.93 � (0.044) 0.91 � (0.056)

10‐fold (5) Low 0.90 � (0.045) 0.87 � (0.078) 0.85 � (0.118) 0.94 � (0.034) 0.92 � (0.051) 0.91 � (0.078)

Med 0.95 � (0.043) 0.93 � (0.068) 0.90 � (0.074) 0.98 � (0.022) 0.97 � (0.030) 0.95 � (0.046)

High 0.94 � (0.051) 0.90 � (0.077) 0.88 � (0.092) 0.96 � (0.028) 0.94 � (0.048) 0.93 � (0.053)
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the results for all three gene data models, 100% accuracy can
be observed. The lowest levels of distribution in leukaemia
gene expression and the highest distribution are estimated for
prostate cancer data.

In addition, the method of selecting the proposed feature in
selecting the effective genes owns accuracy values less than the
confidence interval. There is no significant difference between
the expert's opinion on gene expression and the label obtained

TABLE 2 Estimation of the accuracy of gene expression for leukaemia cancer data in different conditions of gene selection and classification

Data dividing No. Layers

Feature selection by wrapper method Feature selection by ensemble model

Max Mean Min Max Mean Min

10‐fold (1) Low 0.92 � (0.025) 0.91 � (0.032) 0.89 � (0.056) 0.96 � (0.014) 0.94 � (0.025) 0.95 � (0.048)

Med 0.96 � (0.021) 0.94 � (0.027) 0.92 � (0.35) 100 0.99 � (0.009) 0.98 � (0.018)

High 0.92 � (0.031) 0.91 � (0.044) 0.89 � (0.076) 0.97 � (0.026) 0.96 � (0.027) 0.94 � (0.024)

10‐fold (2) Low 0.94 � (0.024) 0.93 � (0.036) 0.91 � (0.051) 0.97 � (0.013) 0.95 � (0.026) 0.94 � (0.028)

Med 0.96 � (0.021) 0.94 � (0.024) 0.92 � (0.036) 100 0.98 � (0.011) 0.97 � (0.021)

High 0.93 � (0.034) 0.91 � (0.054) 0.89 � (0.067) 0.97 � (0.016) 0.96� (0.023) 0.95 � (0.041)

10‐fold (3) Low 0.92 � (0.028) 0.91 � (0.035) 0.88 � (0.070) 0.98 � (0.011) 0.96 � (0.017) 0.94 � (0.034)

Med 0.97 � (0.018) 0.94 � (0.022) 0.92 � (0.044) 100 0.99 � (0.008) 0.98 � (0.010)

High 0.95 � (0.035) 0.93 � (0.037) 0.92 � (0.056) 0.98 � (0.018) 0.97 � (0.018) 0.95 � (0.037)

10‐fold (4) Low 0.95 � (0.037) 0.93 � (0.041) 0.90 � (0.065) 0.98 � (0.018) 0.97 � (0.026) 0.95 � (0.032)

Med 0.98 � (0.020) 0.94 � (0.027) 0.93 � (0.039) 100 0.99 � (0.006) 0.98 � (0.011)

High 0.94 � (0.029) 0.92 � (0.039) 0.90 � (0.041) 0.98 � (0.023) 0.97 � (0.026) 0.95 � (0.041)

10‐fold (5) Low 0.94 � (0.031) 0.92 � (0.036) 0.88 � (0.086) 0.98 � (0.014) 0.96 � (0.019) 0.95 � (0.039)

Med 0.97 � (0.023) 0.96 � (0.031) 0.93 � (0.053) 100 0.98 � (0.012) 0.95 � (0.039)

High 0.96 � (0.032) 0.94 � (0.042) 0.92 � (0.078) 0.98 � (0.015) 0.97 � (0.025) 0.96 � (0.028)

TABLE 3 Estimation of the accuracy of the gene expression test for prostate cancer data under different conditions of gene selection and classification

Data dividing No. Layers

Feature selection by wrapper method Feature selection by ensemble model

Max Mean Min Max Mean Min

10‐fold (1) Low 0.89 � (0.046) 0.86 � (0.071) 0.85 � (0.141) 0.91 � (0.032) 0.88 � (0.048) 0.86 � (0.132)

Med 0.94 � (0.033) 0.90 � (0.060) 0.88 � (0.073) 0.98 � (0.026) 0.96 � (0.031) 0.93 � (0.056)

High 0.90 � (0.057) 0.86 � (0.058) 0.85 � (0.129) 0.94 � (0.044) 0.91 � (0.058) 0.89 � (0.108)

10‐fold (2) Low 0.90 � (0.068) 0.86 � (0.092) 0.83 � (0.121) 0.93 � (0.045) 0.90 � (0.063) 0.87 � (0.119)

Med 0.94 � (0.053) 0.92 � (0.064) 0.90 � (0.070) 100 0.97� (0.024) 0.94 � (0.051)

High 0.91 � (0.073) 0.89 � (0.084) 0.87 � (0.113) 0.95 � (0.034) 0.93 � (0.055) 0.90 � (0.095)

10‐fold (3) Low 0.90 � (0.056) 0.88 � (0.094) 0.86 � (0.118) 0.92 � (0.035) 0.90 � (0.044) 0.87 � (0.093)

Med 0.94 � (0.034) 0.90 � (0.056) 0.88 � (0.096) 0.98 � (0.025) 0.95 � (0.035) 0.92 � (0.048)

High 0.91 � (0.076) 0.89 � (0.073) 0.87 � (0.108) 0.94 � (0.042) 0.91 � (0.057) 0.88 � (0.084)

10‐fold (4) Low 0.89 � (0.067) 0.87 � (0.075) 0.86 � (0.123) 0.93 � (0.035) 0.91 � (0.067) 0.87 � (0.083)

Med 0.95 � (0.048) 0.93 � (0.041) 0.91 � (0.087) 100 0.97 � (0.024) 0.94 � (0.041)

High 0.89 � (0.074) 0.87 � (0.085) 0.86 � (0.106) 0.94 � (0.041) 0.91 � (0.051) 0.89 � (0.072)

10‐fold (5) Low 0.89 � (0.056) 0.85 � (0.074) 0.84 � (0.143) 0.92 � (0.033) 0.88 � (0.061) 0.85 � (0.128)

Med 0.94 � (0.041) 0.92 � (0.060) 0.90 � (0.082) 0.98 � (0.020) 0.95 � (0.049) 0.91 � (0.086)

High 0.91 � (0.050) 0.89 � (0.071) 0.88 � (0.113) 0.96 � (0.039) 0.93 � (0.064) 0.90 � (0.096)
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by the proposed algorithm in each sample (p‐Value <0.02); and
the standard deviation of the outputs was negligible.

5 | DISCUSSION

The proposed method in different subjects of classification
and various data brings functional comprehensiveness. A
number of the proposed solutions in the field of gene

expression are obtained by spending countless time in limited
repetitions, highly distributed classification results, and intol-
erance uncertainty ranges. To assess the influence of gene
selection through the proposed method, we evaluated 5–45
optimal genes with accuracy criteria presented in Figure 5.
All three forms reveal reproducibility of the algorithm as well
as its robustness.

It also manifests that the minimum accuracy of the gene
(from 10 genes to 20 genes) can be accurately determined and

F I GURE 4 Box plot of different methods of selecting features and comparing them with double repetition in diffuse large B‐cell lymphomas (DLBCL),
leukaemia and data, respectively
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classified. It is interesting to note that the previous algorithms
have already selected the gene (feature), however, they have
skipped analysing the minimum number of effective genes
[20–34]. In the proposed method, using the cross‐validation
method, and K‐fold with variable K values adopted as 5, 10,
15 and 20, criteria were estimated. Generally, the output is at
the maximal value in case the number of selected genes is
neither too high nor too low. On the other hand, data such as
DLBCL and prostate cancer were accurately implemented in
the algorithm by applying an average number of genes.
Nevertheless, for data such as leukaemia, which is inherently
satisfactory, even by applying a small number of selected genes,
the outputs are acceptable. In most similar methods, the
minimum amount of gene selected is abandoned; this is highly
important since it can directly affect the reduction of pro-
cessing the volume and increase the speed of achieving the
optimal output.

In contrast to prior methodologies [24–26], the general-
isability of the model for gene expression in microarray data
has received less attention. Indeed, generalisability can be
asserted if a model demonstrates the required robustness and
reliability when classifying previously unseen data. Two more
additional datasets with features distinct from the initial
microarray dataset were used to assess generalisability. The first

microarray is a collection of SRBCTs obtained from children.
These tumours represent four distinct subtypes of neuroblas-
toma (NB), rhabdomyosarcoma (RMS), non‐lymphoma
Hodgkin's (NHL), and the Ewing family of malignancies
(EWS). Each class has 23 samples (EWS), 20 samples (RMS),
12 samples (NB), and 8 samples (NHL), totalling 63 samples
containing 2308 genes. The primary distinction between this
data and the previously described data is that the previously
unknown microarray data has four separate classes of gene
expression (four‐class mode), whereas the previously discussed
data contains only two classes (presence or absence of the
disease).

The second data is a collection of transcript profiles of
multiple sclerosis including 44 microarray samples with
27,336 genes; 26 sections from its 44 samples showed
multiple sclorosis (MS) with progressive stages of the dis-
ease and 18 samples without any neurological complications
[46, 47]. Little research has been performed on this type of
data due to the low classification accuracy of the solutions
along with the differences in their transcription process to
create a microarray molecular chain [48]. In Figures 6 and
7, classification accuracy is expressed in terms of the
number of effective features or genes selected in both
SRBCTs and MS unseen data.

F I GURE 5 For each of the three microarray datasets, results (per percent) for automatic gene selection and classification are presented via soft ensembling
and SAE methods with the fewest number of effective genes in the first, second, and third iterations in row 1, row 2, and row 3, respectively
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Un‐like the research method proposed in this study, which
uses soft ensembling among the filtering methods to find
effective genes, several swarm intelligence‐based learning al-
gorithms are in fact based on searching the answer space.
These algorithms have the chance of getting stuck in the local
optima while searching for the general ones [20–34, 49, 50]. As
classifiers are generally more suitable in the process of learning
parameters using different algorithms, hence, improving the
classification recognition should not be limited to gene
expression. Our future plans include implementing the model
with improved deep LSTM networks [51] and effective feature
selection [52] for more accurate classification and using
platforms such as Internet of Things (IoT) [53, 54] for fast data
processing.

6 | CONCLUSION

For feature selection and classification, a new hybrid approach
based on soft ensembling and stacked auto‐encoders was pro-
posed that assigns rankings to the five effective genes of the
microarray data. Combining the three methods of soft wrapper
with classification using the k‐NN algorithm led to the mini-
mum number of genes needed for final classification. When
compared to filtering methods and optimization algorithms that
are associated with low accuracy and slow data processing, the
combination method based on three wrapping methods speeds
up the process of selecting the suitable subset while maintaining
a high level of accuracy. Despite the relatively small number of
samples, the novel stacked auto‐encoder avoided almost entirely
the complexity of over‐fitting, which could have led to high

classification error. Apart from the robustness and simplicity of
the proposed method, the generalisability of the model is
another critical aspect that can be adjusted to increase the
accuracy while minimising the classification error. A more
powerful and time‐consuming method will be developed in the
future. In the future, we will focus on finding the best genes and
improving the structure of SAE.
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