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Abstract

Near-term ecological forecasting has the potential to mitigate negative impacts of human
modifications on wildlife by directing efficient action through relevant and timely predic-
tions. We used the U.S. avian migration system to highlight ecological forecasting applica-
tions for aeroconservation. We used millions of observations from 143 weather surveil-
lance radars to construct and evaluate a migration forecasting system for nocturnal bird
migration over the contiguous United States. We identified the number of nights of mitiga-
tion required to reduce the risk of aerial hazards to 50% of avian migrants passing a given
area in spring and autumn based on dynamic forecasts of migration activity. We also inves-
tigated an alternative approach, that is, employing a fixed conservation strategy based on
time windows that historically capture 50% of migratory passage. In practice, during both
spring and autumn, dynamic forecasts required fewer action nights compared with fixed
window selection at all locations (spring: mean of 7.3 more alert days; fall: mean of 12.8
more alert days). This pattern resulted in part from the pulsed nature of bird migration cap-
tured in the radar data, where the majority (54.3%) of birds move on 10% of a migration
season’s nights. Our results highlight the benefits of near-term ecological forecasting and
the potential advantages of dynamic mitigation strategies over static ones, especially in the
face of increasing risks to migrating birds from light pollution, wind energy infrastructure,
and collisions with structures.
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Resumen

La estimación ecológica a corto plazo tiene el potencial para mitigar los impactos negativos
de las modificaciones humanas sobre la fauna al dirigir las acciones eficientes mediante
predicciones relevantes y oportunas. Usamos el sistema de migración de aves de Estados
Unidos para resaltar las aplicaciones de la estimación ecológica para la aeroconservación.
Usamos millones de observaciones tomadas de 143 radares de vigilancia climática para
construir y evaluar un sistema de estimaciones migratorias para la migración de aves noc-
turnas en los Estados Unidos contiguos. Identificamos el número de noches de mitigación
requeridas para reducir el riesgo de peligros aéreos para el 50% de las aves migratorias que
pasan por un área específica en la primavera y en el otoño con base en las estimaciones
dinámicas de la actividad migratoria. También investigamos una estrategia alternativa: el
uso de una estrategia fija de conservación basada en las ventanas temporales que histórica-
mente han capturado el 50% del pasaje migratorio. En la práctica, durante la primavera y
el otoño, las estimaciones dinámicas requirieron menos noches de acción en comparación
con la selección de ventana fija en todas las localidades (primavera: promedio de 7.3 más
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días de alerta; otoño: promedio de 12.8 más días de alerta). Este patrón resultó en parte
por la naturaleza pulsada de las migraciones aviarias capturadas en los datos del radar, en
los cuales la mayoría de las aves (54.3%) se mueven durante el 10% de las noches durante
la temporada migratoria. Nuestros resultados resaltan los beneficios que tienen las estima-
ciones ecológicas a corto plazo en comparación con las estáticas, especialmente de frente
a los riesgos crecientes que encaran las aves migratorias por la contaminación lumínica, la
infraestructura de energía eólica y las colisiones con las estructuras.

PALABRAS CLAVE

aeroecología, contaminación lumínica, migración de aves, radar, telemetría
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INTRODUCTION

Knowing when to direct action to protect species and habitats
is essential for successful conservation (Knight et al., 2010; Wil-
son et al., 2005), and there are many examples of such cam-
paigns (e.g., Burgess et al., 2019; Liberati et al., 2019; Luther
et al., 2016; Wilson et al., 2019). Safeguarding highly dynamic
ecological processes, such as movement and migration, poses
a greater challenge (Reynolds et al., 2017). However, the spa-
tial process of migration also creates an opportunity to reduce
the amount of time during which conservation measures are
necessary at any particular location. Ecological forecasting of
animal movements at relevant spatial and temporal scales may
provide a pathway toward real-time conservation (Dietze et al.,
2018; Van Doren & Horton, 2018). Days, hours, or even min-
utes can make the difference between successful intervention
and missed opportunity when considering highly vagile species.
Timely conservation actions relevant to migrating species may
include the temporary removal of terrestrial or aquatic barriers
(e.g., fences, dams), aerial obstacles (e.g., wind turbines, aircraft),
or point-source pollutants (e.g., light pollution, chemical pol-
lution) (Marschall et al., 2011; Naidoo et al., 2012; Van Doren
et al., 2017).

Among the enormous and diverse range of opportunities to
safeguard migratory taxa, bird movements embody these con-
servation challenges, both in space and time, with movements

spanning weeks to months across hundreds to thousands of
kilometers through diverse ecosystems (Thorup et al., 2020;
Bauer et al., 2020). Although a large percentage of migratory
birds’ annual cycles may be based in terrestrial or aquatic sys-
tems, twice annually, billions of birds fill the lower atmosphere
en route to wintering or breeding grounds (Dokter et al., 2018).
Spring and autumn migratory seasons often encompass mul-
tiple months, but movements are not uniformly distributed in
space or time (Horton et al., 2020). During any year in a given
location, the majority of migrants will pass overhead within a
period of days or weeks (Horton et al., 2020), but specific nights
of peak migration vary across locations and years. Understand-
ing, quantifying, and predicting this variation is essential to avian
conservation.

Migratory birds increasingly encounter aerial threats from
human development (Davy et al., 2017), some of which can
be mitigated by specific actions. These threats are diverse in
size, shape, and their impact on migratory birds. Some of these
threats induce mortality directly, for instance collisions with
buildings (Loss, et al., 2014), wind turbines (Loss et al., 2013),
or communication towers (Gehring et al., 2009; Loss et al.,
2014). Other threats are more diffuse in their impact. For exam-
ple, light pollution may direct migrants to inhospitable urban
spaces (Zuckerberg et al., 2016; La Sorte et al., 2017; Van Doren
et al., 2017; Lao et al., 2020), putting those individuals at risk
through diminished energy reserves, phenological delays, and
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susceptibility to predation or injury—each factor potentially
resulting in difficult-to-measure fitness consequences. Mitiga-
tion to enhance safe passage of migrating birds is possible for
some types of threats. For example, on nights of high migra-
tory activity, lights could be dimmed or turned off on human-
made structures or activities could be changed (e.g., wind tur-
bines stopped). Predicting the specific nights on which birds will
migrate has tremendous value for safeguarding aerial passage.

A significant hurdle to implementing dynamic conservation
approaches is the availability of timely alerts for when action is
necessary. Remote sensing tools (e.g., radar, acoustics, infrared
imaging) can measure real-time nightly movements of avian
migrants (Horton et al., 2015), providing invaluable informa-
tion for conservation. But even such instantaneous measures
are too late to prevent collisions. One approach to address this
challenge is to leverage historical measures to identify the sea-
sonal windows during which the majority of migration tends
to occur (e.g., period that captures 50% of activity) and direct
conservation action during those fixed time windows. How-
ever, migration is highly dynamic, and the timing of migratory
movements is strongly influenced by shifting atmospheric con-
ditions (Åkesson & Hedenström, 2000; Liechti, 2006; Shamoun-
Baranes et al., 2010). For this reason, migration has night-to-
night periodicity (Åkesson & Hedenström, 2000; Deppe et al.,
2015). A fixed window approach would, therefore, be apt to
capture nights of both high and low migratory activity, which
could lead to costly effort with limited impact and to missing
important events occurring outside the fixed window. Ecologi-
cal forecasts offer an alternative approach for facilitating short-
term conservation actions (Clark et al., 2001; Luo et al., 2011).
Forecasts, by nature, are temporally and spatially dynamic, offer-
ing lead time for the deployment of conservation action. Van
Doren and Horton (2018) built a forecasting system to pre-
dict bird migration based on radar and atmospheric conditions;
however, they did not examine how to operationalize fore-
casts to direct conservation efforts. Analytically, this dynamic
selection approach presents a modeling challenge because large
movements comprise a small fraction of the duration of a
migratory season (Horton et al., 2019). Although error is an
inherent property of any ecological forecast, a sufficiently accu-
rate forecast may still capture more activity across fewer nights
than a historically defined window.

To address the need for conservation solutions to mitigate
hazards for nocturnally migrating birds, we examined the
behavior of the dynamic and fixed approaches. We quantified
the utility of a near-term forecasting system for aeroconserva-
tion (i.e., conservation of aerial habitats) with a data-intensive
approach: radar remote sensing. We asked if actions could be
taken that were 100% effective in protecting birds, on how
many nights would be needed to take action to protect 50%
of all migratory birds passing through a given location? In the
specific case of light pollution, there is evidence that immediate
mitigation action can be effective (Van Doren et al., 2017, 2021).
We addressed this question with a fixed window approach based
on historical data and a dynamic approach based on near-term
forecasts across the continental United States.

METHODS

Weather surveillance radar data

We quantified nocturnal migration from 143 weather surveil-
lance radar (WSR) stations across the contiguous United States
from 1995 to 2018. We characterized the spring migratory
period from March 1 to June 10 and autumn from August
1 to November 10; each season spanned a maximum of 102
nights. To capture the complete passage of migrants, radar sam-
ples were processed from sunset to sunrise at 30-min inter-
vals. Level-II NEXRAD data were downloaded from the Ama-
zon Web Services (AWS) archive (https://s3.amazonaws.com/
noaa-nexrad-level2/index.html) and processed using the WSR-
LIB package (Sheldon, 2015). We identified signatures con-
sistent with precipitation with MISTNET (Lin et al., 2019)
and removed these from reflectivity factor (migration inten-
sity) and radial velocity (migration speed and direction) mea-
sures. Although some migration may persist through periods of
light precipitation, the intersection of precipitation and migra-
tory movements tends to be mutually exclusive. Precipitation,
especially heavy precipitation, halts the movement of migrants
(Richardson, 1978, 1990). For reflectivity factor and radial veloc-
ity, profiles of activity were constructed from the lowest five
radar scans (0.5–4.5◦) at 100-m vertical intervals from 0 to 3 km
aboveground (Buler & Diehl, 2009). We extracted data from a 5-
to 37.5-km radius surrounding the radar. We converted reflectiv-
ity factor to reflectivity following Chilson et al. (2012), the units
of which are square centimeters per cubic kilometer (i.e., η). We
derived migrant ground speed (kilometers per hour) and direc-
tion (degrees) from velocity azimuth displays following Brown-
ing and Wexler (1968). When necessary, radial velocity was de-
aliased following Sheldon et al. (2013). We processed just over
13 million radar scans from 2115 spring nights and 2152 autumn
nights.

Migration forecast

We used the previously described profiles of activity to train sea-
sonal bird migration forecast models. Our goal was to generate
separate spring and autumn forecast models to predict migra-
tion traffic rate at 30-min intervals, the same frequency as the
radar measurements. To implement this, we used the product
of radar reflectivity and groundspeed (centimeters squared per
kilometer squared per hour) with a cube-root transformation
as the model’s response variable. We used a gradient boosted
regression tree framework (Chen & Guestrin, 2016) to capture
the complex spatiotemporal interactions of migratory move-
ments as described by Van Doren and Horton (2018). We con-
structed models with the XGBoost package (Chen et al., 2017)
in the R environment with 13 predictors: three spatial predictors
of latitude, longitude, and height above ground level (meters);
two temporal predictors of ordinal date and hour after sunset;
and eight atmospheric predictors of meridional wind (meters
per second), zonal wind (meters per second), air temperature

https://s3.amazonaws.com/noaa-nexrad-level2/index.html
https://s3.amazonaws.com/noaa-nexrad-level2/index.html
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(degrees Celsius), surface pressure (Pascals), relative humidity
(percentage), total cloud cover (percentage), visibility (meters),
and mean sea level pressure (Pascals). Atmospheric predictors
were extracted from the North American Regional Reanalysis
(NARR) data set (Mesinger et al., 2006) and linked with radar
measures to align spatially (latitude, longitude, and height above-
ground) and temporally (date and hour). The NARR measures
possess a spatial resolution of 32-km, 25 hPa vertical resolu-
tion, and 3-h temporal resolution. For variables with multiple
pressure levels, we used data up to the 300 mb. We averaged
weather data within 37.5 km of each radar station. We deter-
mined height aboveground by subtracting surface geopoten-
tial height from the geopotential height of each pressure level,
and we linearly interpolated data at 100-m increments from 0
to 3000 m. Temporally, we matched radar and weather data
by using the weather observation closest in time to each radar
observation. We trained seasonal models with the following
parameters: max_depth = 12, eta = 0.01, gamma = 1, col-
sample_bytree = 1, min_child_weight = 5, and subsample =
0.7. The max_depth is the maximum depth of regression trees;
eta is the step size shrinkage used in updates to prevent over-
fitting and to make the boosting process more conservative
(0.01 is a fine-scale update); colsample_bytree is set for subsam-
pling of columns (no subsampling applied with a value of 1);
min_child_weight is the minimum number of instances needed
in each node; and subsample is the proportion of data XGBoost
randomly samples from the training data prior to growing trees
(Chen et al., 2017). These parameters were selected to maximize
variance explained from a tuning training set that accounted for
10% of our total radar data set (see Van Doren & Horton [2018]
for details).

To determine the seasonal utility of predictions pro-
duced by forecast models, models were iteratively trained
with 1 year held out. For each resultant model, we
made predictions of migration traffic on the held-out
year with covariates from the Global Forecast System
(GFS) (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-forcast-system-gfs). We used GFS data
for this exercise, rather than NARR, because GFS data offer
true meteorological forecasts and represent the data source that
would be used to generate real-time bird migration forecasts.
We made 30-min predictions of migratory activity across nine
years (spring 2010 to spring 2018). Predictions were aligned spa-
tially (latitude, longitude, and height aboveground) and tempo-
rally (ordinal date, time after sunset) with radar measures derived
from NEXRAD (see “Weather surveillance radar data” section).
The GFS predictions have a 0.5◦ spatial resolution and 3-h tem-
poral resolution that extends 384 h (16 days) into the future.
The GFS predictions are updated four times daily (00:00, 06:00,
12:00, and 18:00 UTC); however, we used only the 00:00 UTC
forecast that preceded the onset of nightly migration. We con-
strained our analyses to these 9 years because the download of
GFS data is cumbersome and requires many terabytes of stor-
age; GFS data are archived to 2004.

Summing nightly migration activity

We used migration night as our sampling unit; thus, we inte-
grated our 30-min migration activity samples from sunset to
sunrise following (Horton et al., 2020). In brief, we accounted
for the flow of migrants over the sampling area (i.e., WSR-
station) by multiplying η (defined above) by the measured
groundspeed (defined above) and integrating through the night
to account for the nightly passage with linear interpolation for
area under the curve, resulting in centimeters squared per kilo-
meter squared per night. We multiplied the result of the linear
interpolation for area under the curve by the altitudinal resolu-
tion (0.1 km) of each profile height bin, resulting in centimeters
squared per kilometer per night. We used a radar cross-section
of 11 cm2, which represents an average-sized migratory species
(Dokter et al., 2018; Horton et al., 2019), to yield a nightly WSR-
station traffic rate of birds per kilometer per night. We applied
this procedure to measured and forecast values and used these
units to summarize total passage. Because some stations had
missing data in the radar archive, we used only annual radar–
season combinations with at least 100 nights. During spring, this
resulted in the removal of 389 radar-year replicates (of 1119) and
467 radar-year replicates (of 1260) during the autumn.

Quantifying migration alerts in practice

We evaluated two approaches for directing aeroconservation
action: dynamic selection and fixed window selection. To com-
pare these approaches, we used as a reference the number of
nights needed to capture 50% of migratory activity. Under the
dynamic selection scenario, we identified the minimum number
of nights of conservation action (hereafter action nights) needed
to capture 50% of seasonal activity. We applied dynamic selec-
tion in two ways. First, we identified nights based on the realized
migration passage measured by the radars, as if we could predict
the truth with complete accuracy (hereafter idealized dynamic
action nights). Second, we identified nights based on our migra-
tion forecast, which is imperfect (hereafter forecast dynamic
action nights). In practice, action nights would be triggered
by a threshold of activity, meaning nights below the threshold
receive no action and those above receive action. Thresholds
are expected to vary across our coverage area.

We computed the number of forecast dynamic action nights
to capture different quantiles of migration activity as follows.
First, we predicted the migration intensity for each night in the
held-out year with a seasonal model trained on the remaining
years. Then, for each quantile ranging from 0.05 to 0.95 by
increments of 0.05, we searched for the smallest threshold of
migration activity (t) such that the nights with predicted inten-
sity greater than or equal to t captured at least the desired frac-
tion of total seasonal migration. For example, we defined the
threshold at the 90th percentile of activity for a WSR-station
and subsequently determined how many forecast nights per

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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FIGURE 1 Mean percentage of nighttime migration activity captured
across 4 percentile categories clear from figure (open circles, number of nights
per season in each category; large, solid circles, migration activity scaled by
summed percentage of activity in each category and average of spring and
autumn seasons across all weather surveillance radar stations)

season were captured as action nights. For those nights labeled
as action nights, we also determined the percent activity (from
known historical measures) captured in those events (e.g., the
90th percentile results in 10 action nights that capture 50% of
activity). We searched for thresholds with predicted migration
intensities rather than measured ones because intensities were
not perfectly calibrated in terms of magnitude, thus we opted to
use thresholds from predicted values to account for differences
(Van Doren & Horton, 2018). We defined the threshold from
forecast predictions from all years except the year of interest.

The fixed window selection approach identified a minimum
continuous window of time that historically captures 50% of
migration activity. This approach did not rely on ecological fore-
casting and was seasonally fixed but spatially variable. To quan-
tify the optimal seasonal window of time for each WSR-station,
we iterated through window widths ranging from 1 to 100 nights
and stepped through each combination of window width and
start time (e.g., a window of 10 nights starting on April 15). For
each combination, we examined the percentage of activity cap-
tured on an annual basis. We averaged the percent capture across
all years and selected the optimal window that minimized dura-
tion but captured at least 50% of migratory activity. For deter-
mining the efficacy of this approach in practice, we held out the
year of interest when determining the optimal window.

RESULTS

Passage metrics from idealized dynamic and
fixed window selection

Across 1628 unique sampling nights (92,296 spring and 85,315
fall nightly samples), the majority of total migratory passage
(54.3%) occurred on 10% of nights for each season (Figure 1).
Under idealized dynamic selection (Figure 2a), 10.0 nights (SD
2.9) during the spring (Figure 3a) and 10.9 nights (SD 3.8) dur-
ing autumn (Figure 3b) captured 50% of activity at each station.
These nights occurred in a continuous span of 34.7 nights (SD
9.8) during spring and 48.4 nights (SD 10.0) during autumn.

(a)

(b)

FIGURE 2 Scenarios for selecting nights for conservation action for
Brownsville, Texas (USA) during spring 2018 migration for (a) idealized
dynamic selection (13 nights that capture 50.5% of total passage across a
window of 30 nights) and (b) fixed window selection (historically defined
window of peak activity and for 2018, 52.1% of migration activity)

In both seasons, the majority of migration occurred on fewer
nights farther north (linear model showing effect of latitude:
spring, −0.27 [SD 0.07], p < 0.001; autumn, −0.18 [SD 0.09],
p < 0.001) and farther east (linear model showing effect of lon-
gitude: spring, −0.05 [SD 0.03], p = 0.002; autumn, −0.14 [SD
0.04], p < 0.001).

Fixed windows that captured 50% of passage (Figure 2b)
spanned 19.2 nights (SD 3.9) in spring (Figure 3c) and 26.5
nights (SD 4.6) in autumn (Figure 3d). Window width gener-
ally decreased farther north (linear model, spring, −0.08 [Con-
fidence Interval (CI) 0.11], p = 0.159; autumn, −0.19 [CI 0.13],
p = 0.005) and farther east (linear model, spring, −0.08 [CI
0.04], p < 0.001; autumn, −0.01 [CI 0.05], p = 0.728). How-
ever, these linear spatial dependencies were weaker than the ide-
alized dynamic selection trends and at times not significant. The
fixed window selection approach required significantly more
time than idealized dynamic selection to capture 50% of activity
(paired t-test, spring mean of differences 9.3 nights, t142 = –36.5,
p< 0.001; autumn mean of differences 15.6 nights, t142 =−41.7,
p < 0.001). In both idealized dynamic and fixed window scenar-
ios, spring periods were significantly shorter than autumn peri-
ods (paired t-test, mean dynamic seasonal difference 1.0 nights,
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(a) (b)

(c) (d)

FIGURE 3 Mean number of nights required to dynamically capture 50% of migration activity in an idealized setting in (a) spring and (b) autumn and (c) spring
and (d) autumn mean fixed window that historically captures 50% of migration activity (color scales vary)

t142 = −3.2, p = 0.002; mean fixed-window seasonal difference
7.2 nights, t142 = −15.1, p < 0.001).

Forecast passage metrics

On average, our forecast models based on NARR reanalysis
data explained 73.0% (SD 0.008) of the variance of the cube-
root-transformed migration intensity during spring and 69.8%
(SD 0.010) during autumn. Using the Global Forecast System
to predict migration traffic 1 day in advance, our spring model
explained 70.4% (SD 0.009) of the variance and 68.8% (SD
0.009) of the variance in autumn.

Because migration forecasts are imperfect, more action
nights were required to capture 50% of migration activity
compared with an idealized scenario (above; Figure 4). During
spring, 13.7 (SD 3.5) forecast dynamic action nights were
necessary and 15.9 (SD 4.6) during autumn. However, this was
still far fewer than with fixed selection, which required 53%
more action nights in the spring (mean of 7.3 more alert days)
(Figure 5a) and 81% more action nights in autumn (mean of
12.8 more alert days) (Figure 5b). At all WSR stations, forecast
dynamic selection resulted in fewer action nights needed to
capture 50% of migratory passage compared with fixed window
selection (Figure 5).

We used a benchmark of capturing 50% of migratory activity.
We also examined the continuous gradient of migratory activ-

(a)

(b)

FIGURE 4 Differences between number of action nights between
forecast and idealized dynamic selection approaches for (a) spring and (b)
autumn migration. The number of action nights for both methods is that
needed to capture 50% of activity

ity and number of action nights across the idealized dynamic,
forecast dynamic, and fixed window selection approaches
(Figure 6). Consistently across our sampling space, forecast
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(a)

(b)

FIGURE 5 Differences between number of action nights in forecast
dynamic selection and fixed window selection in (a) spring and (b) autumn.
The number of action nights for both methods is that needed to capture 50%
of migration activity. In all cases, fixed window required more nights than
forecast dynamic

dynamic selection captured more activity with fewer action
nights than fixed window selection. Generally, after capturing
75% of migratory activity, the percent gain for each additional
action night began to taper off (Figure 6).

DISCUSSION

At present, conservation action often embodies a tension
between society’s desire to protect species and society’s will-
ingness to incur costs for that protection (Miller & Hobbs,
2002; Singh et al., 2015). In the era of big data, one can design
strategies that provide conservation benefits at less cost—here
identifying fewer action nights—to reduce this tension. We
found that near-term ecological forecasting aided realization of
dynamic and optimized action. Such forecasting can perform
more efficiently than status-quo techniques and create a path
for dynamic, real-time conservation alerts that reduce society’s
costs of conservation. At all locations we examined, forecast-
ing resulted in fewer action nights than static, fixed window
approaches that captured comparable aerial passage and alerted
protective actions.

We defined two important criteria: number of action nights
as a proxy for costs and our policy goal of capturing 50% of
migration passage as a proxy for an important ecological bench-
mark. We identified a set of dates for a fixed time window
and for forecast dynamic mitigation approaches that can have
the greatest impact per cost incurred. This approach does not
capture all costs, including opportunity costs, of each action
night and does not capture all benefits of migratory bird con-
servation. Instead, this approach sets the ecological goal of
50% of migration captured and asks how to minimize the
action nights (costs) to achieve that goal. This cost-effectiveness

approach avoids the complications of determining the socially
preferred level of conservation for economic efficiency that
requires a full assessment of all market and nonmarket costs
and benefits. Using action nights as a proxy for costs corre-
sponds to the reserve site-selection literature’s use of the num-
ber of sites as a cost proxy and minimization of the number
of sites chosen for a reserve network that conserves a spe-
cific number of species. That process matches only the cost-
minimizing reserve network to achieve a level of species con-
servation if all land units have the same cost (Ando et al.,
1998; Polasky et al., 2008). It may be possible to find a set of
sites that provides the target level of conserved species for a
lower cost than in the site-minimizing reserve. Here, if costs are
heterogenous across nights, economic cost-effectiveness shifts
action nights toward less costly nights, which can mean more
action nights but lower cost overall. One potential next step to
improving the cost-effectiveness of dynamic mitigation involves
assessing the heterogeneity of action-night costs to take advan-
tage of opportunities to provide collision mitigation at a lower
cost.

Incorporating other economic considerations could further
increase conservation per dollar through appropriate use of
near-term forecasting information. First, positive correlations
between higher cost action nights and numbers of migrating
birds make conservation more expensive, whereas negative cor-
relations create efficiency gain opportunities (e.g., Figge, 2004;
Koellner & Schmitz, 2006; Schindler et al., 2010). For exam-
ple, if nights with high wind pose a high opportunity cost of
energy generation by turning off wind turbines but high wind
also prevents many birds from migrating, the daily heterogene-
ity in costs can be leveraged to achieve the mitigation goal
at lower cost (Hayes et al., 2019). Second, cost-effectiveness
relies on the characteristics of the dynamic versus fixed win-
dow approaches’ cost functions and the differences between
these cost functions. Each approach’s cost function likely con-
tains a fixed cost (e.g., costs incurred to lay the groundwork to
use action nights) and variable costs (e.g., costs incurred as a
function of the number of action nights). Assessing the rela-
tive impact of the fixed and variable costs across the fixed win-
dow and dynamic action night choices could identify situations
in which the dynamic action nights approach provides partic-
ularly large or small cost improvements over the fixed window
approach. Similarly, both fixed window and forecast dynamic
conservation costs for avian conservation might include costs
of the foregone energy generation of turning off wind turbines
(Kennedy, 2005; Cullen, 2013), which interacts with energy
source-switching costs (Bird et al., 2016) or the costs of turning
off lights in urban or energy-generation sites. Third, dynamic
conservation may provide information that engages individu-
als in a positive way, which could create a social benefit that
reduces the action night’s social costs. Further economic effi-
ciency analysis that addresses the specific costs of fixed win-
dow and dynamic conservation approaches, the heterogeneity
of costs across space and time, and the engagement of potential
participants could further improve the efficiency of conserva-
tion action decisions and provide the target level of conserva-
tion at a lower cost.
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FIGURE 6 Relationship between number of
action nights and migration activity captured for
idealized dynamic, forecast dynamic, and fixed
window selection (i.e., gray, green, and blue,
respectively) in spring and autumn (lines, annual
cumulative migration traffic rates for individual
weather surveillance radar stations from spring of
2010 to spring of 2018). Each method is fitted with a
generalized additive model, and the line shading
signifies the rate of increase in percent activity
captured

Although our forecasting approach already shows improve-
ments over static approaches, at least in terms of reducing the
number of action nights, we predict that the efficiency and accu-
racy of this dynamic approach will continue to improve with
each passing migration season through the addition of new
training data, inclusion of commentary sensors, and advances
in computational machinery. Methodologically, we believe our
predictions will improve through additions of landscape vari-
ables (e.g., land cover, greenness), finer temporal updates (e.g.,
every 3 h), broader spatial predictors of synoptic weather con-
ditions, and the integration of within-season migration activ-
ity measurements. Furthermore, we expect the explicit inte-
gration of natural history data (e.g., species observations) will
enhance taxonomic resolution, increase the specificity of con-
servation decision-making, and reveal potential biases of our
approach, particularly in light of stratified timing of migrant pas-
sage either by species or higher taxonomic classification (Hor-
ton, Van Doren, et al., 2019). Although our threshold of protect-
ing 50% activity is a subjective choice, our approach is extensible
to conservation or economic priorities that may dictate differ-
ent levels of protection (see Figure 4 for data on 25% and 75%
thresholds).

Spatial heterogeneity exists in the geographic distribution of
action nights in spring and autumn. For example, California
and the Desert Southwest required larger numbers of action
nights for both idealized dynamic and fixed window selection
relative to the rest of the United States, reflecting more pro-
tracted migration passage through those regions (Figure 3).
Additional anomalies during spring were evident in Texas and
portions of the southeast. Although forecast dynamic selection
yielded fewer action nights than fixed window selection, devia-
tions between forecast and idealized dynamic selection were still
high in some regions (Figure 4). It is likely that the complexi-
ties of topographic features, such as coastlines and terrain (e.g.,
Rocky Mountains), are not sufficiently captured by our model
and highlight the challenge of forecasting movements in these

regions. Additionally, differences between forecast and ideal-
ized selection were higher in autumn than spring. Variability of
autumn movements may be larger due to age-specific departure
and flight strategies (Mitchell et al., 2015) and elevated selection
of weather events to promote southward flights (Horton et al.,
2016), manifesting in large flights over a wider range of time
(Figure 3). Capturing these spatial patterns is important from a
conservation standpoint and in the context of economic cost-
effectiveness, wherein action nights may have different inherent
values.

We have demonstrated that near-term ecological forecasting
can address conservation challenges that evolve rapidly in space
and time. Our approach uses volumes of data gathered to learn
associations of avian migration and atmospheric conditions
(Van Doren & Horton, 2018). We believe these tools, both in
forecasting and alerting, can be translated directly to areas with
existing radar infrastructure and archives. These approaches
may encompass whole continents (e.g., Europe, Asia, or Aus-
tralia), but are applicable at smaller spatial scales, requiring only
a small number of radar installations. Big data analytics have
arrived, particularly in wildlife ecology through large data collec-
tion efforts founded on sensor networks (e.g., radar, community
science). These applications reinforce the power of these grow-
ing repositories for building new and better performing fore-
casts. Ecological forecasting lends itself to many conservation
challenges across a wide variety of taxa and scales. For instance,
predicting the emergence of ephemeral insects blooms (Stepa-
nian et al., 2020), nesting returns of sea turtles (Van Houtan &
Halley, 2011), and movements of terrestrial migrants through
fragmented and shifting landscapes (Fischer & Lindenmayer,
2007; Lendrum et al., 2013; Geremia et al., 2020). Each of
these examples is linked integrally with shifting climate, seasonal
weather, and landscape and oceanic variability, requiring models
that adapt to current conditions. Rethinking conservation goals
in this dynamic framework opens new opportunities in the face
of the growing intersection between humans and wildlife.
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