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Convolutional Neural Networks for
Automated Classification of Prostate
Multiparametric Magnetic Resonance

Imaging Based on Image Quality
Stefano Cipollari, MD,1† Valerio Guarrasi, MS,2† Martina Pecoraro, MD,1 Marco Bicchetti, MD,1

Emanuele Messina, MD,1 Lorenzo Farina, PhD,2 Paola Paci, PhD,2 Carlo Catalano, MD,1 and

Valeria Panebianco, MD1*

Background: Prostate magnetic resonance imaging (MRI) is technically demanding, requiring high image quality to reach its full
diagnostic potential. An automated method to identify diagnostically inadequate images could help optimize image quality.
Purpose: To develop a convolutional neural networks (CNNs) based analysis pipeline for the classification of prostate MRI
image quality.
Study Type: Retrospective.
Subjects: Three hundred sixteen prostate mpMRI scans and 312 men (median age 67).
Field Strength/Sequence: A 3 T; fast spin echo T2WI, echo planar imaging DWI, ADC, gradient-echo dynamic contrast
enhanced (DCE).
Assessment: MRI scans were reviewed by three genitourinary radiologists (V.P., M.D.M., S.C.) with 21, 12, and 5 years of
experience, respectively. Sequences were labeled as high quality (Q1) or low quality (Q0) and used as the reference stan-
dard for all analyses.
Statistical Tests: Sequences were split into training, validation, and testing sets (869, 250, and 120 sequences, respec-
tively). Inter-reader agreement was assessed with the Fleiss kappa. Following preprocessing and data augmentation,
28 CNNs were trained on MRI slices for each sequence. Model performance was assessed on both a per-slice and a per-
sequence basis. A pairwise t-test was performed to compare performances of the classifiers.
Results: The number of sequences labeled as Q0 or Q1 was 38 vs. 278 for T2WI, 43 vs. 273 for DWI, 41 vs. 275 for ADC,
and 38 vs. 253 for DCE. Inter-reader agreement was almost perfect for T2WI and DCE and substantial for DWI and ADC.
On the per-slice analysis, accuracy was 89.95% � 0.02% for T2WI, 79.83% � 0.04% for DWI, 76.64% � 0.04% for ADC,
96.62% � 0.01% for DCE. On the per-sequence analysis, accuracy was 100% � 0.00% for T2WI, DWI, and DCE, and
92.31% � 0.00% for ADC. The three best algorithms performed significantly better than the remaining ones on every
sequence (P-value < 0.05).
Data Conclusion: CNNs achieved high accuracy in classifying prostate MRI image quality on an individual-slice basis and
almost perfect accuracy when classifying the entire sequences.
Evidence Level: 4
Technical Efficacy: Stage 1
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Technical refinements, standardization and widespread
availability of prostate multiparametric MRI (mpMRI)

have led to a paradigm shift in the early detection of clinically

significant prostate cancer (csPCa). This shift has been from
the traditional approach based on prostate-specific antigen
(PSA) and systematic biopsy to the so-called “MRI pathway,”
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based on mpMRI and MRI-targeted biopsy.1 The central role
of mpMRI in the diagnostic workup of PCa is confirmed by
the European Association of Urology (EAU) guidelines that
recommend MRI as the first diagnostic study to perform in
patients with suspicion of PCa.2 These milestones have been
achieved thanks to the high diagnostic performance of
mpMRI reported by multiple studies.3–10 However, the evi-
dence shows a high variability in the diagnostic performance
among centers, likely due to factors that affect overall image
quality and interpretation, such as the equipment and the
acquisition protocol used, and the radiologist’s expertise.11

The Prostate Imaging Reporting and Data System
(PI-RADS) establishes minimum technical standards and
includes guidelines for standardizing the acquisition parame-
ters, aiming at optimizing image quality and reducing vari-
ability.12 However, many specifications of the technical
details of the mpMRI acquisition are not specified, leading to
inconsistencies in image quality regardless of adherence to the
recommendations, mostly in centers with little expertise.13

Additionally, several patient-related factors can undermine
image quality, including patient movement and the presence
of air in the rectum.14 Therefore, even if the appropriate
equipment is used and the optimal acquisition protocol is
implemented, quality control of mpMRI images is important.
In the recent European Society of Urogenital Radiology
(ESUR)/EAU Section of Urological Imaging (ESUI) consen-
sus statements on quality requirements the authors rec-
ommended that image quality be checked and reported
regularly, for determining diagnostic appropriateness.15

Although visual assessment of mpMRI image quality by the
radiologist is appropriate and can be standardized in its meth-
odology, prompt identification of suboptimal scans while it is
possible to intervene to optimize the acquisition might not
always be feasible in real-world clinical practice.15,16

A fully automated technology capable of performing
real-time quality control of MRI scans, identifying those
sequences that are of sub-optimal diagnostic quality would be
helpful to both the radiologist and the technologist. The use
of artificial intelligence (AI), specifically deep neural networks,
for image quality assessment is a field which has been already
explored in nonmedical applications.17,18 Briefly, deep neural
networks use multiple layers to process input data and extract
features of interest that are then used to provide an output.
By processing the input data during the training phase, the
network automatically determines, for each layer, what
the kernels should look like to detect specific image character-
istics, optimized in the direction of the specific task of inter-
est. Once the network is trained, it is ready to have the
kernels perform convolutions, extracting features to conclude
with the desired class label.19 Despite the high performance
of this technology in image analysis, only a few studies have
investigated the use of deep neural networks to classify images

based on their quality, none of them focusing on prostate
MRI.20,21

The aim of this study was to develop an ad hoc compu-
tational image analysis pipeline based on the use of deep neu-
ral networks for the automated assessment of prostate
mpMRI image quality.

Materials and Methods
Patient Population and MRI Assessment
In this retrospective IRB-approved study with waiver of informed
consent all scans of men who underwent prostate mpMRI between
January 2020 and July 2020 for suspicious PCa, active surveillance
or staging of known PCa was included. There were no exclusion
criteria. A total of 316 prostate mpMRI scans from 312 men with a
median age of 67 (IQ range 62–74) were retrospectively reviewed.
These included 316 T2-weighted imaging (T2WI) sequences,
316 diffusion-weighted imaging (DWI) sequences, 316 apparent dif-
fusion coefficient (ADC) sequences, and 291 dynamic contrast-
enhanced (DCE) sequences.

All exams were performed on a 3 T MR scanner (Discovery
750, GE Healthcare, USA) using a 32 multichannel surface phased-
array body coil (TORSOPA). A list of the acquisition parameters
used is detailed in Table 1.

Scans were evaluated by three radiologists (V.P., M.D.M.,
S.C.) with 21, 12, and 5 years of experience in genitourinary imag-
ing, respectively. Individual sequences, including axial T2WI, DWI
at a b value of 1500, ADC and DCE, were assessed based on several
technical and visual parameters related to image quality (as specified
in the Pi-RADS v2.1 guidelines). These included the adequacy of
the field of view (FOV), spatial resolution, signal-to-noise (S/N)
ratio, motion artifacts, magnetic susceptibility artifacts, presence of
significant amount of gas in the rectum, and the appropriateness
of enhancement on DCE images. A binary classification label was
independently assigned by each reader to every sequence. The two
classes were defined as: Q0 (denoting low quality or insufficient
diagnostic quality) or Q1 (denoting high quality or sufficient diag-
nostic quality). In case of disagreement between the readers, the label
assigned by the majority of the three radiologists was considered as
the definitive label, and used both for training and as the standard of
reference for the evaluation of model performance.

Computational Analysis
For the generation of the prediction models, 28 convolutional neural
networks (CNNs) from the following families were tested22,23:
AlexNet,24 VGG (VGG11, VGG11-BN, VGG13, VGG13-BN,
VGG16, VGG16-BN,VGG19, VGG19-BN),25 ResNet (ResNet18,
ResNet34, ResNet50, ResNet101,ResNet152),26 SqueezeNet
(SqueezeNet1-0, SqueezeNet1-1),27 DenseNet (DenseNet121, Den-
seNet169, DenseNet161, DenseNet201),28 GoogLeNet,29ShuffleNet
v2 (ShuffleNet v2-x0-5, ShuffleNet v2-x1-0),30 MobileNet v2,31

ResNeXt (ResNeXt50-32x4d),32 Wide ResNet (Wide ResNet50-2),33

and MNASNet (MNASNet0-5, MNASNet1-0).34 AlexNet and VGG
are spatial exploitation-based CNNs. GoogLeNet is the first architecture
that uses the block concept, the split transform, and the merge idea.
ResNet is a depth and multipath-based CNN, which uses residual
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learning and has identity mapping based skip connections. WideResNet
and ResNeXt are width-based multiconnection CNNs. SqeezeNet is a
feature-map exploitation-based CNN modeling interdependencies
between feature-maps. DenseNet is a multipath-based CNN exploiting
cross-layer information flow. MobileNet has an inverted residual struc-
ture, and it utilizes lightweight depth-wise convolutions.

The network weights were initialized via transfer learning.
The models were pretrained on the ImageNet dataset, a large data-
base of over 14 million pictures in different categories.35 The net-
works were trained with a maximum of 300 epochs with an early
stopping fixed to 25 and with a batch size equal to 32. The loss
function to be optimized was the binary cross-entropy, with an
SGDoptimizer (learning rate = 0.001, momentum = 0.9).

For the classification of prostate MR images, axial T2WI,
DWI at a b value of 1500, ADC, and perfusion sequences were
used. Before entering the network, MRI images underwent a
preprocessing phase: voxel values of the DICOM slices were normal-
ized (using the mean and standard deviation of the voxel intensities)
and image size was resampled to 224 � 224 � 3. During the train-
ing phase, data augmentation was applied. Data augmentation is a
technique used to increase the amount of data by adding slightly
modified copies of already existing data or newly created synthetic
data from existing data. It helps reduce overfitting when training a
machine learning model. With a probability of 0.3, the following
transformations were applied: random rotation (e.g., �100�), flip
along the vertical axis, random shift (e.g., �7 pixels) and elastic
deformation (α = (20,40), σ = 7). Each of these technique was
applied to each image with a probability of 0.3. In accordance with
the radiologists, the transformations and their parameters were cho-
sen in a way to generate images coherent with the prostate MRI

scenario. The networks were trained at a slice level, and all the slices
within a sequence were labeled as the same class. All architectures
were modified only at the last layer, by setting the number of neu-
rons equal to the number of image labels. All networks were trained
with 10-fold cross-validation. The division between the training, val-
idation, and testing sets was 70%, 20%, and 10%, respectively.
A random stratified cross-validation was performed to maintain the
original proportion of labels in all the data divisions. To prevent
overfitting, the slices of an individual patient’s sequence were all
included in the same set, meaning that the entire sequence of a
patient was inside the training, validation, or testing set.

All the computations were done using Python 3.7 with
PyTorch on a NVIDIA Tesla V100 SXM2 32 GB. The analysis
pipeline implemented for each model and for each type of sequence
is shown in Fig. 1.

Statistical Analysis
To evaluate the performance of the networks, global and class-
specific accuracy were calculated on the test set slices for each indi-
vidual model. Accuracy values are reported as both the global and
class-specific mean accuracies �95% confidence intervals across the
cross-validation folds. In addition, the classification results of
the individual slices were combined by using a majority vote aggre-
gation function, meaning that the most frequent label within the
sequence was assigned.36 To assess the performances of the different
models in comparison with each other, a pairwise t-test was indepen-
dently performed among the best three models and between them
and all the remaining. Inter-reader agreement was assessed using the
Fleiss kappa. Agreement was considered slight for kappa values of
0.00–0.20, fair for values of 0.21–0.40 fair agreement, moderate for

TABLE 1. Summary of the MR Acquisition Parameters

T2WI DWI DCE

Sequence type Fast recovery fast
spin echo (FRFSE)

Echo planar imaging (EPI) LAVA gradient echo

TE (msec) 134 75 1

TR (msec) 6000 4300 3

Acquisition plane Axial and Coronal Axial Axial

Number of averages 6 2 (b 50); 6 (b 800); 12
(b 1500); 14 (b 2000)

1

Slice thickness (mm) 3 3 4

Matrix size 320 � 224 90 � 90 160 � 140

Field of view (cm) 18 � 18 20 � 20 18 � 18

b-values (s/mm2) N/A 50–800–1500–2000 N/A

Temporal resolution (s) N/A N/A 6

Contrast media N/A N/A Gadobutrol 0.1 mmol/Kg
(injection rate 3.0 mL/sec)

DCE = Dynamic Contrast-enhanced; DWI = Diffusion Weighted Imaging; T2WI = T2 Weighted Imaging.
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values of 0.41–0.60, substantial for values of 0.61–0.80, almost per-
fect for values of 0.81–1.00.37 A P value of <0.05 was used for statis-
tical significance. All statistical analysis was performed on R
statistical software version 4.0.5 (http://www.R-project.org).

Results
The quality assessment resulted in the labeling of sequences
as Q0 (low quality) and Q1 (high quality), respectively, as
follows: 35 vs. 281 for T2WI, 46 vs. 270 for DWI, 43 vs.
273 for ADC, 37 vs. 254 for DCE (Table 2). Figures 2–4
show representative examples of high- and low-quality MR
images for T2WI, DWI, and DCE, respectively. Analysis of
the inter-reader agreement revealed almost perfect agreement
for T2WI and DCE (kappa of 0.83 and 0.80, respectively,
P < 0.05), and substantial agreement for DWI and ADC
(0.77 and 0.75, respectively, P < 0.05). In total, 144,901
slices were available: 8387 slices from 316 sequences for
T2WI, 8387 from 316 sequences for DWI, 8387 from
316 sequences for ADC, 119740 from 291 sequences for

DCE (Table 2). The division of cases among the training,
validation, and testing sets is reported in Table 3.

On the slice-based analysis, evaluation of the best-
performing models on the test set showed a global accuracy of
89.95% � 0.02% for T2WI, 79.83% � 0.04% for DWI,
76.64% � 0.04% for ADC, 96.62% � 0.01% for DCE. Q0
class-specific accuracy values of the best performing models
were 84.16% � 0.02% for T2WI, 62.13% � 0.05% for
DWI, 64.11% � 0.06% for ADC and 100.00% � 0.00% for
DCE, while the worst performing models achieved accuracies
of 43.86% � 0.54% for T2WI, 55.12% � 0.37% for DWI,
24.51% � 0.73% for ADC and 85.81% � 0.83% for DCE.

On the sequence-based analysis, where classification
outcomes of slices were combined by using the majority vote
aggregation function, the accuracy values showed optimal
classification performance (100% � 0.00% accuracy) for
T2WI, DWI and DCE sequences, and a global accuracy of
92.31% � 0.00% and a Q0-specific accuracy of 83.33% �
0.00% for ADC.

FIGURE 1: Graphical representation of the analysis pipeline. Individual slices from a given sequence are preprocessed (including
normalization and voxel resampling, and data augmentation) and subsequently fed to the CNN algorithm that assigns a classification
label to every slice. Classification results for all slices from the same sequence are then aggregated by means of a majority vote
aggregation function, so that a classification label is assigned to the entire acquired sequence.

TABLE 2. Summary of the MRI Dataset

Number of Sequences (slices)

Sequence All Classes Q0 Q1

T2WI 316 (8387) 35 (923) 281 (7464)

DWI 316 (8387) 46 (1235) 270 (7152)

ADC 316 (8387) 43 (1133) 273 (7254)

DCE 291 (119,740) 37 (15,210) 254 (104,530)

Total 1239 (144,901) 161 (18,501) 1078 (126,400)

Q0 = low-quality image; Q1 = high-quality image.
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Overall, the different architectures performed similarly
on the sequences; however, the top-performing architectures
among all the tested ones vary along the different sequences
and were VGG11 for T2WI, ResNet152 for DWI,
DenseNet161 for ADC and ShuffleNet(v2-x1-0) for DCE.

The pairwise t-test between the different models showed
that for every sequence, the best three models did not per-
form significantly different from each other (P value > 0.05).
However, all the comparisons with the remaining models
were statistically significant (P value ≤ 0.05).

Global and class-specific accuracies of the three best per-
forming and the three worse-performing models over the
10-fold cross validation for each of the four sequences are
summarized in Tables 4 and 5, respectively.

Discussion
Prostate MRI is an accurate modality for the early detection of
csPCa.3,10 Its diagnostic performance is reliant on the image
quality of the scans, which depends on the equipment used, the
appropriateness of the protocol, and proper patient positioning

and preparation.38 In addition, several technical problems can
reduce image quality of prostate MRI and need to be addressed
in order not to limit diagnostic performance.13,14

The CNN architectures implemented in this study were
able to classify images into the low and high quality with a
high degree of accuracy. Different architectures performed
similarly on the sequences, meaning that the choice of the
structure of the model is secondary; however, the best archi-
tectures varied among the different sequences, supporting the
fact that different models interpret the same data in unique
ways. Accuracy in the classification of individual MR slices
was highest for DCE and T2WI, followed by DWI and
ADC. Interestingly, classification accuracy was slightly differ-
ent between DWI and ADC. This can be explained by the
fact that for DWI classification, the b-value of 1500, the most
clinically important, was used, whereas ADC was calculated
on the b 50 and b 800 acquisitions.12

By combining the classification of individual slices with
a majority vote aggregation function, almost perfect accuracy
was achieved for the classification of entire sequences. Since

FIGURE 2: Case examples of high- and low-quality scans on T2WI images. It shows examples of high- and low-quality T2 images:
(a) high-quality axial T2WI image (Q1), with good spatial resolution a tissue contrast; (b) low-quality image (Q0) with poor spatial
resolution and blurred details due to patient movement during acquisition, the sequence should be repeated in order to be able to
accurately interpret the study; (c) very poor-quality acquisition (Q0) due to evident magnetic susceptibility artifacts caused by a
femoral prosthesis; (d) low-quality image (Q0) because of inadequate S/N ratio making diagnostic accuracy suboptimal, the
sequence needs to be repeated following optimization of the acquisition parameters.
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quality-limiting artifacts tend to be present on most slices of a
given sequence, the high performance on the per-slice analysis
likely results in a much higher accuracy when classifying the
entire sequence. Of note, an independent test set was used
for the evaluation of model performance; therefore, the very
high accuracy values are unlikely caused by overfitting.

The potential clinical implications of an automated
quality control of MRI scans are linked to its integration in
the MR workstation, which would make it possible for the
technologist to be immediately notified of a low-quality scan.
Ideally, each MR scanner should have dedicated algorithms
capable of assessing image quality of acquired sequences on-
the-fly. This would require the MR manufacturer to develop,
train, and validate specific models for each individual MR
protocol, since such algorithms are likely to be application
and vendor specific. This approach to quality control would
be particularly helpful since the technologist may not be able
to correctly interpret the clinical implications of artifacts and
appropriately determine when a repeat acquisition is needed.

In a recent study, Giganti et al have proposed a scoring sys-
tem for visual assessment of mpMRI image quality by the
radiologist.16 However, direct visual assessment of acquired
images by the radiologist is not realistically feasible in many
clinical scenarios. An automated real-time quality control of
MR images can suggest the technologist to adjust the acquisi-
tion parameters and/or instruct the patient, as appropriate, in
order to acquire a repeat scan of diagnostic quality. For
instance, an inadequate FOV can be easily corrected, and a
low S/N ratio improved by adjusting acquisition parameters.
Motion artifacts can sometimes be avoided on repeated scans
by asking the patient to remain still and insisting on the
importance of image quality on the accuracy of the exam.
The diagnostic impact of low-quality images differs among
sequences. DWI is the most important sequence for the
assessment of peripheral zone of the prostate, but also the
most technically demanding and the most susceptible to arti-
facts.12,39,40 Artifacts on DWI can be hard to interpret, as
suggested by the higher inter-reader variability in the quality

FIGURE 3: Case examples of high- and low-quality scans on DWI images. It shows examples of high- and low-quality DWI images:
(a) high-quality DWI image (Q1), with good S/N ratio and no evident artifacts; (b) low-quality image (Q0) with susceptibility artifacts
caused by the presence of air in the rectum—the ability to detect foci in the right posterior peripheral zone is significantly
impaired—the sequence could be repeated following attempts to expel the air from the rectum; (c) inadequate acquisition (Q0) with
marked distortion and signal void due to magnetic susceptibility artifacts caused by a femoral prosthesis; (d) low-quality image
(Q0) because of inadequate S/N ratio that lower significantly the diagnostic power—the sequence needs to be repeated following
optimization of the acquisition parameters.
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assessment of this sequence compared to T2WI and DCE
revealed in this study and might therefore be misjudged by
the less experienced technologist.

Conversely, image quality is less critical for the correct
interpretation of perfusion images. Low-quality DCE images are
often caused by poor global enhancement of the prostate gland.
However, a repeat acquisition is usually not performed because

perfusion images must be acquired shortly after injection of the
contrast media and in most cases the administration of an addi-
tional bolus of contrast. Fortunately, the role of DCE in the
detection of suspicious PCa foci at mpMRI is marginal, being
limited to the upgrading of PI-RADS score 3 lesions to
PI-RADS score 4 lesions in the peripheral zone, and increasing
evidence is demonstrating wide applicability of noncontrast

FIGURE 4: Case examples of high- and low-quality scans on DCE images. It shows examples of high- and low-quality perfusion
images: (a) high-quality DCE image, with good contrast enhancement of the prostate gland; (b) low-quality image (Q0) with low
contrast enhancement of the prostate gland and high noise significantly impairing the sensitivity to detect suspicious foci; (c) low-
quality acquisition (Q0) due to both low contrast enhancement of the prostate gland and to low S/N ratio, the diagnostic sensitivity
of this sequence is limited; (d) poor-quality image (Q0) because of marked motion artifacts—the ability to correctly identify areas of
pathologic enhancement is compromised.

TABLE 3. Train, validation, Test Split

Number of Sequences

Train Validation Test

Sequence All Q0 Q1 All Q0 Q1 All Q0 Q1

T2WI 222 25 197 63 6 57 31 4 27

DWI 221 30 191 64 9 55 31 4 27

ADC 221 29 193 64 8 55 31 4 27

DCE 205 26 179 59 8 51 27 3 24

Q0 = low-quality image; Q1 = high-quality image.
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prostate MRI in the clinical practice, linked to comparable accu-
racy in csPCa detection, provided that the radiologist’s expertise
and image quality are adequate enough.12

Limitations
This study has a relatively small sample size for training.
However, the models were trained on individual slices, mean-
ing that a minimum of 8387 images were available for train-
ing and testing each model. In addition, the data
augmentation techniques implemented significantly increase
the number of available images. Another limitation lies in the
binary nature of our classifiers: while our models are able to
identify sequences of suboptimal diagnostic quality, they were
not designed to grade image quality on a semiquantitative
scale, nor to pinpoint to the specific underlying cause. While
this would be helpful, the first and the clinically more rele-
vant step is to promptly identify the sequences that need to
be optimized. An additional limitation is the subjective nature
of sequence labeling performed by the radiologists.

Lastly, the CNNs were trained on images acquired on a
single MR scanner and protocol. Further studies are needed
to clarify whether the models can be applied to different MR
scanners and/or acquisition protocols, or if training of specific
classifiers is necessary for each MR scanner/protocol.

Conclusion
This study had developed, trained, and validated a fully auto-
mated classifier based on convolutional neural networks that
is capable of accurately identifying low-quality prostate MRI
images on T2WI, DWI/ADC, and DCE sequences.
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