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SUMMARY

High-throughput sequencing technology provides unprecedented opportunities to quantitatively explore
human gut microbiome and its relation to diseases. Microbiome data are compositional, sparse, noisy,
and heterogeneous, which pose serious challenges for statistical modeling. We propose an identifiable
Bayesian multinomial matrix factorization model to infer overlapping clusters on both microbes and hosts.
The proposed method represents the observed over-dispersed zero-inflated count matrix as Dirichlet-
multinomial mixtures on which latent cluster structures are built hierarchically. Under the Bayesian
framework, the number of clusters is automatically determined and available information from a tax-
onomic rank tree of microbes is naturally incorporated, which greatly improves the interpretability of
our findings. We demonstrate the utility of the proposed approach by comparing to alternative methods
in simulations. An application to a human gut microbiome data set involving patients with inflammatory
bowel disease reveals interesting clusters, which contain bacteria families Bacteroidaceae, Bifidobacte-
riaceae, Enterobacteriaceae, Fusobacteriaceae, Lachnospiraceae, Ruminococcaceae, Pasteurellaceae,
and Porphyromonadaceae that are known to be related to the inflammatory bowel disease and its sub-
types according to biological literature. Our findings can help generate potential hypotheses for future
investigation of the heterogeneity of the human gut microbiome.
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1. INTRODUCTION

Microbes parasitic on various parts of the human body are inseparable from the well-being of their hosts.
Recent studies have shown that microbiota have profound effects on the formation, development, and
progression of numerous diseases like psoriasis (Benhadou and others, 2018), obesity (Castaner and
others, 2018), inflammatory bowel disease (IBD, Franzosa and others, 2019), preterm birth (Fettweis and
others, 2019), and diabetes (Tilg and Moschen, 2014). In this article, we focus on IBD, a chronic and
complex disease that features heterogeneity at the microbiome level. As Lloyd-Price and others (2019)
pointed out, the disease activity is accompanied by molecular disruptions in microbial transcription,
variations with taxonomic shifts, and other genomic activities. The seemingly strong association between
gut microbes and IBD urges scientists to investigate microbial composition profiles in patients, which can
improve our understanding of disease etiology and potentially lead to personalized treatments.

The emergence of high-throughput sequencing technology such as deep metagenomic sequencing
has generated a plethora of data that have enabled researchers to quantitatively study both taxonomic and
functional effect of microbiota on hosts (Turnbaugh and others, 2007). However, due to the compositional,
sparse, heterogeneous, and noisy nature of the microbiome abundance data, they pose serious challenges
in statistical modeling.

Composition. Microbiome abundance data are inherently compositional (Gloor and others, 2017), in
the sense that individual counts are restricted by a sum constrain due to tissue size or sequencing depth.
The abundance of each microbial component is only coherently interpretable relative to others within
that sample. As a consequence, models that treat microbial taxa as independent variables may lead to
substantial biases (Buccianti, 2013).

Sparsity. Microbial counts are sparse. Taking our IBD data as an example, more than 45% of the
observations are exact zeros, which greatly complicates the sampling distribution. Excessive zeros occur
mainly for two reasons: (i) bacteria are not present in tested hosts and hence the zeros are true biological
zeros and (ii) the sequencing depth is not enough to capture rare bacteria which is referred to as technical
zeros. Often, approaches need to explicitly differentiate between these two types of zeros to reduce
estimation biases, which are addressed by the two-part model, the tobit model, and their combination (Liu
and others, 2019).

Heterogeneity. The composition of microbiota is heterogeneous and drastically different across hosts.
Methods based on iid sampling are deemed unsuitable for microbiome data analysis. Individualized
characterization is necessary to unravel genuine information and avoid spurious conclusions derived from
a homogeneous modeling assumption.

Noisiness. Measurements from sequencing platforms contain high levels of noises due to the technical
instability, which inevitably confounds with the biological variation that researchers strive to investigate.
Methods that ignore the experimental noises are susceptible to false discoveries which will be propagated
to downstream analysis and hinder scientific advancement.

Current statistical methodologies in the analysis of microbiome data are largely focused on the super-
vised learning framework. For example, in regression analysis where covariates are compositional, the
linear log-contrast model with �1 regularization was adopted in Lin and others (2014) and Shi and others
(2016) to select relevant covariates in the analysis of metagenomic data. However, they do not explic-
itly take into account the excessive zeros but replace them with arbitrary small numbers. When treating
compositional data as response, a sparse Dirichlet-multinomial regression model was employed in Chen
and Li (2013) to associate microbiome composition with environmental covariates. The method is able
to account for over-dispersion of observed counts and select important covariates. Xia and others (2013)
introduced an additive logistic normal multinomial regression model and selected significant covariates
via a group �1 penalty. Chen and Li (2016) proposed a zero-inflated Beta regression model. The model
includes a logistic regression component to model presence or absence of microbes in samples and a



Bayesian biclustering via multinomial matrix factorization 893

Beta regression component to model non-zero microbiome abundance. Wadsworth and others (2017)
developed a Bayesian Dirichlet-multinomial regression model combined with spike-and-slab priors to
select important covariates that are predictive of microbial abundances. Grantham and others (2020) pro-
posed a Bayesian mixed-effects model for capturing the effects of treatment, covariates, and latent factors
on microbial responses.

There are also a rising number of models focusing on revealing microbiome interactions. For example,
Friedman and Alm (2012) proposed to estimate the Pearson correlations between log-transformed compo-
nents of compositional data under the assumption of sparsity, which is later implemented more efficiently
with parallel computing by Watts and others (2018). A composition-adjusted thresholding was proposed
by Cao and others (2019a) to obtain a sparse correlation estimate. More recently, Cai and others (2019)
developed a Markov random field model to detect differential microbial networks. A key step in their
approach is to dichotomize microbial compositions into a binary matrix. However, the dichotomization
in their approach is based on a fixed quantile, the choice of which is somewhat arbitrary and sensitive.

While the majority of microbiome data analyses are performed in a supervised manner, in this paper we
focus on an unsupervised learning task, namely, the probabilistic matrix factorization of microbiome data
which can also be interpreted as overlapping biclustering. Many matrix factorization techniques have been
proposed to handle continuous matrices (Bhattacharya and Dunson, 2011; Ročková and George, 2016),
non-negative matrices (Lee and Seung, 2000; Hoyer, 2004), count matrices (Zhou and others, 2012;
Gopalan and others, 2014), and binary matrices (Meeds and others, 2007; Ni and others, 2019b; Wu and
others, 2019). However, none of these methods is directly applicable to compositional microbiome data.
To account for both sparsity and heterogeneity of microbiome data, a matrix factorization approach based
on Dirichlet prior and low-dimensional representation was proposed in Shafiei and others (2015). Ren and
others (2017) developed a Bayesian nonparametric ordination approach to capture the high-dimensional
microbial dependencies via low-dimensional latent factors. Recently, a low rank approximation method
was proposed by Cao and others (2019b) which minimizes the multinomial likelihood-based loss function
combined with a nuclear norm regularization on the composition matrix. They focused on recovering the
composition and matrix factorization rather than inferring latent clustering structure which is the main
objective of this article. Xu and others (2020) developed a zero-inflated Poisson factor model with Poisson
rates negatively related to inflated zero occurrences. Again, their main focus was on reducing the dimen-
sionality of the microbiome data and a separate clustering algorithm is required to identify the clusters.

In this article, we propose a Bayesian multinomial matrix factorization (MMF) model that infers the
latent clustering structure from compositional, sparse, heterogeneous, and noisy microbiome data. The
proposed MMF introduces a mixture model representation of observations through a set of latent vari-
ables to indicate the relative abundance of taxa. In essence, this simple formulation of the sampling model
adaptively dichotomizes the multinomial observations into a binary matrix, which is more robust to noise
and does not require a separate treatment of excessive zeros. Given the binary indicator matrix, priors
are imposed hierarchically to characterize the heterogeneity via latent features. Specifically, we construct
the hierarchical model with a combination of latent logit model, phylogenetic Indian buffet process prior
(pIBP, Miller and others, 2008; Chen and others, 2016), and beta-Bernoulli prior. Using pIBP, we are able
to infer an unknown number of overlapping clusters/communities of the taxa. pIBP also takes into account
the taxonomic relationships among the taxa, which gives rise to more interpretable and reliable results.
Conditional on the clusters of taxa, the beta-Bernoulli prior are assigned to cluster hosts, again allowing
overlaps. Moreover, the sparse nature of the pIBP and beta-Bernoulli priors leads to an identifiable matrix
factorization under a mild condition. Using simulations, we demonstrate that the proposed MMF has
favorable performance compared to competing methods and is relatively robust to the choice of hyperpa-
rameters and misspecified tree information. We then apply MMF to an IBD microbiome data set (Qin and
others, 2010), which reveals interesting clusters containing bacteria families Bacteroidaceae, Bifidobac-
teriaceae, Enterobacteriaceae, Fusobacteriaceae, Lachnospiraceae, Ruminococcaceae, Pasteurellaceae,
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and Porphyromonadaceae that are known to be related to the IBD and its subtypes according to biologi-
cal literature. Despite the exploratory nature of this study, our findings can help generate hypotheses for
further investigation of the heterogeneity of the human gut microbiome.

The rest of this article is organized as follows. We introduce the proposed MMF model in Section 2.
Posterior inference based on Markov chain Monte Carlo (MCMC) sampling is described in Section 3. In
Sections 4 and 5, we respectively illustrate our approach with simulation studies and the analysis of an
IBD data set. This article is concluded with a brief discussion in Section 6.

2. MODEL

2.1. Classifying taxon abundance via adaptive dichotomization

Let xij denote the observed count of taxon j in host i, j = 1, . . . , p and i = 1, . . . , n. Let xi = (xi1, . . . , xip)
T

and Ni = ∑p
j=1 xij. We assume xi follows a Dirichlet-multinomial distribution,

xi ∼ Multinomial(Ni, π i)

with host-specific relative abundances,

π i = (πi1, . . . ,πip)
T ∼ Dirichlet(ηi),

where ηi = (ηi1, . . . , ηip)
T. Note that the Dirichlet-distributed relative abundances π i can be equivalently

represented as normalized gamma random variables π i = γ i/
∑p

j=1 γij with unnormalized relative abun-

dances γ i = (γi1, . . . , γip)
T and γij

ind∼ Gamma(ηij, 1), where the gamma distribution is parameterized as
Gamma(x; a, b) = ba

�(a)x
a−1e−bx.

We introduce a latent indicator variable zij to classify whether a taxon j is significantly present or
absent in host i. However, there is no consensus on the classification of taxa based on absolute or relative
abundances. In supervised tasks, the classification rule may be chosen to minimize certain objective
functions. For example, when the goal is to predict a response variable with microbiome covariates, one
can potentially find an optimal dichotomization that minimizes the prediction error. Lack of such gold
standard in matrix factorization, we propose a mixture model to probabilistically classify raw taxa counts
into states of high presence versus low presence and absence,

γij ∼ I (zij = 1)Gamma(sj, 1)+ I (zij = 0)Gamma(tj, 1) with sj > tj. (2.1)

In words, due to the constraint sj > tj, zij = 1 indicates high relative abundance and zij = 0 indicates
low relative abundance. The choice of the two-component mixture model is motivated by the fact that
the distribution of microbial abundances tend to be overdispersed and bi-modal (Koren and others, 2013;
Lahti and others, 2014). If we further constrain tj < 1, the prior (2.1) becomes a spike-and-slab prior
with Gamma(tj, 1) as the spike distribution, assigning an infinite mass at zero. Through the multinomial
sampling and adaptive discretization, the zero counts would naturally fall into the category of low abun-
dance with high probability. Therefore, we do not need an extra zero-inflated component to explicitly deal
with the zero counts in our model. In addition, the adaptive dichotomization also accounts for sequencing
errors as in Parmigiani and others (2002). The induced distribution of xi is a discrete mixture of Dirichlet-
multinomial distributions with 2p components, with each component corresponding to one configuration
of (zi1, . . . , zip)

T. The latent variable zij can be viewed as a denoised version of the raw observations xij.
A similar idea of denoising was recently used by Cai and others (2019) where they assumed that taxa
with relative abundances lower than 0.001% are due to noise or sequencing errors and adopted the 0.25
quantile as a hard cutoff for more abundant taxa. Our approach differs from theirs in that we do not need
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to fix a cutoff and the proposed method adaptively dichotomizes the data. We assign hyperpriors on the
unknown parameters (sj, tj),

p(sj, tj) = Gamma(sj|αs,βs)× Gamma(tj|αt ,βt)× I (sj > tj), (2.2)

with αs = αt = α = 1 and βs = βt = β = 0.1. Sensitivity analyses will be performed on the choice of all
the hyperparameters in Section 4 and Section B of the Supplementary material available at Biostatistics
online.

The mixture model in (2.1) can reliably classify taxa with well separated relative abundances into
two states. However, the classification can have greater uncertainties for taxa with less variable relative
abundances across observations. In Section 2.2, we will introduce latent structures on Z = (zij) that
stabilize uncertain classifications, reduce the dimensionality, and induce overlapping cluster structure for
both hosts and microbial taxa.

2.2. Biclustering taxa and hosts via binary matrix factorization

We introduce lower-dimensional matrices to characterize the heterogeneity of both rows and columns of
Z . In particular, we let A = (aik) ∈ {0, 1}n×K and B = (bjk) ∈ {0, 1}p×K denote the host-cluster and
taxon-cluster matrices with K clusters. The clustering interpretations of A and B will be elaborated in
Section 2.3. The number K of columns of A and B is usually much smaller than the dimensions of the
original data (n and p). We link A and B to zij by a latent logit model

logit{Pr(zij = 1)} = cj +
K∑

k=1

aikwjkbjk , (2.3)

where logit(p) = log{p/(1−p)}. If a group of hosts have a common activated biological pathway (related
to normal body functions or diseases) that involves a common set of taxa, then these taxa are likely to have
significant presence in those host samples. Therefore, we choose to constrain wjk to be positive, although
in principle they can take any values; similar considerations in a different context were made in Wood and
others (2006). Parameter cj represents the log odds ratio of baseline probability of the presence of taxon
j. We assume weakly informative priors on wjk and cj, wjk ∼ Gamma(αw,βw), and cj ∼ N(μc, σ 2

c ), with
μc = 0, σ 2

c = 100, αw = 1, and βw = 0.1.

2.3. Indian buffet process and taxonomic rank tree

The host–cluster matrix A and taxon–cluster matrix B can be interpreted as clustering of rows and columns
of Z , respectively. Host i (taxon j) belongs to cluster k if the corresponding aik = 1 (bjk = 1). Since we do
not constrain A and B to having unit row sums, clusters can have overlaps. This is useful in microbiome
applications because a taxon can be active in multiple communities and likewise a host can also belong to
more than one group. To make inference on these two matrices, we will impose a Bayesian nonparametric
prior on B that can automatically determine the number K of clusters.

The Indian buffet process (IBP, Griffiths and Ghahramani, 2005) has been widely used as a Bayesian
nonparametric prior on binary matrices with potentially unbounded number of columns. IBP assumes the
rows of the binary matrix are exchangeable. This assumption becomes a limitation when the rows (taxa) are
seemingly dependent as in our case. For instance, the relationships between taxa are commonly organized
as a taxonomic rank tree. Taxa with smaller distances on the tree tend to have similar biological functions
and therefore are expected to have higher probability of being in the same cluster. To incorporate this prior
knowledge, we adopt the phylogenetic IBP (pIBP, Miller and others, 2008) to encourage taxonomically
similar taxa to form clusters.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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Fig. 1. A graphical representation of the model. Dashed edges and squares are deterministic, and solid edges and
circles are stochastic.

To describe the generating process of pIBP, we first assume a fixed and finite number K̃ of clusters and
will later relax it. Conditional on K̃ , we associate a parameter pk to each column of B, which is assigned
a Beta(m/K̃ , 1) prior. We put a Gamma(1, 1) prior on m to infer its value from data. While the columns
of B are still independent as in IBP, entries within each column are generated jointly, with the pattern of
dependence characterized by a stochastic process on a taxonomic rank tree. The tree has p taxa of interest
as leaves and higher taxonomic ranks as internal/root nodes. Assume the path from every leaf up to the
root contains (L − 1) internal nodes, and each edge has length 1/L so that the total length of the path from
every leaf to the root is 1. This implies that the marginal prior probability of bjk = 1 is the same across
taxa j = 1, . . . , p.

To generate the entries of the kth column, we proceed as follows: (i) assign value zero to the root node
of the tree; (ii) along any path from the root to a leaf, let the value change to one with an exponential rate
− log(1 − pk)/L; (iii) once the value has changed to one along a path from the root, all leaves below that
change point are assigned value one; and (iv) set the entries in the kth column of B to the values of the
corresponding leaves. By construction, leaves that are closer on the tree tend to receive identical values
(of zeros or ones) in each column and therefore the corresponding taxa are more likely to fall in the same
cluster. Note that the marginal prior probability of bjk = 1 is pk , as given in the original paper of Miller
and others (2008). To remove the dependency of the generating process from a fixed K̃ , we let K̃ go to
infinity and obtain the pIBP. Hereafter, we omit empty columns and denote the number of non-empty
columns by K .

Conditional on taxon-cluster matrix B (only via K), each element aik in A follows an independent

beta-Bernoulli distribution aik
iid∼ Bernoulli(ρ), and ρ ∼ Beta(αρ ,βρ) with αρ = βρ = 1. The complete

hierarchical model is represented as directed acyclic graph in Figure 1.
Our choice of the nonparametric pIBP prior allows for flexible modeling of the latent structures. First,

the number of clusters is potentially unbounded (i.e., it can increase as the sample size grows) and can be
inferred from data. Second, given the number of clusters, the prior model assigns positive mass on any
taxon-cluster matrix B (via pIBP) and any host-cluster matrix A (via independent Bernoulli’s conditional
on B). Third, through the logit link, the prior model on A and B also induces a flexible prior on the latent
abundance matrix Z .

2.4. Identifiability of the proposed model

Matrix factorization is often non-identifiable without additional assumptions. For example, model (2.3)
can be written in a matrix form,

Q = C + ABT,
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where Q = (qij) with qij = logit{Pr(zij = 1)}, C = 1pcT with 1p = (1, . . . , 1)T and c = (c1, . . . , cp)
T,

and, slightly abusing the notation, B = (wjkbjk) absorbs the weights wjk . Let Ã = AP and B̃ = BP for
any K × K orthogonal matrix P. It is obvious that ÃB̃T = APPTBT = ABT. Consequently, (A, B) and
(Ã, B̃) would lead to the same Q and the same sampling distribution and are therefore non-identifiable
in general. However, the fact that A is binary makes the proposed matrix factorization identifiable up to
column permutations under a mild condition.

PROPOSITION 1 If A is a binary matrix and there exists an integer matrix R ∈ Z
K×n such that RA = I , then

A and B is uniquely identifiable up to column permutation.

Proof. Let Ã = AP with an orthogonal matrix P. We will show that P must be a permutation matrix if Ã
is a binary matrix. We have

RÃ = RAP = P.

Since both R and Ã are integer matrices, P must be an integer matrix. This implies that each row of P is
a unit vector and P is therefore a permutation matrix. �

The condition is, in our opinion, mild. For example, it is satisfied if for any k = 1, . . . , K , there exists
i = 1, . . . , n such that ai = ek where ai is the ith row of A and ek is a unit vector with 1 at its kth entry
(in this case R would simply be a binary matrix that acts to select those K rows of A). In words, the
proposed model is identifiable if for any cluster k , there exists at least one member of this cluster that does
not belong to any other clusters. Below, for completeness, we give a non-identifiable example when the
condition of Proposition 1 is not met.

EXAMPLE 1 Suppose

AP =

⎛⎜⎜⎝
0 0 1 1
1 1 0 0
0 1 0 1
1 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1/2 1/2 1/2 −1/2
1/2 1/2 −1/2 1/2
1/2 −1/2 1/2 1/2

−1/2 1/2 1/2 1/2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 1 1
1 1 0 0
0 1 0 1
0 1 1 0

⎞⎟⎟⎠ = Ã.

Then, the matrix P satisfies PPT = I but is not a permutation matrix.

3. POSTERIOR INFERENCE

The proposed MMF is parameterized by
{
A, B, Z , {γ i}n

i=1{wj, cj, sj, tj}p
j=1, {pk}K

k=1, m, ρ
}
. We carry out the

posterior inference by MCMC simulation. To improve mixing, we marginalize out unnormalized relative
abundance parameters γ i’s.While other parameters are trivial to update with Gibbs or Metropolis–Hastings
(M–H), care must be taken in updating B and {pk}K

k=1, details of which are provided below. The updating
procedures of other parameters are presented in Section A of the Supplementary material available at
Biostatistics online. We let bk and b−j

k respectively denote the kth column of B and the kth column of B
without the jth entry. Sequentially for j = 1, . . . , p, we cycle through the following three steps.

Step i. Update existing (non-empty) columns k = 1, . . . , K of B. For j = 1, . . . , p, we sample the
binary bjk from the full conditional distribution,

p(bjk |·) ∝ p(bjk |b−j
k , pk)

n∏
i=1

p(zij|{aik , bjk , wjk}K
k=1, cj).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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While an analytic form of p(bjk |b−j
k , pk) is hard to obtain, it can be computed by the sum-product

algorithm exactly and efficiently. Details of the sum-product algorithm can be found in Bishop
(2006). Importantly, if a column becomes all zeros after update, we delete that column and
reduce K by 1.

Step ii. Update pk for existing columns of B. Suppose bjk is any non-zero entry in the kth column. The
full conditional of pk is given by

p(pk |bk , m) ∝ p(pk |bjk , m) p(b−j
k |pk , bjk),

where the first factor is a standard uniform distribution (Miller and others, 2008) and the second
factor can be efficiently computed by decomposing it into a series of univariate conditional
distributions using the chain rule. For example, without loss of generality, assuming j = 1,
then

p(b−1
k |pk , b1k) = p(b2k |pk , b1k) p(b3k |pk , b1k , b2k) · · · p(bpk |pk , b1k , . . . , bp−1,k),

where each factor can be computed again using the sum-product algorithm. Since we only
know the full conditional up to a normalization constant, we draw pk by a M-H step, where a
new value is proposed from p∗

k ∼ q(p∗
k |pk) = N(pk , σ 2

k ) and is accepted with probability

min

{
1,

q(pk |p∗
k) p(b−j

k |p∗
k , bjk)

q(p∗
k |pk) p(b−j

k |pk , bjk)
I (p∗

k ∈ [0, 1])
}

.

Following the default choice in Miller and others (2008), we choose σ 2
k = cpk(1 − pk) + δ,

with c = 0.06 and δ = 0.08.
Step iii. Propose new columns. After all the existing columns are updated, we propose to add new

columns. We first draw

K∗ ∼ Poisson (m {ψ ((P − 1)/L + 1)− ψ ((P − 2)/L + 1)}) ,

where ψ(·) is the digamma function and P is the total number of nodes in the tree. If K∗ = 0,
we will go to the next step. Otherwise, we propose a set of new parameters a∗

k = (a∗
1k , . . . , a∗

nk)
T

and w∗
jk from their prior distributions, k = K + 1, . . . , K + K∗. We accept new columns and

the associated new parameters with probability

min

{
1,

∏n
i=1 p

(
zij|{aik , bjk , wjk}K

k=1, {a∗
ik , b∗

jk , w∗
jk}K+K∗

k=K+1, cj

)∏n
i=1 p

(
zij|{aik , bjk , wjk}K

k=1, cj

) }
,

where bj,K+1 = . . . = bj,K+K∗ = 1. Lastly, if new columns are accepted, we increase K by K∗

and sample pk for the new columns by a M–H step,

p(pk |bk) ∝ {1 − (1 − pk)
1/L}(1 − pk)

(P−2)/L/pk .

To summarize the posterior distribution based on the Monte Carlo samples, we proceed by first cal-
culating the maximum a posteriori estimate K̂ of K from the marginal posterior distribution. Conditional
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on K̂ , we find an estimate of B by the following procedure. For any matrices B, B̃ ∈ {0, 1}p×K̂ , we define
a distance

d(B, B̃) = min
π

H (B,π(B̃)), (3.4)

where π(B̃) denotes a permutation of the columns of B̃ and H (·, ·) is the Hamming distance between two
binary matrices, i.e., counting the number of different entries between the two matrices. A point estimator
B̂ of B is then obtained as

B̂ = arg min
B̃

∫
d(B, B̃) dp(B|·),

where p(B|·) denotes the marginal posterior distribution of B given K̂ . Empirically, both the integration
and the optimization can be approximated using the available Monte Carlo samples. Specifically, we define
the posterior mode B̂ as

B̂ = arg min
B̃∈B

1

S

S∑
s=1

d(B(s), B̃),

where B = {B(s), s = 1, . . . , S} is the set of posterior samples of B and the distance function is given in
(3.4). Conditional on B̂, we continue to run the Markov chain for a while. Then, the point estimates of
other parameters are obtained as the posterior means computed from the new Monte Carlo samples.

4. SIMULATION

In our simulation study, we considered a dataset with n = 300 hosts, p = 46 taxa, and K = 6 true clusters;
similar in size to the later application. For k = 1, . . . , K , we first set aik = 1, i = 50(k − 1)+ 1, . . . , 50k ,
and 0 all the others. Then, we randomly changed 10% of zero entries in the host-cluster matrix A to
one. We used the same taxonomic rank tree as in later application to generate the taxon-cluster matrix
B, which had L + 1 = 5 levels. Furthermore, cluster-specific probability parameters pk were all set
to 0.3. The resulting true A and B, along with the phylogenetic tree are shown in Figure S.1 of the
Supplementary material available at Biostatistics online. By construction, each taxon or host was allowed
to belong to multiple clusters. Latent indicators zij were generated from the logit model (2.3) with wj =
w = (2.0, 2.5, 3.0, 3.5, 4.0, 4.5)T and cj = log 0.5. For the unnormalized relative abundance γij, we
simulated them from the gamma mixture model (2.1) with varying degrees of separation of mixture
components, (sj, tj) = (s, t) = (2, 0.7), (3, 0.6), and (5, 0.5). Among these three simulation scenarios,
(s, t) = (2, 0.7)was the most difficult as it induced the least separation between the two mixture component.
The observations were finally generated from the multinomial sampling model for which the total counts
were drawn from the discrete uniform distribution U(50, 500).

We ran the MCMC algorithm of MMF for 5000 iterations with 10 random initial clusters. The first
2500 iterations were discarded as burn-in and posterior samples were retained every 5th iteration after
burn-in. On average, it took 3.8 h on a 2.3 GHz Quad-Core Intel Core i7 laptop. To evaluate the recovery
accuracy, we calculated the estimation errors for both A and B. Specifically, we computed the Hamming
distance between the estimated and true A and B, normalized by the respective total number of elements.
When the estimated number of clusters was different from the truth, we padded the smaller matrix with
columns of zeros, making the resulting matrices comparable in dimension.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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Table 1. Simulation results of the proposed MMF and competing methods. Average errors in estimating
A and B are quantified as the Hamming distance between the estimated and true matrices, normalized
by the respective total number of elements. The numbers in the parentheses are standard deviations. The
smallest errors are in boldface.The competing methods are low rank approximation (LRA), non-negative
matrix factorization (NNMF), zero-inflated Poisson factor model (ZIPFM), and two-step multinomial
matrix factorization (TSMF)

(s, t)
(2, 0.7) (3, 0.6) (5, 0.5)

Error A Error B Error A Error B Error A Error B

MMF
0.373

(0.062)
0.167

(0.029)
0.171

(0.022)
0.055

(0.021)
0.117

(0.023)
0.057

(0.028)

LRA
0.298

(0.042)
0.269

(0.023)
0.205

(0.052)
0.185

(0.017)
0.203

(0.058)
0.165

(0.021)

NNMF
0.351

(0.049)
0.279

(0.030)
0.288

(0.062)
0.247

(0.021)
0.256

(0.059)
0.208

(0.014)

ZIPFM
0.425

(0.014)
0.258

(0.031)
0.291

(0.008)
0.249

(0.023)
0.246

(0.002)
0.232

(0.022)

TSMF
0.382

(0.092)
0.253

(0.033)
0.325

(0.057)
0.132

(0.043)
0.237

(0.092)
0.089

(0.018)

Method evaluation. The results under three sets of true values of (s, t) are summarized in Table 1 based
on 50 repeated simulations. As expected, the performance improved as the two mixture components in
(2.2) became more separated, from (s, t) = (2, 0.7) to (5, 0.5). The proposed MMF was able to identify
the correct number K of clusters at least 95% of the time. Figure S.1 of the Supplementary material
available at Biostatistics online depicts the estimated host-cluster and taxon-cluster matrices Â and B̂ of
the proposed MMF from one simulation result with the worst error rate in the scenario (s, t) = (5, 0.5)
after adjusting for label switching and dropping redundant columns. They are visually quite close to the
truth, indicating that the proposed method was able to consistently and accurately identify the clusters of
hosts and taxa.

Comparisons with competing methods. Matrix factorization has been studied extensively in the litera-
ture. We compared the proposed MMF with three existing alternative matrix factorization methods, the
low rank approximation (LRA, Cao and others 2019b), the non-negative matrix factorization (NNMF,
Cai and others 2017), and the zero-inflated Poisson factor model (ZIPFM, Xu and others 2020).

In order to compare the performance of biclustering, the overlapping clustering method, fuzzy c-means
(Bezdek and others, 1984), was applied to the latent factors or low rank matrices obtained from the
competing methods. The dimension of latent factors was chosen by their default optimization procedure.
The number of clusters was set to the truth K = 6 for competing methods whereas it was estimated for
the proposed MMF. The estimation errors were defined by first converting clustering results to binary
host–cluster or taxon–cluster matrix, and then calculating the distance between the estimated and true
matrices as was done for the proposed method. In addition, we also considered a two-step approach that
was similar to the proposed MMF, denoted by TSMF. Specifically, instead of joint modeling, the two-step
approach first dichotomized observations using a default cutoff as suggested in Cai and others (2019)
and then applied the same Bayesian nonparametric binary matrix factorization method as in MMF to
the binary data. The results of all the methods are reported in Table 1. The proposed MMF consistently
outperformed the competing methods in most settings (keeping in mind that the number of clusters was

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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Table 2. Simulation results of the misspecified model. Average errors in estimating A and B are
quantified as the Hamming distance between the estimated and true matrices, normalized by the
respective total number of elements. The numbers in the parentheses are standard deviations. The
competing methods are low rank approximation (LRA), non-negative matrix factorization (NNMF),
zero-inflated Poisson factor model (ZIPFM), and two-step multinomial matrix factorization (TSMF).

MMF LRA NNMF ZIPFM TSMF

Error rate A
0.323

(0.072)
0.301

(0.044)
0.351

(0.062)
0.368

(0.015)
0.329

(0.083)

Error rate B
0.157

(0.036)
0.293

(0.032)
0.319

(0.023)
0.382

(0.019)
0.191

(0.047)

set to truth for LRA, NNMF, and ZIPFM), especially for the taxon-cluster matrix B. Although when (s, t)
was specified to be (2, 0.7), the estimation error of A in LRA was smaller, the significantly more accurate
result of estimating B in the proposed MMF shows the benefit of using the phylogenetic tree information.

Additional simulations with different values of w. We performed additional simulation for w =
(0.5, 0.6, 0.7, 0.9, 1.1, 1.2)T and (1.0, 1.2, 1.5, 1.7, 2.0, 2.3)T in Section B of the Supplementary material
available at Biostatistics online, which led to similar conclusion as above.

Misspecified model. For fairer comparison, we mimicked the generating process of microbial metage-
nomic sequencing data, which was different from the proposed model. In this experiment, A and B were
first generated as before. Then, the true counts Y = (yij) were simulated from a negative binomial model,

NB(yij;μij, κij) = �(κij + yij)

�(κij)yij!
(

κij

κij + μij

)κij
(

μij

κij + μij

)yij

,

whereμij = κij = exp(
∑

k aikwjkbjk +cj) such that E(yij) = μij and Var(yij) = 2μij. The counts were then
proportionally down-sampled from a multinomial distribution with sequencing depth uniformly chosen
from (50, 500). We subsequently applied the proposed MMF and the competing methods to the down-
sampled dataset. The results based on 50 repetitions are summarized in Table 2, which show the overall
competitive performance of the proposed MMF over the alternatives, especially in estimating B.

Sensitivity analyses. We performed two sets of sensitive analyses regarding the choice of all the hyperpa-
rameters as well as the impact of misspecified tree information. The inference under MMF was relatively
robust, in our opinion. Details are provided in Section B of the Supplementary material available at
Biostatistics online. In practice, if no prior knowledge is available, we recommend to use the default
non-informative prior specification in Sections 2.1–2.3.

5. REAL DATA

Gut microbes actively interact with their hosts and have profound relevance to inflammatory bowel disease
(IBD) which is a very heterogeneous disease at the microbiome level. The goal of this case study was
to investigate the heterogeneous microbial profiles in relation to IBD in an unsupervised data-driven
manner. We applied the proposed MMF to an IBD microbiome dataset (Qin and others, 2010). The data
were obtained by sequencing fecal specimens collected from IBD patients as well as healthy adult controls
using the Illumina’s GenomeAnalyzer (metagenomic sequencing); details of the data generating procedure
can be found in Qin and others (2010). The dataset contained n = 372 observations with 240 healthy hosts

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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Fig. 2. Real data. Heatmaps of estimated clusters using the proposed MMF. Colored cells are ones and black cells are
zeros. Rows of A are hosts arranged in a block-diagonal-liked form. Rows of B are taxa which are arranged according
to the taxonomic rank tree. Each column represents a cluster with overlaps. The red/green cells in the heatmap of A
represents patients/controls with ones.

and 132 IBD patients, and provided information on microbial compositions at various taxonomic levels
(kingdom, phylum, class, order, family, genus, and species) of these samples. We chose to work with the
family level counts because lower levels (e.g., the specie level) had extremely large number of zeros (more
than 80% elements in the count matrix were zeros). In addition, we filtered out families that appear in less
than 10% of samples (i.e., taxa with more than 90% of zeros) and preserved only families belonging to
kingdom bacteria. The resulting data had p = 46 taxa for subsequent analysis. The relationships of taxa
can be naturally represented by a taxonomic rank tree. Taxa that are closer on the tree tend to have similar
activities and functions. We depict the tree of 46 taxa along with their higher taxonomic ranks, kingdom,
phylum, class, and order in Figure 2. This taxonomic rank tree was used as prior information to encourage
the clustering of taxa that are taxonomically similar.

We ran two separate Markov chains of MMF for 10 000 iterations. The first 5000 iterations were
discarded as burn-in and posterior samples were retained every 5th iteration after burn-in. It took 8.2
h on a 2.3 GHz Quad-Core Intel Core i7 laptop. To monitor the MCMC convergence, we computed the
Gelman and Rubin’s potential scale reduction factor (PSRF, Gelman and Rubin, 1992) for key parameters.
The MCMC diagnostic did not show a sign of lack of convergence: the PSRF was 1.01 for number K
of clusters and the median PSRF was < 1.1 (with stdev 0.1) for cj + ∑K

k=1 aikwjkbjk , the quantity on
the right-hand side of (2.3). The Monte Carlo samples from the two Markov chains were combined for
subsequent analysis.

To check the model fit adequacy (measure of “lack-of-fit”), we performed within-sample prediction
that compared the observed composition (i.e., xi/Ni) with the posterior predictive mean. The scatter plot
of predicted versus observed relative abundance of taxa is given in Figure S.2 (a) of the Supplementary
material available at Biostatistics online showing that the within-sample prediction was accurate. The
correlation between two matrices was 0.94, which indicated an adequate model fit.

Figure S.2 (b) of the Supplementary material available at Biostatistics online shows the posterior
distribution of the number K of clusters. The posterior mode occurred at K = 6. Conditional on K , the
posterior estimates of A and B are shown in Figure 2. In Figure 2a, black cells are 0, green cells are 1 for

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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controls, and red cells are 1 for patients. Samples that did not belong to any clusters are omitted in the
figures.

Cluster 1 contained predominantly IBD patients (∼70%). The biclustering nature of the proposed MMF
allowed us to investigate the corresponding subset of taxa that were related to these IBD patients. For
example, the cluster 1 contains family Enterobacteriaceae, part of class Gammaproteobacteria, which
have been reported to increase in relative abundance in patient with IBD (Lupp and others, 2007). The
fact that it exclusively belonged to patient-dominated cluster 1 is consistent with its biological relevance
to IBD. Moreover, genus Fusobacterium, a member of the family Fusobacteriaceae, have been found
to be at a higher abundance in patients with ulcerative colitis (UC, a subtype of IBD) relative to control
subjects (Ohkusa and others, 2002). Fusobacteriaceae family was also contained in cluster 1 only, which
again signified the importance of this family with relevance to IBD. Generally, phyla Proteobacteria and
Actinobacteria are expected to increase in IBD patients (Matsuoka and Kanai, 2015), which is consistent
with our result in cluster 1. Apart from the findings that were confirmed by the existing literature, cluster
1 includes some families in phylum Firmicutes, which are known to play major anti-inflammatory roles
and therefore their abundances are expected to decrease in IBD patients. Further biological investigation
is required to validate this new finding.

Likewise, most hosts in cluster 6 were IBD patients as well. This cluster shared quite a few taxa with
cluster 1, which was not surprising as they both contained predominantly IBD patients. However, they
also had distinct taxa that are biologically meaningful. On the one hand, cluster 6 uniquely contained
the family Pasteurellaceae, of which the abundances tend to increase in patients with Crohn’s disease
(CD, Gevers and others, 2014), another subtype of IBD. This suggested the possibility of these patients
belonging to the CD subtype. On the other hand, cluster 1, as discussed earlier, uniquely contained the
family Fusobacteriaceae, which suggested the possibility of these patients belonging to the UC subtype
(Ohkusa and others, 2002).

Cluster 2 was dominated by control samples (healthy hosts). It was associated with families Bifidobac-
teriaceae and Ruminococcaceae. Their members, genera Bifidobacterium and Faecalibacterium, have
been shown to be protective of the host from inflammation via several mechanisms (Sokol and others,
2008), including the stimulation of the anti-inflammatory cytokine and down-regulation of inflammatory
cytokines. A reduced abundance of genus Odoribacter, which belongs to family Porphyromonadaceae,
has been discovered in the most severe form of UC called pancolitis (Morgan and others, 2012). It also
contained families in class Betaproteobacteria, whose relationship with IBD is yet to be established.

Clusters 3, 4, and 5 had a mix of patients and controls. They contained families Bacteroidaceae and
Lachnospiraceae. Their members, genera Bacteroides and Roseburia, have been shown to decrease in
IBD patients (Machiels and others, 2014; Zhou and Zhi, 2016).

We have reported results that were confirmed by the biological literature. Our biclustering results also
provided novel insights into the relationships between microbial abundances and IBD, which need to be
further verified by biological experiments. Our discoveries were potentially useful as a guidance to design
and conduct more targeted and focused experiments.

For comparison, we applied MMF without the tree information (i.e., using the ordinary IBP prior) to this
dataset. The result is shown in Figure S.3 of the Supplementary material available at Biostatistics online.
It identified four clusters, and most clusters were dominated by control samples. Without tree information,
we failed to identify the cluster associated with IBD patients and two IBD-related bacteria families
Enterobacteriaceae and Fusobacteriaceae, which were successfully discovered when prior knowledge
regarding the taxonomic ranks were incorporated in the analysis. Additionally, taxa from the same cluster
were much less similar taxonomically: the log probability of generating this matrix from the taxonomic tree
was −119.95, whereas the log probability of generating the matrix inferred from the pIBP was −91.48,
which indicated that the results from the pIBP prior were substantially more consistent with the taxo-
nomic rank tree. Without using the tree information, the lack of taxonomic similarity within the identified

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab002#supplementary-data
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clusters made it hard to interpret the results biologically. Although pIBP imposed structures on taxa only,
the interpretation of the clusters of hosts was significantly enhanced as we have demonstrated earlier.

As suggested by an anonymous referee, in Figure 3, we report the posterior mean of Z from (a)
the proposed MMF, (b) modified MMF with host-specific sij and tij rather than sj and tj, and (c) modi-
fied MMF with independent Bernoulli prior on Z instead of pIBP. Additionally, as a reference, we also
plot the thresholded data in Figure 3(d) by following the rule in Cai and others (2019). While there is
no gold standard in unsupervised learning, we found that the posterior mean of Z from the proposed
MMF captures the latent abundance pattern better than (b) and (c) by comparing with the deterministic
reference (d).

6. DISCUSSION

In this article, we have developed a novel identifiable sparse MMF method to simultaneously cluster
microbes and hosts. The proposed approach accounts for the compositional, sparse, heterogeneous, and
noisy nature of microbiome data, and describes the data generating process by a hierarchical Bayesian
model, which allows for probabilistic characterization of latent structures (i.e., overlapping clusters)
through full posterior inference. The incorporation of taxonomic knowledge can facilitate the inter-
pretability and reproducibility of the inferred clusters when the prior information resembles the truth.
Our simulation results demonstrate the advantage of utilizing prior information to assist inference on
latent clusters. In analyzing a human gut microbiome dataset, we find latent microbial communities that
are closely related to IBD and its subtypes.

There are four directions that can be taken to extend this work. First, zero-inflation exists in other data
types such as single-cell RNA-seq data. It is far less common to treat single-cell data as multinomial
counts and therefore the proposed MMF cannot be directly applied. However, with a minor modification
of the sampling distribution (e.g., zero-inflated Poisson distribution), the method can be generalized for
biclustering single-cell data. Second, the joint modeling approach can be used for many other tasks
beyond matrix factorization. For example, microbial networks can be inferred by replacing the matrix
factorization model with a graphical model such as Markov random fields and Bayesian networks on
the latent binary indicators Z . Third, MCMC allows for full posterior inference but is not scalable to
large and high-dimensional data. The current inference algorithm can be substantially accelerated by
using consensus Monte Carlo algorithms for big-data clustering (Ni and others, 2019a, 2020) without
sacrificing much accuracy. Fourth, the overlapping clusters can be restricted to non-overlapping clusters
if desired by considering random partition models including various extensions of the Dirichlet process
(Lijoi and others, 2007; Favaro and Teh, 2013; De Blasi and others, 2015).

7. SOFTWARE

R code, together with a complete documentation, is available on request from the first author
(fangtingzhou@tamu.edu). The data that support the findings of this study are openly available
in the R package curatedMetagenomicData which can be downloaded at https://github.com/
waldronlab/curatedMetagenomicData/.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Fig. 3. The posterior mean of the latent binary matrix Z obtained from (a) MMF, (b) modified MMF with host-specific
sij and tij , and (c) modified MMF with independent Bernoulli prior on Z . The hard thresholded data are given in (d).
Colors change from black to green indicating 0 to 1.
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