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Abstract

Machine Learning (ML) approaches are increasingly being used in biomedical applications. 

Important challenges of ML include choosing the right algorithm and tuning the parameters 

for optimal performance. Automated ML (AutoML) methods, such as Tree-based Pipeline 

Optimization Tool (TPOT), have been developed to take some of the guesswork out of ML 

thus making this technology available to users from more diverse backgrounds. The goals of this 

study were to assess applicability of TPOT to genomics and to identify combinations of single 

nucleotide polymorphisms (SNPs) associated with coronary artery disease (CAD), with a focus 

on genes with high likelihood of being good CAD drug targets. We leveraged public functional 

genomic resources to group SNPs into biologically meaningful sets to be selected by TPOT. 

We applied this strategy to data from the UK Biobank, detecting a strikingly recurrent signal 

stemming from a group of 28 SNPs. Importance analysis of these SNPs uncovered functional 

relevance of the top SNPs to genes whose association with CAD is supported in the literature and 

other resources. Furthermore, we employed game-theory based metrics to study SNP contributions 

to individual-level TPOT predictions and discover distinct clusters of well-predicted CAD cases. 

The latter indicates a promising approach towards precision medicine.
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1 INTRODUCTION

In recent years, Machine Learning (ML) has gained increased appreciation as an alternative 

or complementary methodology to statistical approaches in ‘omics’ data analyses [1], [2], 

[3]. Setting up an appropriate ML pipeline for a given analysis task involves many decisions 

including data pre-processing algorithm selection, feature selection, feature engineering, 

estimator algorithm selection, and decisions about the many hyperparameter settings. Thus, 

of particular appeal are Automated ML (AutoML) methods, which assist (potentially non-

expert) users in the design and optimization of ML pipelines [4]. Our group has developed 

a genetic programming-(GP-)based AutoML named Tree-based Pipeline Optimization Tool 

(TPOT) [5], [6], which has been successfully used to analyze data from metabolomics [7], 

[8], transcriptomics [9], [10], and toxicogenomics [10].

In addition to these ‘omics’ applications, an initial application of TPOT to a real-world 

genetic data set with prostate cancer aggressiveness as the endpoint discovered several 

feature combinations that significantly contributed to the classification accuracy [5]. The 

data set used in the latter was 1–2 orders of magnitude smaller, in terms of number of 

observations (~2300 subjects), than the typical size of current Genome-Wide Association 

Studies (GWAS). Moreover, biological filters suggested by the endpoint of interest were 

used to reduce the number of features to the manageable size of ~200 Single Nucleotide 

Polymorphisms (SNPs). Even with this biological guidance, the predictive performance was 

much lower than that achieved in the other TPOT ‘omics’ applications cited above. This 

is, however, not surprising considering the challenges associated with complex trait GWAS 

data, such as missing heritability, typically small effect sizes of common variants, and 

genetic heterogeneity (i.e. different SNPs being responsible for the trait in different subjects) 

[11], [12].

In this work, we set to further explore both the challenges and potential insights of 

TPOT analyses on a large-scale genotype data set via a case study in Coronary Artery 

Disease (CAD) leveraging the UK Biobank resource [13]. We note that, despite numerous 

large-scale GWAS, less than half of the of CAD heritability has been accounted for 

[14]. After identifying cases and controls, to establish a baseline, we first assessed the 

predictive performance of models using GWAS main effect CAD SNPs as features, i.e. 

SNPs previously identified from traditional univariate GWAS analyses. Then, in order 

to reduce the number of features to a feasible size for TPOT in a biologically guided 

fashion, while also exploring potentially interesting SNPs outside the known GWAS hits, 

we proceeded as follows. We used as seeds six genes suggested for CAD drug repurposing 

and drug development [15]. We then added all genes connected to one of these ‘druggable’ 

genes from Hetionet (https://het.io/), an integrative network of biomedical knowledge. For 

each gene in this extended network, we considered not only the SNPs in the gene body 
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and proximal promoter region but also those residing in its potential enhancers based on 

publicly available epigenomic data from CAD relevant tissues (Fig. 1A). We note that 

TPOT inherently analyzes features (i.e. SNPs) as a group and makes no assumptions 

about the additivity of their effects. We grouped SNPs so that each group consisted 

of all SNPs mapping to a druggable gene or one of its connected genes. In this way, 

potentially interacting SNPs from enhancer-promoter interactions or druggable-connected 

gene interactions would be examined together. By utilizing a 2-stage TPOT approach and 

leveraging these biologically meaningful SNP groupings, we identified a strikingly recurrent 

signal stemming from models built on an input subset of 28 SNPs. After ranking these 

SNPs according to permutation feature importance, we uncovered links between the top 

SNPs and other genes related to atherosclerotic plaques and myocardial infarction. We 

also analyzed contributions to the individual predictions for the 28 SNPs using Shapley 

Additive exPlanations (SHAP) [16]. We clustered cases that were well predicted by the 

optimal model based on SHAP values, aiming at dissecting their heterogeneity in terms of 

driver SNPs. This also highlighted specific groups of cases for whom the predictions were 

driven by SNPs mapping to genes whose CAD relevance is supported by the literature and 

other functional genomic resources. These results provide new hypotheses about the genetic 

basis of CAD and demonstrate the utility of AutoML for genetic association analysis. More 

precisely, whereas it can be difficult to build a strong trait predictor based on genetic features 

alone, methods like TPOT can be employed for biomarker analyses beyond the standard 

main effect analyses, to examine functionally derived groups of SNPs for additional trait 

associations. Moreover, ML models obtained with these methods can be explored with 

metrics such as SHAP, which can help identify which markers are relevant for which 

individual predictions. This is particularly useful for precision medicine studies.

2 METHODS

2.1 GWAS Data Preparation

From the UK Biobank (UKB) data, we extracted all subjects of white British ancestry 

(i.e. with a value of 1 for UKB field #22006) and retained a maximal subset of unrelated 

individuals (exploiting the related pairs file provided by UKB) whose genetically inferred 

sex matched the sex information collected at recruitment. We applied several filters based 

on flags in the following UKB fields: 22010 (recommended genomics exclusions), 22051 

(UKBiLEVE quality control failure), 22019 (sex chromosome aneuploidy), 22021 (kinship 

inferences), 22027 (outliers for heterozygosity or missing rate). We defined CAD cases 

based on the criteria from Supplemental Table 1 of [17], arriving at a collection of 19,134 

cases and 321,881 controls. For each such subject, we obtained the first 10 genetic Principal 

Components (PCs) from UKB as well as the genotyping array and age. We defined age 

as the value at the last assessment center visit for individuals in the control group and 

at diagnosis/operation/death for individuals in the case group, depending on the field 

contributing to their case classification.

2.2 SNP Selection and Groupings

Our starting point was the six CAD ‘druggable’ genes suggested by [15] for drug 

repurposing (CHRNB4, ACSS2, and GUCY1A3) and drug development (LMOD1, HIP1, 
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and PPP2R3A). We then obtained all autosomal genes connected with each druggable 

gene from Hetionet (https://het.io/), an integrative network assembling the knowledge from 

29 different databases of genes, compounds, diseases, and more. For each gene (whether 

druggable or connected to a druggable gene), we obtained its GRCh37 coordinates from 

Ensembl genes 101 [18], extending them to include 5kb upstream and 1kb downstream of 

the Transcription Start Site. In addition, for each gene, we obtained its putative enhancers 

in CAD relevant tissues (fat, heart, and vascular) from the Roadmap Epigenomics Enhancer-

Gene Links (https://ernstlab.biolchem.ucla.edu/roadmaplinking/). We then used BEDTools 

v2.25.0 [19] to extract, for each gene, SNPs residing in its body, promoter, or any of its 

enhancers (we only considered SNPs with a Minor Allele Frequency (MAF) > 0.01 and 

an imputation info score > 0.9). We further filtered the resulting collection of SNPs using 

software aimed at scoring their potential functionality (whether coding or non-coding). 

Namely, we used CADD [20] v1.6, GWAVA [21] v1.0, and TraP [22] v3.0, and we only 

retained SNPs satisfying at least one of these conditions: (1) CADD scaled score ≥ 10, or 

(2) GWAVA score ≥ 0.5, or (3) TraP score ≥ 0.459. Finally, for each druggable gene, we 

took the filtered SNPs mapping to the gene or any connected gene and pruned them for 

Linkage Disequilibrium (LD) using qctool v2 (https://www.well.ox.ac.uk/~gav/qctool_v2/) 

with a threshold of 0.8 for r2. For each druggable gene, we defined one Feature Set (FS) per 

connected gene, consisting of all SNPs resulting from the above filters and mapping either to 

the druggable or the connected gene (body, promoter, or any enhancer), as illustrated in Fig 

1. Note that any two FSs of a druggable gene share all the SNPs of that gene.

2.3 TPOT Runs

In our first set of analyses, we used classic TPOT, whose source code is freely available at 

https://github.com/EpistasisLab/tpot. We then assessed the results derived by incorporating 

covariate adjustments as described in [10] using resAdj TPOT, whose code is also freely 

available at https://github.com/EpistasisLab/tpot/tree/v0.11.1-resAdj. In the latter analysis, 

we adjusted the outcome for age, sex and the first 10 PCs and we adjusted all features for 

genotyping array and the first 10 PCs. In all TPOT runs, we applied 5-fold cross validation. 

For each TPOT run, to match 19,134 cases, we randomly selected 19,134 samples from 

321,881 individuals in the control group to obtain a balanced and reasonably sized input 

dataset. Where specified (see Results section), we used the Template and Feature Set 

Selector (FSS) described in [9]. The Template constrains the GP to only examine pipelines 

with a given architecture. The FSS slices the input data set into smaller sets of features, 

allowing the GP to select the best subset in the final pipeline.

We note that resAdj TPOT is specifically designed to adjust for covariates in a leakage-free 

manner, i.e. ensuring that, during the internal cross-validation (CV) procedure, models built 

on the training split have no access to information from the testing split. When covariate 

adjustments are applied to the outcome, resAdj TPOT transforms classification problems 

into regression problems. We have considered an alternative strategy to keep the problem 

as a classification problem. Namely, we have used the Python pymatch library (https://

github.com/benmiroglio/pymatch) to select controls matched to the cases based on age, 

sex and the first 10 PCs and then ran resAdj TPOT without adjusting the outcome but 

still adjusting the features for genotyping array and the first 10 PCs (this required using 
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a template, we used resAdjTransformer-Transformer-Classifier). However, this procedure is 

not completely leakage-free, as the matching step utilizes all the data before it enters the 

internal TPOT CV. Thus, while we parenthetically report in the Results some of the values 

obtained with this alternative ‘match & resAdj TPOT’ procedure, we recommend using the 

original resAdj TPOT approach for covariate adjustments.

2.4 Feature Assessments

We employed ELI5 v0.10.1 (https://github.com/TeamHG-Memex/eli5) to calculate 

permutation feature importance and the python SHAP library (https://github.com/slundberg/

shap) to compute SHAP values with kernel explainer, an agnostic method that makes no 

assumption on the model type. Moreover, we used shap.kmeans to generate the explainer 

background from the training set, with 46 clusters for classic TPOT and 73 for resAdj TPOT. 

We arrived at these numbers by examining the Dunn indices for k-means clusterings for 

k varying between 30 and 100 and selecting the k yielding the highest value, using the R 

package NBClust [23]. The Dunn index is a measure of cluster quality defined in [24]. We 

also employed NbClust to inspect Dunn indices and generate k-means clustering of subjects 

based on SHAP values.

For visualization, we used the python SHAP library to compute a matrix of SHAP values 

for each individual and SNP and produce the initial summary plots. From the SHAP value 

matrix, we generated the final force plots using the R programming language (v 4.0.3) with 

the dplyr (v1.0.2), ggplot2 (v3.3.2), tidyr (v1.1.2), readr (v1.4.0), and seriation (v1.2–9) 

libraries. A GitHub repository with reproducible R visualization code is available at https://

github.com/trang1618/cad-shap.

3 RESULTS

Our aim was to explore with TPOT potentially interesting CAD associations in functionally 

derived groups of SNPs, beyond those within the known strongest main effect loci. However, 

to obtain a baseline, we first assessed the predictive performance of TPOT when using as 

features the SNPs in the CAD loci identified in [25] and reported in Supplemental Table 2 

of that paper. After LD pruning (with a threshold of 0.6 for r2) we obtained 92 SNPs. We 

ran classic TPOT 50 times (without a Template), each with a random down-sampling of the 

controls (hence with a balanced input of 19,134 cases and 19,134 controls). In each run, 

the input was split into training (75%) and holdout validation testing (25%) parts. We set a 

population of 100 in the GP and the stopping criterion was the earliest of 100 generations 

or 2 days. Over the 50 runs, the range for the accuracy of the TPOT optimized pipeline 

on the holdout testing set was 0.561–0.582, which is reasonable given the typically small 

effect sizes of common variants and genetic heterogeneity. (The ‘match & resAdj TPOT’ 

runs yielded a very similar range of 0.563–0.588.) We note that these values are in the same 

range as those obtained by using polygenic risk scores (PRS) from these loci. We verified 

this by using the effect sizes from Supplemental Table 2 of [25] for the 92 SNPs considered 

and computing PRS as the weighted (by such effect sizes) sum of the dosages for these 

SNPs in our data (after matching reference alleles), then feeding these PRS in a logistic 

regression model for CAD status. The range for the testing accuracy of the latter models 
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across the same 50 training/testing sets used for TPOT was 0.563–0.590. These results 

served to establish a reference based on the strongest known main effect signals, suggesting 

that runs that explore other sets of variants may not yield accuracy values much higher 

than 0.50. Therefore, particularly useful for this type of application, is TPOT’s feature set 

selector (FSS), which slices the input data set into smaller sets of features and reports the 

best feature subset in the final pipeline. Indeed, due to the GP stochasticity, we carried out 

multiple runs of TPOT. We could therefore examine the consistency with which the same FS 

was selected across multiple runs, hypothesizing that an FS repeatedly selected in different 

pipelines contains potentially interesting signals.

To look for variants other than the known GWAS hits, we focused on SNPs mapped to 

the body, promoter, or putative enhancers (in CAD relevant tissues) of the six ‘druggable’ 

genes from [15] and their connected genes from Hetionet, as described in Methods. Since 

runs of TPOT on such large data sets are computationally expensive, we first carried 

out pilot analyses consisting of 10 TPOT runs per druggable gene, using the Template 

FSS-Transformer-Classifier, where each FS comprised the SNPs mapped to a druggable 

gene and one of its connected genes (see Methods and Fig. 1). In these pilot analyses we 

had the same settings as the above baseline analyses in terms of down-sampling of controls, 

train/test split, and GP population, but the GP stopping criterion was shortened to the earliest 

of 100 generations or 1 day. The best out of 10 testing accuracies for the six druggable gene 

varied from 0.5062 (for the runs using FSs derived from LMOD1) to 0.5229 (for the runs 

using FSs derived from PPP2R3A). Moreover, out of 197 FSs considered for PPP2R3A, the 

same FS (corresponding to its connected gene PRC1) was selected in 4 of the 10 runs. This 

indication of possible interesting signals among these SNPs led us to pursue the 197 FSs 

determined by PPP2R3A and its connected genes for more extensive TPOT runs.

In the more extensive runs, we adopted a 2-stage pro cedure, illustrated in Fig. 2. In both 

stages we increased the number of runs from 10 to 50. Moreover, we made sure to use 

different holdout testing sets in the two stages. More precisely, we generated 50 random 

down-samplings of the controls and, for each of these, we randomly split the resulting 

38,264 cases and controls into a training (75%) part, a holdout validation testing (13%) 

part for stage 1 and a holdout validation testing part (12%) for stage 2. In the first stage, 

we carried out 50 TPOT runs (one for each of the down-sampling and train/test splits), 

using the Template FSS-Transformer-Classifier, focusing only on the FSs corresponding to 

PPP2R3A. We used a population of 100 in the GP and a stopping criterion of the earliest of 

100 generations or 1 day. We noted that in 21 of the 50 runs the TPOT optimized pipeline 

selected the same FS, corresponding to PRC1, re-enforcing the results from the pilot runs. 

Moreover, out of the 50 runs, the accuracy of the best pipeline on the holdout testing set was 

0.5245 and this pipeline selected the PRC1 feature set (consisting of 28 SNPs mapped to 

either this gene or PPP2R3A).

To assess the significance of these results, we performed permutation tests. Ideally, we 

would generate 1000 permutations and, for each permutation, repeat the entire stage 1 

procedure of 50 runs set up as above. However, because of the computationally expensive 

nature of GP, we only generated 20 permutations of the target column in our full data set and 

repeated the stage 1 analysis in each permutation (for a total of 20×50=1000 TPOT runs). 
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For each of the 20 permutations, we investigated the highest occurrence frequency of the 

same FS out of 50 runs and all of these 20 values were ≤ 4, much smaller than the observed 

value of 21 on the unpermuted data. We also assessed the highest testing accuracy out of 50 

runs for each of these permutations, and all of these 20 values were less than the observed 

value (0.5245) on the unpermuted data. Even though we cannot infer that the results from 

stage 1 have permutation p-values < 0.05 due to the limited number of permutations, it is 

nevertheless noteworthy to see that the same FS was selected in such a large proportion of 

the 50 original TPOT runs compared to the best proportions achieved in the runs on the 20 

permuted data sets.

In stage 2, we focused on the SNPs from the significant FS from stage 1, i.e. the 28 SNPs 

mapped to either PPP2R3A or PRC1 (see Supplemental Table 1) and ran TPOT without 

Template and extending the stopping criterion to the earliest of 100 generations or 2 days, to 

see if we could improve accuracy. Again, we ran TPOT 50 times using the down-sampling 

and train/test splits illustrated above, but this time, the accuracies were computed using the 

holdout testing sets 2. These unconstrained runs slightly improved the testing accuracy, with 

the best of 50 accuracies equal to 0.5274. For each of the 20 permutations, we ran 50 TPOT 

runs with the stage 2 settings (again, for a total of 1000 runs) and again the highest testing 

accuracy out of 50 runs was less than the observed value across all permutations.

The classic TPOT results indicate that there is signal within the combination of SNPs 

mapped to the body/promoter/enhancers of PPP2R3A and PRC1. In order to verify that 

this signal persisted even when factoring out potential covariate effects, we repeated 

a 2-stage procedure similar to classic TPOT, using resAdj TPOT with the adjustments 

described in Methods. Since resAdj TPOT transforms the problem from classification to 

regression, performance was measured by the coefficient of determination, as opposed to 

accuracy. Because of how resAdj TPOT operates, in stage 1 the Template used was Feature-
SetSelector-resAdjTransformer-Transformer-Regressor; as the resAdjTranformer is required 

in order to make the adjustments. For the same reason, in stage 2, we had less flexibility 

and could not dispense of a Template (we used resAdjTransformer-Transformer-Regressor). 
In the first stage runs, out of the 197 FSs again the FS corresponding to PRC1 was the 

one most frequently selected, in 7 out of 43 successful runs. Albeit the best coefficient of 

determination over the holdout testing sets in stage 2 was low (0.0023), the frequency with 

which the FS for PRC1 occurred in stage 1 indicates presence of signal in this FS. We note 

that a permutation approach in the spirit of what we did for classic TPOT could not be 

applied here, because the PC covariates are confounders which need to be adjusted for in 

both the target and the features and permutations would disrupt either the target/covariates 

or features/covariates relationship. We report that the best stage 2 testing accuracy with the 

‘match and resAdj TPOT’ was 0.543. However, as indicated in Methods, we recommend the 

original leakage-free resAdj TPOT to adjust both target and features.

In order to better understand the drivers of the model in the best pipeline from stage 

2, based on the FS consisting of the 28 SNPs mapping to the body, promoter, or 

enhancers of PPP2R3A and PRC1, we looked at permutation feature importance, both 

for classic and resAdj TPOT. The drivers for the best stage 2 pipeline from classic TPOT 

(illustrated in Fig. 3) were the SNPs rs4932178 and rs113028686. These two SNPs were 
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also among the top 7 SNPs in the best stage2 pipeline from resAdj TPOT, together 

with rs116415933, rs139138366, rs8031684, rs11073964, rs35773450. The SNP rs4932178 

resides in a putative enhancer for PRC1 (in heart and fat), but is also within the promoter 

of FURIN, a gene expressed in vascular Endothelial Cells (ECs) and whose levels in 

ECs affect monocyte‐endothelial adhesion and migration [26]. It has also been shown that 

FURIN inhibition reduces vascular remodeling and atherosclerotic lesion progression in 

mice [27]. Furthermore, this gene is among the prioritized causal CAD genes from [28] 

based on cumulative evidence from experimental and in silico studies. rs4932178 was 

also identified in GTEx (https://gtexportal.org/, v8) as an eQTL for FES in various tissues 

including coronary artery. Colocalization between CAD and expression association signals 

was observed for FES by [29]. rs113028686 is in the 5’-UTR of PRC1 and is an eQTL 

of FES in various tissues including adipose, whole blood, and tibial artery (from GTEx). 

rs8031684, residing within an intron of PRC1, is an eQTL of RCCD1 in adipose, aortic 

and tibial artery, as indicated in HaploReg v4.1 [30]. RCCD1 is in the same subnetwork 

as FURIN for the CAD key driver NGRN identified in [31]. rs11073964, just upstream of 

PRC1, is also a missense mutation for VPS33B which is among 13 novel susceptibility 

loci for early-onset myocardial infarction identified in [32]. Among the remaining 3 SNPs 

(rs116415933, rs139138366, rs35773450), all intronic within the CAD druggable gene 

PPP2R3A, rs116415933 is reported in GTEx as eQTL for IL20RB in various tissues, 

including adipose and aortic and tibial artery. GeneCards [33] reports an association with the 

CAD phenotype for IL20RB (www.genecards.org).

Permutation importance measures the overall relevance of a feature to a model, i.e. how 

much the model relies on that feature, by examining how much shuffling the feature values 

increases the model error. However, especially when a model has limited predictive ability 

and heterogeneity exists among subjects, as it is typically the case with GWAS data, it is of 

interest to examine how each feature contributes to the individual predictions. With this in 

mind, we set to examine which features were driving the good predictions among the CAD 

cases using SHAP values, a game-theory based metric for explaining individual predictions 

[16]. We first examined the best pipeline from stage 2 of classic TPOT and computed the 

feature SHAP values for the 1489 testing CAD cases that were correctly classified. Fig. 

4 shows the force plot for these subjects (force plots were introduced in [34]). Based on 

inspection of the force plot and Dunn indices for various k values, we used SHAP values to 

cluster these samples into four groups (sizes: 76, 156, 252, and 1005). We then ranked the 

features within each group by their average impact on model output across that group.

We observed that the same three features are driving the model output in all four clusters 

but with differing relevance (Fig. 5). These are two SNPs discussed above (rs4932178 

and rs113028686) plus the rs17636091 SNP. The latter resides within an intron of PRC1 
and is reported by GTEx as eQTL, in various tissues, including adipose and artery (aorta 

and tibial), for both RCCD1 and VPS33B, genes whose relevance to CAD has been 

discussed above. Clusters 1 and 3 are very similar with rs4932178 having a markedly higher 

average contribution to the model output, and rs17636091 contributing slightly more than 

rs113028686 on average in cluster 1 than in 3. For subjects in cluster 2, predictions are 

mostly driven by rs113028686, whereas for those in cluster 3, rs17636091 is the driver with 

rs113028686 not too distant of a second.
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We then proceeded with a similar approach for the best stage 2 pipeline from resAdj TPOT. 

We focused on the 250 CAD testing cases in the bottom quartile of the absolute difference 

between the covariate-adjusted observed and predicted outcomes. We note that these 

individuals are distinct from the 1489 correctly predicted using classic TPOT (overlap=19) 

and indeed that the best model obtained using classic TPOT (Fig. 3) is quite different from 

that obtained with resAdj TPOT (Supplemental Fig. 1). Based on inspection of the force plot 

(Fig. 6) and Dunn indices for various k values, we clustered these subjects into six SHAP 

value-based groups (sizes 26, 5, 27, 13, 43, and 136).

In this case (Fig. 7), rs4932178 returns as the main driver to the model predictions for 

subjects in cluster 3. Moreover, this SNP is a strong driver in cluster 4 together with the 

top driver of that cluster, which is rs116415933, discussed above. The latter SNP is also 

the main driver in cluster 5, whereas in cluster 1 it is the main driver closely followed by 

rs188650245, an intronic SNP in PPP2R3A, indicated in GTEx as eQTL in several tissues, 

including cultured fibroblasts, for IL20RB, a gene discussed above. The latter SNP is also 

a top driver for cluster 6, but here with similar impact to rs139138366. Finally, cluster 2 is 

dominated by rs17636091, discussed above.

4 CONCLUSION AND DISCUSSION

In this work we employed a large-scale genotype data set for the CAD phenotype, derived 

from UKB, to assess the applicability of AutoML, specifically TPOT. Traditional GWAS 

analyses are based on univariate statistical approaches aimed at detecting main effects. ML 

approaches like TPOT enable investigation of SNPs as groups, embracing the possibility 

of both additive and epistatic effects. However, GWAS data sets present some unique 

challenges to AutoML as compared to other data types. First, the search space is very 

large, both in terms of number of observations (subjects) and features (SNPs). Moreover, 

if one is interested in comparing different feature combinations, then the search space 

is indeed much larger than the search space for univariate analyses. All of this hinders 

computational feasibility. Second, the signal is weak and hard to detect, due to several 

inherent characteristics of this type of data, including small effect sizes of common variants 

and heterogeneity. Our baseline runs, focused on features previously identified as the 

strongest CAD main effects, confirm this, with accuracies just above 55%.

In order to overcome the large search space obstacle, on the one hand, we randomly 

down-sampled the controls to equal the number of cases (about 20,000 each). We applied 

this down-sampling multiple times with different seeds before performing multiple TPOT 

runs. This down-sampling still retained a considerably large number of observations and 

at the same time eliminated the issue of having a highly unbalanced data set (even though 

the balanced accuracy score can be used in TPOT to deal with unbalanced data set). We 

also reduced the feature search space by employing biological filters where we integrated 

three resources: (1) results from a previous druggability prioritization study for CAD, (2) 

Hetionet integrated network, (3) tissue specific enhancer-promoter predictions derived from 

Roadmap Epigenomics data [35]. In addition, we employed various scorers to filter out 

potentially non-functional SNPs. Reducing the SNPs to be analyzed is a necessary but very 

delicate step. The idea is to utilize multiple lines of evidence to narrow down the feature 
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space, whereby the goal is not to look for all possible signals of interest but to focus on a 

promising subset. There are many paths that can be taken to this end and in our case study 

we picked and followed one route, focusing on druggable genes as seeds, which can lead 

to more interpretable and actionable results. In general, for this type of filtering approaches, 

the risk is to discard too much and hence eliminate all potentially interesting features. The 

choice of suitable functional genomics data, public databases, and scoring algorithms bear a 

crucial weight into guiding the selection of SNPs and SNP groupings. As more functional 

genomics data become available as well as improved computational methods to extract from 

these more precise and relevant SNP-gene mappings, the application of TPOT and other 

AutoML to high-throughput genotype-phenotype data should become increasingly fruitful.

In spite of this reduction in search space size, the input data to our runs were still very 

large; thus, we had to set an upper bound of 100 for both the GP population and the GP 

number of generations. Moreover, for our permutation analyses, where the whole process 

had to be repeated for each permutation and we carried out 50 TPOT runs per permutation 

per stage, we had to limit the number of permutations to 20. Thus, improving TPOT runtime 

is an important area for further development so that runs on GWAS data can be on par with 

the typical settings used for other data types (e.g. 500–1000 generations and similarly sized 

populations in the GP). Improvements in run time would also enable increasing the number 

of permutations so to estimate p-values with small uncertainty.

A feature that turned out to be particularly useful for this scenario where accuracies were 

just above 50%, was the FSS which allowed us to specify that the pipelines being searched 

by TPOT in the first stage should all start with the selection of a feature set among a 

collection of sets of interest. With this, by examining the consistency with which a given FS 

was selected in multiple runs, we managed to identify a strikingly recurrent FS, comprising 

SNPs residing within the body, promoter, or enhancers of the ‘druggable’ PPP2R3A or its 

connected gene PRC1. To our knowledge, the latter gene has not previously been reported 

as being CAD relevant. Even though we cannot rule out the possibility that it represents 

a novel CAD gene, there are other possible explanations for the signal detected by TPOT. 

Indeed, when we examined permutation-based feature importance, we noted that several of 

the top SNPs relevant to models from the best stage 2 TPOT pipelines were not only in 

functional regions for PRC1, but also in functional regions for other genes (such as FES, 
FURIN, RCCD1, VPS33B, and IL20RB) with evidence for CAD relevance from previous 

studies. We note that permutation feature importance should not be over-interpreted in data 

sets like those derived from GWAS, where the predictive power is limited and heterogeneity 

is expected among the cases. In view of the latter, it is especially important to examine the 

feature contributions to model output on an individual basis. In this work, we computed 

SHAP values to cluster the testing cases with good predictions and examined the drivers 

of these predictions in different clusters. This approach underscores the case heterogeneity 

in our data set and provides an example of how to utilize metrics, such as SHAP values, 

which can help distinguish which features are relevant for which individuals. It should 

be emphasized that this type of approach is generally applicable and represents a step 

towards precision medicine. Our analysis of the SHAP value-based clusters also highlighted 

groups of subjects where the predictions were driven from SNPs associated to the genes 

with CAD relevance indicated above. Together, our findings corroborate that, despite the 
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specific challenges presented by GWAS to TPOT, insights can be gained from applications 

of AutoML to this type of data, especially in combination with consistency measures (as 

provided by the FS recurrence analysis) and metrics aimed at facilitating model explanations 

such as SHAP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Selection of SNPs and FSs. For each druggable gene DG, its connected genes (CGs) 

were obtained from Hetionet. For each CG, the SNPs mapping to its body, promoter, and 

putative enhancers were identified (CGS) and added to those mapping to DG (DGS). The 

corresponding FS was derived from these SNPs after filtering by functionality scorers and 

pruning. (B) FSs for the druggable genes. Each point corresponds to an FS for the DG 

indicated on the y-axis and its x-coordinate indicates the number of SNPs in that FS.
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Fig. 2. 
Workflow for the 2-stage procedure
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Fig. 3. 
Outline of the best pipeline from the classic TPOT stage 2 runs. Select Percentile, 

Variance Threshold, and Recursive Feature Elimination (RFE) are feature selectors. Extra 

Trees Classifier (ETC) and Stochastic Gradient Descent Classifier (SGDC) are classifier 

estimators. The Stacking Estimator adds to its input features the results of applying the 

indicated estimator to those features.
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Fig. 4. 
Multisample force plot for the 1489 correctly classified testing cases in the best stage 

2 pipeline for classic TPOT. Explanations for these subjects are stacked horizontally, so 

the x-axis indicates the individuals. For each individual, the feature contributions to its 

prediction (probability of CAD) are shown along the y-direction, with features pushing the 

prediction higher in red, and features pushing the prediction lower in blue.
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Fig. 5. 
Feature rankings within the four SHAP value-based clusters for the correctly classified CAD 

testing cases in the best stage 2 pipeline from classic TPOT. The x-axis indicates the mean 

absolute SHAP value for the subjects in that cluster. Only the top 3 (out of 28) features are 

indicated as all remaining ones have negligible contributions.
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Fig. 6. 
Multisample force plot for the 250 well classified testing cases in the best stage 2 pipeline 

for resAdj TPOT. Explanations for these subjects are stacked horizontally, so the x-axis 

indicates the individuals. For each individual, the feature contributions to its prediction are 

shown along the y-direction, with features pushing the prediction higher in red, and features 

pushing the prediction lower in blue.

Manduchi et al. Page 20

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Feature rankings within the six SHAP value-based clusters for the well predicted CAD 

testing cases in the best stage 2 pipeline from resAdj TPOT. The x-axis indicates the mean 

absolute SHAP value for the subjects in that cluster. The features displayed are those in the 

union of the top 5 from each of the 6 clusters.
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