
Letters

Anthocyanins in
photoprotection: knowing
the actors in play to solve
this complex ecophysiological
issue

A response to Pena-Novas & Archetti (2020)
‘Biogeographyandevidence for adaptive explanations
of autumn colors’ and Renner & Zohner (2019) ‘The
occurrence of red and yellow autumn leaves explained
by regional differences in insolation and temperature’

Though there is compelling evidence for the suite of molecular
events regulating the flavonoid branch pathway that leads to
anthocyanin biosynthesis (Chen et al., 2019; Naing & Kim,
2018; Saigo et al., 2020), there is still no consensus about the
functional significance of anthocyanins in plant–environment
interactions (Steyn et al., 2002; Manetas, 2006; Hughes, 2011;
Landi et al., 2015, 2021; Gould et al., 2018). This is also the
case of colorless flavonoids, hereafter referred to as flavonoids,
which accumulate in separate leaf tissues and subcellular
organelles to anthocyanins (Pollastri & Tattini, 2011; Agati
et al., 2012; Brunetti et al., 2018). Early studies performed on
flavonoid-deficient mutants offered conclusive evidence of their
ability to provide ultraviolet (UV)-B photoprotection (Li et al.,
1993; Lois & Buchanan, 1994; Bieza & Lois, 2001). Their
significance as reactive oxygen species (ROS) scavengers and
modulators of various developmental processes mediated by
ROS and phytohormone signaling (depending on light stress
severity) has also been recently ascertained (Hernandez et al.,
2009; Agati & Tattini, 2010; Watkins et al., 2017;
Muhelemann et al., 2018; Chapman et al., 2019; Agati et al.,
2020; Chapman & Muday, 2021). Anthocyanins, differently
from flavonoids, have the peculiar capacity of absorbing
wavelengths over a wider range, from UV-B to red, of the
solar spectrum (Lopes da Silva et al., 2007; Skaar et al., 2014;
Aguilar & Hern�andez-Brenes, 2015; Nichelmann & Bilger,
2017; Gould et al., 2018), and exclusively accumulate in the
vacuoles of epidermal and/or subepidermal cells in red leaves
(Hughes & Smith, 2007; Hughes et al., 2007; Hughes, 2011;
Boldt et al., 2014; Tattini et al., 2017). They are optimally
suited, therefore, to constitute an effective shield against
supernumerary photons (thus contributing to the so-called
avoidance mechanism), particularly over the visible portion of
the solar spectrum, from reaching sensitive targets in the leaf.
Inexplicably, after three decades of extensive research,

colleagues world-wide are still in dispute about the effective
photoprotection provided by anthocyanins in an in planta
situation (Hughes, 2011; Landi et al., 2015, 2021; Gould et al.,
2018).

Two articles, byRenner&Zohner (2019) and by Pena-Novas&
Archetti (2020), have recently renewed the debate about the
functional significance of anthocyanin biosynthesis in autumn
(senescing) leaves. Renner & Zohner (2019) suggested that the
primary function of anthocyanins is photoprotection: antho-
cyanins scavenge ROS and mitigate their formation through light
attenuation while senescing leaves are dismantling their photosyn-
thetic apparatus. In support of their hypothesis, Renner & Zohner
(2019) reported that cyanic leaves occur more frequently in
deciduous tree species inhabiting regions characterized by lower
temperatures and higher solar irradiance during autumn/winter,
which would render them more vulnerable to severe ‘light stress’
during leaf senescence. This is consistent with the notion that high
light and cold stress are among the most effective environmental
drivers for biosynthesis of anthocyanins (likely following stress-
induced alteration in cellular redox homeostasis – see Page et al.
(2012) and Viola et al. (2016) and references cited therein).
Anthocyanin-induced photoprotection, in turn, allows senescing
cyanic leaves to cope for longer against photooxidative stress and,
consequently, to sustain greater nutrient resorption (the so-called
photoprotection–resorption hypothesis; sensu Hoch et al., 2003)
compared with the anthocyanin-deficient (yellow) counterparts.
By contrast, Pena-Novas & Archetti (2020) suggested the ‘coevo-
lution hypothesis’, which posits that the functional significance of
autumn leaf color is to provide an honest warning signal to insects
that lay eggs in trees during autumn, of high defense investment,
and/or low leaf quality (Archetti & Leather, 2005; Archetti et al.,
2009). In other words, pests prefer green leaves, simply because red
leaves have greater chemical defense than green leaves and/or are
lower in nutrient quality (Cooney et al., 2012;Menzies et al., 2016;
Pena-Novas & Archetti, 2020).

Though we do not dispute the Pena-Novas & Archetti
(2020) hypothesis for the functional/adaptive significance of leaf
autumn color (Renner & Zohner (2020) have already replied to
their argumentations), we strongly challenge the authors’
conclusions that there is not enough evidence in support of
an effective photoprotective function of anthocyanins. In fact,
their view is simply counterfactual – for recent research articles,
see Tattini et al. (2014, 2017), Logan et al. (2015), Zhang et al.
(2016, 2018), Zhu et al. (2016), Cooney et al. (2018), Gould
et al. (2018), Zheng et al. (2019, 2021), Yu et al. (2019, 2021),
Moustaka et al. (2020), and Landi et al. (2021) – and largely
based upon superficial observations and reasoning proposed by
Manetas (2006). Here, our discussion mostly concerns the
anthocyanin’s ability to attenuate visible light, and thereby
mitigate photooxidative stress.

2228 New Phytologist (2021) 232: 2228–2235 � 2021 The Authors
New Phytologist � 2021 New Phytologist Foundationwww.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Forum

https://www.doi.org/10.1111/nph.16478
https://www.doi.org/10.1111/nph.15900
http://creativecommons.org/licenses/by-nc/4.0/


Cyanic tissues have molar extinction coefficient
maxima in the green, but effectively absorb over the
blue and red portions of the solar spectrum

Although many common anthocyanins do indeed have molar
extinction coefficient maxima (ɛmax) in the green region of the solar
spectrum, this does not imply anthocyanins are merely green-
absorbing pigments, as erroneously reported in too many instances
(for a recent review article, see Landi et al. (2021) and references
therein). Anthocyanin derivatives of the most common aglycones
detected in plants (cyanidin, delphinidin, malvidin, peonidin,
pelargonidin, petunidin; Andersen & Jordheim, 2006) absorb
effectively over the 450–500 nm (blue) waveband of the solar
spectrum (Lopes da Silva et al., 2007;Merzlyak et al., 2008; Aguilar
& Hern�andez-Brenes, 2015). In particular, derivatives of
pelargonidin (a widely distributed class of anthocyanins) have
ɛmax at c. 500 nm and absorb blue photons more efficiently than
green photons (Rein et al., 2005; Aguilar & Hern�andez-Brenes,
2015). The blue-light-absorbing capacity may increase further
when anthocyanins are acylated with aliphatic or aromatic acids, as
reported in a wide range of species (Jordheim et al., 2016; Saha
et al., 2020).

Therefore, the conclusion of a negligible contribution of
anthocyanins in photoprotection, because ‘they absorb mainly
green light’ (Manetas, 2006; Pena-Novas&Archetti, 2020), which
is poorly absorbed by chlorophylls, is misleading. The capacity of
anthocyanins to absorb over the visible portion of the solar
spectrum requires the integration of ɛs over the whole solar
spectrum. Yet, the negligible blue light absorption capacity of
anthocyanins reported in Manetas (2006) was based upon
experiments comparing transmittance of monochromatic blue
light – that is, 430 nmwavelength (Karabourniotis et al., 1999) and
450 nm (Gould et al., 2002) – through red vs green epidermises.
Obviously, anthocyanins maximally absorb at longer blue wave-
lengths, which are also most effective in photodamage (Takahashi
et al., 2010). The blue-light-absorbing capacities of anthocyanins
have long been known (Merzlyack & Hendry, 1994; Feild et al.,
2001; Pfundel et al., 2007) and may help to unveil, not only the
significance of anthocyanins in photoprotection, but also the
marked changes in morpho-anatomical traits displayed by cyanic
and acyanic leaves (Tattini et al., 2014, 2017; Landi et al., 2021; see
later for details).

We additionally note that the UV–visible spectral features of
anthocyanins, as estimated by absorbance spectra of strongly acidic
tissue extract solutions (usually at pH 1.5–2.0), are far from
representing those of cyanic tissues (Agati et al., 2007; Ferrandino
et al., 2017; Gould et al., 2018; Landi et al., 2021). First, vacuolar
anthocyanins occur in an aqueous cellular milieu of c. pH 5.0,
which shifts the absorbance maximum of the anthocyanin towards
longer wavelengths, relative to the strongly acidic solutions often
used for most anthocyanic extractions (Dangles & Fenger, 2018;
Yun et al., 2019). Second, theUV–visible spectral features of cyanic
tissues undergo additional hyperchromic and bathochromic shifts,
since anthocyanins do not ‘live alone’ in the vacuole, but cohabit
with a diverse community of phenylpropanoids, including flavones
and flavonols. Copigmentation (i.e. the intermolecular complexes

formed through noncovalent bonds between anthocyanins and
both flavonoids and hydroxycinnamates) inevitably occurs in
cyanic tissues and may shift their absorbance spectra up to 40 nm
toward the red region of the solar spectrum (Trouillas et al., 2016).
Finally, in vivo ‘anthocyanin spectra’ may undergo additional
bathochromic shift, since anthocyanins, as well as anthocyanin–
flavone copigments, form stable complexes (or supramolecular
complexes in the case of copigments) with a range ofmetal ions (e.g.
magnesium, manganese, aluminium, iron; Sigurdson & Giusti,
2014; Tang & Giusti, 2020; Est�evez et al., 2021), that may largely
accumulate in the vacuoles of epidermal cells (Landi et al., 2015).
In other words, cyanic tissues have the capacity to appreciably
absorb red photons too (Agati et al., 2005, 2007; Ferrandino et al.,
2017; Nichelmann & Bilger, 2017; Landi et al., 2021). In fact,
anthocyanins in Plectranthus ciliates leaf hairs contain high
concentrations of acylated anthocyanins (coumaric, caffeic, and
malonyl derivatives) that effectively absorb blue and red photons
(Jordheim et al., 2016). Gould et al. (2010) reported that red stems
of Cornus stolonifera transmitted only 30%, 10%, and 50% of blue
(450–500 nm), green–yellow (500–600 nm), and red (600–
650 nm) wavelengths, respectively, compared with green stems.
Markham et al. (2000) also showed appreciable absorption of blue
and red light by vacuolar anthocyanin inclusions in red petals of
Dianthus caryophyllus.

There is recent evidence that perception of low blue-light
availability and relatively low red/far red (R/FR) may well explain
the shade-type characteristics (Steyn et al., 2002; Manetas et al.,
2003;Manetas, 2006;Hughes, 2011; Tattini et al., 2014) of cyanic
leaves (Tattini et al., 2017; Landi et al., 2021). Low blue light
largely affects the interaction between cryptochromes and phy-
tochromes (Pedmale et al., 2016), resulting in increased activity of
phytochrome interacting factors (Wang & Lin, 2020), which, in
turn, promote shade avoidance responses (Castillon et al., 2009;
Casal, 2012). Thus, anthocyanin-induced attenuation of blue light
may lead to partial activation of phot2 and proper development of
palisade cell formation (Kozuka et al., 2011), a phenomenon long
known to occur in shaded leaves (i.e. experiencing low R/FR)
(Aoyama et al., 1995; Franklin, 2008; Ciolfi et al., 2013).

By contrast, the green-light-absorbing capacity of anthocyanins
is inconsistent with the shade-avoidant symptoms that they are
often associated with – for a detailed analysis, see Landi et al.
(2021). Shade avoidance responses follow perception of light
highly enriched in green wavelengths (Dhingra et al., 2006; Wang
& Folta, 2013), but these are the same wavelengths that are muted
by anthocyanins. These contradictory observations have been
ignored for decades by both plant ecologists and plant physiologists
involved in anthocyanin research. We have recently offered
compelling evidence that cryptochrome-regulated blue light signals
(also involving phytochromes; Wang & Lin, 2020) are partially
inactivated in cyanic leaves (Landi et al., 2021) and, therefore,
responsible for their shade nature (Pedmale et al., 2016). As a
corollary, this confutes previous ideas of anthocyanins being
inherently unable to provide photoprotection to cyanic leaves. In
the light of in vivo spectral features of cyanic leaves, the conclusion
that ‘Anthocyanins thus appear to provide only limited protection
against photoinhibition, whereas an effective sunscreen would be
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expected to match the absorption spectrum of the target photo-
dynamic chlorophyll molecules’ (Manetas, 2006) is definitively
wrong, in turn leading to the wrong reasoning of Pena-Novas &
Archetti (2020, 2021).

Do anthocyanins provide effective photoprotection?
From lab to field studies, from plant physiology to
plant ecology

Photoprotection is a qualitative parameter in its nature and, as such,
difficult to quantify. It is indirectly estimated through the extent to
which plants may avoid (limit) photoinhibition; that is, the light-
induced depression in the maximum efficiency (usually estimated
by the chlorophyll fluorescence-derived parameter Fv/Fm) and/or
the rate of photosynthesis (AN, net CO2 assimilation rate; Long
et al., 1994; Baker, 1996).

Several studies have examined the photoprotective functions of
anthocyanins by comparing permanently red vs green leaves
acclimated to low light and then exposed to a sudden increase of
radiant energy (therefore, ‘photoinhibitory’), usually followed by
relief from photoinhibitory conditions (e.g. Hatier et al., 2013;
Fondom et al., 2014; Hughes et al., 2014; Gould et al., 2018). In a
few instances, light-induced declines in photosynthetic perfor-
mance of either overaccumulating or anthocyanin-deficient
mutants have been examined on a short-term (hours-to-days) basis
(Hoch et al., 2003; Gould et al., 2018; Zheng et al., 2019). There
are also examples of long-term (days-to-weeks) exposure to
excessive light of red and green leaves grown under natural
conditions (Tattini et al., 2014, 2017; Yu et al., 2021; Zheng et al.,
2021). These studies are all consistent with effective photoprotec-
tion provided by anthocyanins: photosynthetic performance in
cyanic leaves is less impaired and recovers faster upon relief from
photoinhibitory light treatments, compared with the acyanic
counterparts. There is consensus that anthocyanins operate mostly
in absorbing supernumerary photons otherwise damaging the
photosynthetic apparatus (avoidancemechanism), even though the
ROS-scavenging ability of anthocyanins may increase in signifi-
cance when light stress becomes particularly severe, as also
hypothesized by Renner & Zohner (2019) in the case of senescing
leaves. Thebiosynthesis of anthocyanins (andof other flavonoids) is
part of the integrated andmodular network of excess light-induced
morpho-anatomical and biochemical adjustments, usually referred
to as the flight strategy of sessile organisms (Potters et al., 2007),
allowing plants to successfully counter the detrimental effects
induced by a severe excess of light.

The issue becomes substantially more muddied when the
photosynthetic performance of green and red individuals is
measured in situ (for review articles, see Hughes, 2011; Landi
et al., 2015, 2021). This is in part due to the fact that plants usually
face multiple environmental stressors in the field, such as the
combined action of low temperature and high solar irradiance in
autumn/winter. Although photoprotection sensu stricto is purely a
physiological issue (as it merely concerns photoinhibition of
photosynthesis), investigating the responses of transiently red vs
permanently green leaves becomes a more complex ecophysiolog-
ical issue. First, genetic or age-dependent color change unlikely

involves just the biosynthesis of anthocyanins, but includes
additionally a suite of morpho-anatomical and biochemical traits,
all of which greatly affect the entry, interception, and management
of supernumerary photons by the leaf (Hughes, 2011; Tattini et al.,
2014, 2017; Cooney et al., 2018). Second, anthocyanins often
accumulate in individuals that are more vulnerable to low-
temperature photoinhibition of photosynthesis (Pietrini et al.,
2002;Hughes et al., 2005; Kytridis et al., 2008; Zeliou et al., 2009;
Nikiforou&Manetas, 2010; Landi et al., 2015). These individuals
suffer frommore severe oxidative stress than the green counterparts
do (particularly when growing in high sunlight), and the conse-
quential drastic alteration in cellular redox homeostasis triggers the
biosynthesis of anthocyanins (Pireyre & Burow, 2015; Viola et al.,
2016; Plumb et al., 2018; Qu et al., 2018). The analysis of leaves
(individuals) that become red during autumn is, therefore, not an
ideal model to provide mechanistic insights on the photoprotective
role of anthocyanins.

To overcome this issue, plant ecologists commonly use a classical
top-down approach (Lucas et al., 2011), starting from the ecolog-
ical drivers for the evolution of autumn leaf color, down to effects
on color change at cellular through organ and even tissue levels.
Though the identification of the ecological drivers responsible for
anthocyanin biosynthesis is essentially observational, as is exactly
the case of Renner & Zohner’s and Pena-Novas & Archetti’s
hypotheses, disclosing their roles in photoprotection requires
knowledge of their light-absorbing features (in turn influencing
working hypotheses) and correct ‘measurements’ of photoprotec-
tion; this is mandatory, especially in field studies.

Since photoprotection is optimally estimated, by definition,
when plants are exposed to photoinhibitory (i.e. supersaturating)
light levels, assessing the photoprotective role of any pigment
requires the very same light condition, even in field studies.
Unfortunately, this is not the case in most studies comparing red
and green individuals, including those mentioned by Pena-Novas
& Archetti (2020). For instance, Burger & Edwards (1996)
explored the photosynthetic performance in partially shaded
(acclimated to 480 lmol m�2 s�1) red and green leaves by means
of oxygen evolution/photosynthetic photon flux density (PPFD)
curves in the range 0–200 lmol m�2 s�1. Esteban et al. (2008) also
examined the photosynthetic performance of variegated leaves of
Erytronium dens-canis L. plants growing in understory, and plants
were subsequently exposed to a light treatment of only
300 lmol m�2 s�1 in the laboratory.

It also appears illogical that similar ‘predawn Fv/Fm’ displayed by
cyanic and acyanic leaves has been taken as a proof of the negligible
photoprotective roles of anthocyanins (Lee et al., 2003; Manetas
et al., 2003; Kytridis et al., 2008; Manetas & Buschmann, 2011).
Similar predawn Fv/Fm indicates simply that green and red leaves
recover to a similar extent (but likely with largely different recovery
rates; Tattini et al., 2017) from previous, diurnal photoinhibitory
conditions, as already hypothesized by Lee et al. (2003). In fact,
green leaves sampled at predawn have both a higher concentration
of violaxanthin cycle pigments (VAZ, relative to Chltot) and a
higher de-epoxidation state of VAZ than corresponding red leaves
(Kytridis et al., 2008; Hughes et al., 2012; Tattini et al., 2014).
This indicates increased engagement of ‘sustained thermal
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dissipation’ (mostly driven by nonphotochemical fluorescence
quenching; sensu Demmig-Adams & Adams, 2006) in green
compared with red leaves, representing an alternative energy-
mitigation strategy for avoiding irreversible photodamage to
photosystem II (PSII) during the most severe photoinhibitory
light conditions. It is amatter of fact that excess energy on PSII (e.g.
measured as 1� qP, where qP is the photochemical quenching) is
much lower in red than in green leaves, because anthocyanins
absorb photons otherwise absorbed by chlorophylls and only in
part used for CO2 assimilation (Tattini et al., 2014, 2017; Ospina
Calvo & Lagorio, 2019). This offers further support to the idea of
an efficient photoprotection afforded by anthocyanins, and the
long-reported view of a constitutively lower ability of red leaves to
dissipate thermally excess excitation energy on PSII (Manetas et al.,
2003; Zeliou et al., 2009) is, consequently, erroneous.

In the same way, the lower photosynthetic rates (usually
estimated at subsaturating light irradiance) displayed by cyanic
compared with acyanic leaves in some studies (Kyparissis et al.,
2007; Nikiforou et al., 2011) do not support the view of negligible
photoprotection by anthocyanins. Net assimilation rate (AN) is
lower in red leaves because the cyanic filter absorbs photons that are
effective in photosynthesis, but instantaneous photosynthesis per se
(as well as plant fitness,Mendez et al., 1999;Nikiforou et al., 2010)
has nothing to dowith photoprotection (Hughes et al., 2010; Landi
et al., 2021). Instead, morning-to-midday declines in AN (or
predawn-to-midday reductions inFv/Fm) – that is, photoinhibition
of photosynthesis – displayed by red and green leaves are best suited
to quantify the actual photoprotection provided by anthocyanins.
We have recently shown that AN was lower (�16%) in early
morning (PPFD of 725� 63 lmol m�2 s�1), but substantially
higher (+ 27%) at midday (PPFD of 1878� 168 lmol m�2 s�1)
in purple than in green basil leaves (Tattini et al., 2017). Similarly,
photosynthetic performance (estimated through measurements of
both AN and a suite of chlorophyll fluorescence-derived parame-
ters) was either lower or higher in red compared to green basil under
partial shading, but higher under full sunlight (Tattini et al., 2014;
Lo Piccolo et al., 2020). Although the data of these studies are both
consistent with shade-type characteristics and reduced light
availability imposed by the epidermal cyanic shield to red leaves,
the issue needs extensive future research, examining species with
different evolutionary history and adaptation.

We also note that previously reported ‘photosynthetic inferior-
ity’ (apparent carboxylation efficiency Vc,max(Ci)) of red compared
with green leaves, calculated from AN/Ci (Ci, intercellular CO2

concentration) curves is equally erroneous (Kytridis et al., 2008;
Nikiforou et al., 2011). There is compelling evidence that shade-
acclimated leaves have lower mesophyll conductance to CO2 (gm)
than sun-acclimated leaves do (Campany et al., 2016; Peguero-
Pina et al., 2016). This is exactly the case of cyanic vs acyanic leaves
growing in full sunlight (Tattini et al., 2017; Landi et al., 2021).
The suite of morpho-anatomical (mesophyll areas exposed to
intercellular air spaces, chloroplast accumulation to periclinal cell
wall induced by low light availability) and biochemical changes
(reduced synthesis and activity of carbonic anhydrase, induced by
low blue light availability) imposed by the anthocyanin filter is
likely responsible for the lower gm displayed by cyanic leaves (Landi

et al., 2021). Consequently, though Vc,max(Ci) may be lower
(Nikiforou et al., 2011;Carpenter et al., 2014;Ranjan et al., 2014),
actual carboxylation efficiency (calculated on the basis of chloro-
plast CO2 concentration Cc) Vc,max(Cc) may even be higher in red
than in green leaves (Tattini et al., 2017; Landi et al., 2021).

Finally, the chlorophyll fluorescence-derived parameter Fv/Fm
is used as a proxy for photosynthesis of red and green leaves in
the vast majority of ecophysiological studies. However, whereasAN

measures photosynthesis at the whole-leaf level, Fv/Fm provides an
estimation of the leaf photosynthetic potential only for a shallow
layer of chloroplasts. Unfortunately, anthocyanins shield the first
layers of chloroplasts from the measuring light as well (for both
adaxial and abaxial surfaces), and soFv/Fmmaynot always be a good
proxy of AN in cyanic leaves. The discrepancy between AN and Fv/
Fm in red leavesmay become particularly relevantwhen performing
chlorophyll fluorescence imaging, which often utilizes a blue
measuring light beam, therefore resulting in signal interference by
anthocyanins as well.

We suggest that measurements of photosynthesis, and the
consequential estimation of the putative photoprotective role of
anthocyanins conducted in most ecophysiological studies at just
one point of the day, may provide misleading conclusions, unless
taking into account the differential effects of environmental stimuli
(stressors) on the suite of morpho-anatomical and biochemical
features on red and green leaves (individuals).

Conclusions

Knowing the physicochemical features of anthocyanins is the
sine qua non condition to reason about their functional roles.
The inaccurate belief that anthocyanins absorb primarily green
light, while negligibly absorbing blue and red photons, has
resulted in a faulty working hypothesis and data interpretation.
It is difficult to understand why plant scientists have not taken
into proper account the contradiction between the green-light-
absorbing features of anthocyanins and the old observation of
the shade nature of cyanic leaves. The shade-type characteristics
of cyanic leaves results from anthocyanins absorbing blue and
red photons, and not on their ability to absorb green photons.
This, in turn, makes anthocyanins well-suited to provide
effective photoprotection, as conclusively reported in a series of
studies conducted under controlled light conditions, on both
short and long-term bases.

Apparently, contradictory conclusions emerge when individuals
that produce red or green leaves on a seasonal basis – and hence
upon changes in air temperature, soil water availability, and solar
irradiance – have been analyzed. This usually occurs when scaling
up from the cellular/organ level to the level of the whole plant
interacting with multiple environmental stimuli. The analysis of
these complex systems is usually performed using a classical top-
down approach, starting from the knowledge of the environmental
drivers of anthocyanin biosynthesis down to explore the photo-
protection mechanisms, on the basis of photosynthetic
performance and light-absorbing properties of cyanic vs acyanic
leaves. This is exactly the case of bothRenner&Zohner (2019) and
Pena-Novas & Archetti (2020), although the two studies yielded
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opposite conclusions. Renner & Zohner (2019) support their
‘photoprotection hypothesis’ using the mechanistic insights given
by Gould et al. (2018), who used wild-type and anthocyanin-rich
mutants of Arabidopsis exposed to excessive light energy. Pena-
Novas & Archetti (2020) challenged Renner & Zohner’s conclu-
sion for the evolution of autumn leaf color, not only posing
concerns about the environmental drivers for anthocyanin biosyn-
thesis (see also Pena-Novas&Archetti, 2021), but also basing their
reasoning on the light-absorbing properties of anthocyanins
reported by Manetas (2006). We have shown here that most of
Manetas’s hypotheses are erroneous.

Additionally, we note that Pena-Novas & Archetti’s (2020,
2021) conclusion ‘. . . the photoprotection hypothesis posits that
selection for reabsorbing nitrogen is the driving force behind the
evolution of autumn colours’ is incorrect. In our opinion, the
‘driving force’ for the evolution of autumn leaf colors is to provide
cold-sensitive individuals concomitantly exposed to high insolation
(low temperature and high light trigger anthocyanin biosynthesis)
with a flavonoid class primarily devoted to mitigating photoox-
idative stress. In turn, this allows for greater reabsorption of
nitrogen. Resorption of nutrients is just an ‘ecological consequence’
(effect) of photoprotection. The coevolution hypothesis also relies
on autumn red leaves having greater chemical defenses (or lower
nutritional quality) than the green leaves, both of which would
correspond with greater sensitivity to environmental stress in red
individuals. Higher activation of defense compound biosynthesis is
usually associated with greater sensitivity to stress agents, as is
exactly the case of light stress (Tattini et al., 2005).

The accumulation of anthocyanins in peripheral tissues may both
protect leaves from supernumerary photons and serve as visual
(warning) signal as well. However, whether ‘the production of color
per se constituted the original function of anthocyanins’ is unclear
(Fineblum & Rausher, 1997; Rausher, 2006). We speculate that
anthocyanin biosynthesis did evolve, in both gymnosperms and
angiosperms, to equip leaves with additional photoprotective
pigments at specific leaf developmental stages, rather than protecting
plants against their natural enemies. This may also be the cause for
evolution of (colorless) flavonoid metabolism when plants moved
from water to colonize land. Conclusive evidence shows that their
beneficial action against natural enemies is not the driving force for
their biosynthesis (Rausher, 2001; ultimate explanation), which is
likely to be found upon the rise of oxidative stress signals that early
plants faced when moving onto harsh terrestrial environment
(Pollastri & Tattini, 2011). This conforms to the notion that
oxidative stress signals modulate the expression of transcription
factors regulating key genes of flavonoid biosynthesis, as probably
occurs also for the biosynthesis of anthocyanins in senescing leaves
(proximate explanation; Xu et al., 2017). There is also intriguing
evidence that flavonoids may have served (and still serve) primary
roles as modulators of redox signaling (both avoiding the generation
and scavenging of ROS once they are formed) in early as well as
present-day land plants facing multiple stress events associated with
an ever-changing environment (Pollastri & Tattini, 2011; Brunetti
et al., 2019; ultimate explanation). Though we are waiting for an
unequivocal conclusion on thismatter, the effective photoprotection

provided by anthocyanins is strongly corroborated by a huge body of
experimental data.
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