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Objectives
To determine the predictive and prognostic value of a panel of systemic inflammatory response (SIR) biomarkers relative to
established clinicopathological variables in order to improve patient selection and facilitate more efficient delivery of peri-
operative systemic therapy.

Materials and Methods
The preoperative serum levels of a panel of SIR biomarkers, including albumin–globulin ratio, neutrophil–lymphocyte ratio,
De Ritis ratio, monocyte–lymphocyte ratio and modified Glasgow prognostic score were assessed in 4199 patients treated
with radical cystectomy for clinically non-metastatic urothelial carcinoma of the bladder. Patients were randomly divided
into a training and a testing cohort. A machine-learning-based variable selection approach (least absolute shrinkage and
selection operator regression) was used for the fitting of several multivariable predictive and prognostic models. The
outcomes of interest included prediction of upstaging to carcinoma invading bladder muscle (MIBC), lymph node
involvement, pT3/4 disease, cancer-specific survival (CSS) and recurrence-free survival (RFS). The discriminatory ability of
each model was either quantified by area under the receiver-operating curves or by the C-index. After validation and
calibration of each model, a nomogram was created and decision-curve analysis was used to evaluate the clinical net benefit.

Results
For all outcome variables, at least one SIR biomarker was selected by the machine-learning process to be of high
discriminative power during the fitting of the models. In the testing cohort, model performance evaluation for preoperative
prediction of lymph node metastasis, ≥pT3 disease and upstaging to MIBC showed a 200-fold bootstrap-corrected area
under the curve of 67.3%, 73% and 65.8%, respectively. For postoperative prognosis of CSS and RFS, a 200-fold bootstrap
corrected C-index of 73.3% and 72.2%, respectively, was found. However, even the most predictive combinations of SIR
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biomarkers only marginally increased the discriminative ability of the respective model in comparison to established
clinicopathological variables.

Conclusion
While our machine-learning approach for fitting of the models with the highest discriminative ability incorporated several
previously validated SIR biomarkers, these failed to improve the discriminative ability of the models to a clinically
meaningful degree. While the prognostic and predictive value of such cheap and readily available biomarkers warrants
further evaluation in the age of immunotherapy, additional novel biomarkers are still needed to improve risk stratification.

Keywords
muscle-invasive bladder cancer, non-muscle invasive bladder cancer, bladder cancer, biomarker, adjuvant chemotherapy,
systemic therapy, transitional cell carcinoma, #utuc, #uroonc

Introduction
Radical cystectomy (RC) and neoadjuvant cisplatin-based
combination chemotherapy (NAC), in eligible patients, is the
standard-of-care treatment for carcinoma invading bladder
muscle (MIBC) [1,2]. However, because of the heterogeneous
nature of urothelial carcinoma of the bladder (UCB), as well
as the high rate of occult micrometastases, approximately half
of all MIBC patients will ultimately succumb to their disease
despite apparently successful extirpative surgery [3–6].
Unfortunately, appropriate patient selection for delivery of
peri-operative systemic therapy remains difficult, as there is
discrepancy between clinical stage and final pathological stage
and only postoperative pathological features offer the highest
prognostic value [7–12]. Accurate preoperative identification
of patients who are most likely to experience occult
metastasis due to ≥pT3 disease or lymph node metastasis
(LNM) would be helpful in order to facilitate more efficient
delivery of neoadjuvant systemic therapy. This is of special
importance, as the current one one-size-fits-all approach
seems suboptimal for most healthcare providers worldwide,
and its absolute net benefit in overall survival (OS) of only
5%, together with its non-negligible adverse events, contribute
to the underutilization of NAC [12,13]. Similarly, a more
accurate postoperative prognosis of survival outcomes could
allow improved patient selection with respect to adjuvant
systemic therapies in patients who did not receive NAC
[14,15]. Because the biological behaviour of tumours varies
among individuals, there is an unmet need to provide reliable
risk stratification tools as there is still a lack of clinically
useful biomarkers that add sufficient value to outcome
prediction methods [7,9,16–22].

We and others have previously reported that systemic
inflammatory response (SIR) biomarkers, such as albumin–
globulin ratio (AGR), NLR, modified Glasgow prognostic
score (mGPS), MLR and De Ritis ratio, are associated with
adverse pathological features and eventual disease recurrence

and progression in UCB [23–26]. Despite promising results
on conventional uni- and multivariable analyses, none of
these biomarkers demonstrated the ability to increase the
discriminative power of predictive and prognostic models
fitted with well-established clinicopathological variables. For
biomarkers to be of clinical significance, they must offer
unique additional predictive and prognostic information,
demonstrated by meaningfully improving the performance of
reference models constructed without the novel biomarker
[17]. Although the value of singular biomarkers so far
remains limited in UCB, it has previously been suggested that
a panel of biomarkers can significantly improve outcome
prognosis [7,27–29].

We, therefore, hypothesized that a panel of readily available
blood-based SIR biomarkers could improve outcome
prediction in patients treated with RC for UCB. Using a
machine-learning-based variable selection approach, we
analysed a large, well-established, international multicentre
database to determine the most effective predictors and create
the most informative, yet parsimonious model with respect to
several clinically important outcome variables. To fully
determine the discriminative ability of the finally included
SIR biomarkers, their additional predictive and prognostic
value was separately assessed in a comprehensive model
performance evaluation.

Methods
Subjects/Patients

This retrospective study included patients who underwent RC
for treatment of clinically non-metastatic UCB from 12
participating international medical institutions between 1979
and 2012. All cases were histologically confirmed UCB with
only a minor secondary variant component, if any. The
preoperative serum levels of AGR, neutrophil–lymphocyte
ratio (NLR), mGPS, MLR and the De Ritis ratio were
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measured in 4199 patients within 4 weeks of RC. The
biomarkers and the respective thresholds have previously
been described in detail [23–26]. The study was approved by
the local ethics committee. No patient received NAC or
radiotherapy. The extent of lymph node dissection and the
choice of urinary diversion were at the surgeon’s discretion.
Patients with known autoimmune, chronic inflammatory or
haematological disorders, as well as patients with any
concomitant second malignancy other than UCB,
concomitant upper urinary tract carcinoma, or missing data
were excluded.

All surgical specimens were processed according to standard
pathological procedures as previously described [8]. All cases
were histologically confirmed UCB with only a minor variant
component, if any. All tumours were staged according to the
American Joint Committee on Cancer Staging Manual (8th
edition) TNM classification and graded according to the 1973
WHO grading system. The presence of concomitant
carcinoma in situ (CIS) was defined as the presence of CIS in
conjunction with a tumour other than CIS [29]. Pelvic lymph
nodes were examined grossly, and all lymphoid tissue was
submitted for histological examination. Positive soft tissue
surgical margins were defined as the presence of tumour at
inked areas of soft tissue on the RC specimen [30]. Urethral
or ureteric margins were not considered as soft tissue surgical
margins. Lymphovascular invasion was defined as the
unequivocal presence of tumour cells within an endothelium-
lined space without underlying muscular walls [31].

Adjuvant chemotherapy was typically administered within 3
months of RC at the discretion of the treating physician and
according to international guideline recommendations at the
time. Clinical and radiological follow-up was performed in
accordance with institutional protocols. For most patients,
physical examination, radiological imaging and urine cytology
were obtained every 3 months for 2 years, then semiannually
between the second and the fifth year. After 5 years, annual
follow-up was performed. Tumour recurrence was defined as
locoregional recurrence or distant metastasis on radiological
imaging. Cause of death was abstracted from medical charts
end/or from death certificates [32]. Patient data were
collected and stored in a common anonymized dataset.

Statistical Analyses

In order to simulate external validation and to perform a true
performance assessment, we randomly divided patients into a
training cohort (n = 2100) and a testing cohort (n = 2099).
Patients’ characteristics in the training set and testing set, as
well as the distribution of SIR biomarkers, were compared
using Wilcoxon’s rank-sum test, the chi-squared test of
independence, the Kruskal–Wallis test or Fisher’s exact test,
as appropriate. Three separate logistic regression models were
fitted that focused on preoperative prediction of upstaging to

pT2 disease in patients that were staged cTis/cTa or cT1,
LNM and ≥pT3 disease at the time of RC, respectively.
Furthermore, two separate Cox models were fitted for
postoperative prognosis of recurrence-free survival (RFS) and
cancer-specific survival (CSS).

For fitting of these models, the least absolute shrinkage and
selection operator (LASSO) approach and 10-fold cross-
validation were used to determine the most significant
predictors from all available variables. During the LASSO
procedure, the absolute value of the regression coefficients of
the assessed variables is continuously reduced through the use
of a penalty. Using this penalty, which is the sum of the
absolute size of the regression coefficients multiplied by a
tuning parameter (k), some coefficients are shrunk to zero.
The corresponding variables hold little predictive value and
can be neglected during the fitting of the model. The optimal
weight of k was determined by a 10-fold cross-validation in
the training set. For this purpose, the C-index or area under
the curve (AUC) across the cross-validation folds was
calculated for increments of k. The weight of k that
minimizes deviation in the cross-validation is given by kmin;
however, the weight of k that empirically has been shown to
create the most parsimonious yet informative model is k1.se,
defined as the value of k within one standard deviation of the
minimum mean cross-validated error [33]. Variables whose
LASSO coefficient were not equal to zero at k1.se were
extracted and used during fitting of the prognostic models.
This cross-validation process minimizes risk of overfitting and
is a way of assessing how a model will perform in an
independent dataset. In summary, the LASSO procedure
allows a machine-learning-based variable selection for the
fitting of prognostic and predictive models. It has been
suggested to be particularly well suited for variables that show
high levels of multicollinearity, as would be expected for SIR
biomarkers [34,35].

The selected variables were then used to fit separate
multivariable logistic regression and Cox models.
Discriminative ability of these models was assessed by
calculating the AUC of receiver-operating characteristic
curves or C-index (Harrell’s concordance index, an
approximation of the AUC in censored data) for both the
training and the testing cohort. To assess the additional
discriminative power of the biomarkers, reference models
were fitted that did not include the previously selected SIR
biomarkers. AUCs were statistically compared using DeLong’s
test. Calibration plots graphically explored the association
between predicted probabilities and the observed proportions.
Goodness-of-fit of logistic regression models was tested using
the Hosmer–Lemeshow test, while goodness-of-fit of Cox
regression models was tested using the Grønnesby-and-
Borgan test. Validation was performed using 200 bootstrap
re-samples as a means of calculating the most unbiased
predictive accuracy. Based on the prognostic and predictive
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models, separate nomograms were created to guide clinical
decision-making. Finally, decision-curve analysis was used to
evaluate the clinical net benefit of the models for both the
training and testing cohort. All reported P values were two-
sided, and statistical significance was set at 0.05. All statistical
analyses were performed using R (Version 4.0.3, Vienna,
Austria, 2020).

Results
Overall, 4199 patients were included in the analysis. With the
exception of a higher rate of administration of adjuvant
chemotherapy in the testing cohort (23% vs 19%; P < 0.001),
patient characteristics as well as the distribution of SIR
biomarkers were similar in both cohorts (Table S1). There
was no statistically significant correlation between the
assessed SIR biomarkers (P > 0.05 for all). The median
(interquartile range) follow-up of all surviving patients was
41.9 (18.1–84.3) months. The 5-year RFS, CSS and OS were
61.2% (95% CI 59.5–62.9), 67.3% (95% CI 65.6–69) and
56.3% (95% CI 54.6–58), respectively.

Overall, our database included 1527 patients (36.3%) who
were staged to have non-muscle-invasive disease before RC;
upstaging to MIBC occurred in 43.7% of these cases.

Model Performance Evaluation and Validation

For all outcome variables, at least one SIR biomarker was
selected by the machine-learning process to have high
discriminative power during the fitting of the models
(Figs 1–5). A high NLR was found to be the most effective
predictor of LNM and upstaging to MIBC in the testing
cohort (odds ratio 2.26, P < 0.001 and odds ratio 1.97,
P < 0.001, respectively). In the testing cohort, model
performance evaluation for preoperative prediction of LNM,
≥pT3 disease and upstaging to MIBC showed a 200-fold
bootstrap-corrected AUC of 67.3%, 73% and 65.8%,
respectively. For postoperative prognosis of CSS and RFS, a
200-fold bootstrap corrected C-index of 73.3% and 72.2%,
respectively, was found.

Performance Evaluation without the Selected SIR
Biomarkers

For prediction of LNM, exclusion of the SIR biomarkers
resulted in a significant decrease in the AUC in both the
training and testing cohorts (�6.3% training cohort vs �5.8%
testing cohort; P < 0.001). For prediction of upstaging to
MIBC, exclusion of both SIR biomarkers did not result in a
significant decrease in AUC in the training cohort (�2.0%; P
= 0.1). However, exclusion of both biomarkers led to a
statistically significant reduction in AUC in the testing cohort
(�4.3%, P = 0.009). The exclusion of the SIR biomarkers for

prediction/prognosis of ≥pT3 disease, CSS and RFS resulted
in a decrease in AUC/C-index (i.e. under 3%) for all cohorts.

Nomogram and Model Calibration

Assessment of the nomogram axes indicated that all
demonstrated a wide range of predicted probabilities;
however, for none of the models did an SIR biomarker
contribute the highest number of risk points. The calibration
plots showed that the models demonstrated near-optimal
agreement between prediction by the model and actual
outcome observation. In accordance with that, the goodness-
of-fit tests were insignificant for all cohorts. For the two Cox
models, time-dependent AUC plots demonstrate a stable
model performance over a period of 5 years (Figs 4, 5).

Decision-Curve Analysis

For prediction of LNM, decision-curve analysis showed that
the model offers a clinical net benefit relative to the treat-all
approach at a threshold of between 30% and 50%; the
addition of the SIR biomarkers increased the net benefit
relative to a reference model across this threshold range. This
range group contained 706 patients (33.6%) in the training
cohort and 408 patients (19.4%) in the testing cohort. For
prediction of upstaging, addition of the two included SIR
biomarkers resulted in a net benefit gain of up to 10% in
patients with an upstaging threshold probability of between
50% and 60%. This range group contained 245 patients
(11.7%) in the training cohort and 83 patients (3.95%) in the
testing cohort. For prediction of ≥pT3 disease as well as for
prognosis of CSS and RFS, addition of the SIR biomarkers to
a reference model resulted in no relevant net benefit gain
across any threshold probability.

Discussion
Accurate identification of patients who are at a seemingly
high risk of disease recurrence, despite a presumed adequate
surgical treatment with curative intent, remains a healthcare
challenge in the treatment of UCB [36]. Ideal biomarkers
could detect occult micrometastases and therefore offer
potential to improve survival outcomes by facilitating more
accurate patient selection for intensified peri-operative
systemic therapy [28]. However, despite major advances in
the molecular profiling of UCB, its heterogeneity still
hampers the establishment of a clinically useful, reproducible,
readily available, cheap and accurate biomarker [7,9,16–22].
The lack of clinically useful biomarkers also hinders the
emergence of new therapeutic approaches such as bladder
preservation strategies, which require precise risk stratification
[37]. Through the use of a machine-learning-based approach,
we were able to select the most valuable predictors with
respect to several clinically relevant outcomes from a large
collection of variables. For all analyzed outcome variables,
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Red do�ed line: 10-fold cross valida�on curve along the λ sequence (error bars represent 
the upper and lower standard devia�on). Two selected λ‘s are indicated by the ver�cal 
do�ed lines  (Le�: minimum λ = the value of λ that gives minimum mean cross-validated 
error. Right: λ1.se = cross validated error within one standard devia�on of the minimum). 

Training Cohort

AUC: 69.3 (95%CI 67.2-
72.1)

AUC without blood-
based biomarkers: 
63.0 (95%CI 60.8—
65.3), p<0.001 
(comparison to full 
model)

200-fold bootstrap 
corrected AUC: 69.6

Tes�ng Cohort 

AUC: 67.2 (95%CI 64.6-
69.8)(p=0.11 for 
comparison to training 
cohort)

AUC without blood-
based biomarkers: 
61.4 (95%CI 59-63.7) 
p<0.001 (comparison 
to full model)

200-fold bootstrap 
corrected AUC:  67.3

Each curve corresponds
to a variable. The plot
shows the path of its
coefficient against the
L1 penalty which is
controlled by lambda
(λ). The axis above
indicates the number of
non-zero coefficients at
the current λ (=effec�ve
degrees of freedom for
the lasso regression)

Instruc�ons for physicians: Locate the
pa�ents status on the corresponding axis.
Draw a straight line up to the points axis to
determine how many points toward upstaging
the pa�ent should receive. Repeat this
process for each of the remaining axes,
drawing a straight line each �me to the points
axis. Sum the points received for each
predic�ve variable and locate this number on
the total points axis. Draw a straight line
down from the total points to the upstaging
axes for the pa�ents specific risk of lymph
node metastasis

This plot lets us
evaluate the number
of coefficients (axis
above), the
respec�ve AUC (y-
axis) as well as the
op�mal LASSO
penalty (λ). Variables
whose LASSO
coefficient were not
equal to zero at λ1.se
were extracted and
used as variables to
construct the logis�c
regression model

Training cohort

Goodness-of-fit test: p=0.41

Tes�ng cohort

Goodness-of-fit test: p=0.92

NLR NLR

NLR

1. Model crea�on for predic�on of LNM
Le�: Lasso Coefficient profiles of all
prognosis related variables in the
training cohort (n=2100)

Right: 10-fold cross valida�on for tuning
parameter selec�on in the least
absolute shrinkage and selec�on
operator (LASSO) Model

Variables available for predictor analysis:
age, sex, preopera�ve blood transfusion,
AGR, NLR, mGPS, MLR, thrombocytosis
hypoalbuminemia, de Ri�s ra�o, and
clinical tumor stage

2. Mul�variable logis�c regression
models for predic�on of lymph node
metastasis in pa�ents with UCB treated
with radical cystectomy and bilateral
lymphadenectomy. The model was
created using LASSO regression with 10-
folds cross valida�on.

Le�: Training cohort (n=2100)
Right: Tes�ng cohort (n=2099)

3. Receiver opera�ng characteris�c
(ROC) curves for the predic�on of
lymph node metastasis using the logis�c
regression model.

Le�: Training cohort (n=2100)
Right: Tes�ng cohort (n=2099)

4. Preopera�ve nomogram predic�ng
lymph node metastasis based on the
logis�c regression model

5. Calibra�on plots of the preopera�ve
nomogram predic�ng lymph node
metastasis at �me of radical cystectomy
and bilateral lymphadenectomy

Le�: internal calibra�on plot from the
training data set (n=2100)
Right: external calibra�on plot from the
tes�ng data set (n=2099).

6. Decision curve analyses (DCA) for the
evalua�on of the clinical net-benefit
using the nomogram for detec�ng the
event of lymph node metastasis at �me
of RC

Le�: Decision curve analysis from the
training data set (n=2100)
Right: Decision curve analysis from the
tes�ng data set (n=2099)

Black line: Reference model without SIR-
biomarkers
Red line: Full model including SIR
biomarkers (NLR and mGPS)

Descrip�on: the x-axis is the threshold probabili�es. The y-axis measures the net benefit which is calculated by adding the true posi�ves and subtrac�ng the false-posi�ves. The horizontal
line represen�ng the x-axis assumes that no pa�ents experiences recurrence whereas the grey line assumes that all pa�ents will experience recurrence at a specific threshold probability.
The dashed red line represents the net-benefit of using our novel logis�c regression model to inform clinical decision making. It will lead to superior outcomes for any decision associated
when the predicted probability is ranged between 30% and 80% rela�ve to a treat-all approach. The dashed black line represents the net-benefit of a similar logis�c regression model
(reference model) which, however, excludes any biomarkers (NLR and mGPS)

Fig. 1 Model creation and performance evaluation for the prediction of lymph node involvement in 4199 patients treated with radical cystectomy for urothelial

carcinoma of the bladder. 1. Model creation through least absolute shrinkage and selection operator regression analysis. 2. Logistic regression analysis. 3.

Receiver-operating characteristic curves andmodel performance evaluation. 4. Nomogram based on the logistic regression model. 5. Model calibration curves.

6. Decision-curve analyses. AGR, albumin–globulin ratio; AUC, area under the curve; mGPS, modifiedGlasgow prognostic score; MLR, monocyte-lymphocyte

ratio; NLR, neutrophil-lymphocyte ratio; OR, odds ratio; UCB, urothelial carcinoma of the bladder.
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1. Model crea�on for predic�on of ≥pT3
disease

Le�: Lasso Coefficient profiles of all
prognosis related variables in the
training cohort (n=2100)

Right: 10 Fold cross valida�on for tuning
parameter selec�on in the least
absolute shrinkage and selec�on
operator (LASSO) Model

Variables available for predictor analysis:
age, sex, preopera�ve blood transfusion,
AGR, LNR, mGPS, MLR, thrombocytosis
hypoalbuminemia, de Ri�s ra�o, and
clinical tumor stage

2. Mul�variable logis�c regression
models for predic�on of ≥pT3 disease in
pa�ents treated with radical cystectomy
and bilateral lymphadenectomy for
urothelial carcinoma of the bladder. The
model was created using LASSO
regression with 10-folds cross
valida�on.

Le�: Training cohort (n=2100)
Right: Tes�ng cohort (n=2099)

3. Receiver opera�ng characteris�c
(ROC) curves for the predic�on of ≥pT3
disease based on the logis�c regression
model.

Le�: Training cohort (n=2100)
Right: Tes�ng cohort (n=2099)

4. Preopera�ve nomogram predic�ng of
≥pT3 disease in pa�ents treated with
radical cystectomy and bilateral
lymphadenectomy for urothelial
carcinoma of the bladder

5. Calibra�on plots of the preopera�ve
logis�c regression model predic�ng of
≥pT3 disease at �me of radical
cystectomy and bilateral
lymphadenectomy

Le�: internal calibra�on plot from the
training data set (n=2100)
Right: external calibra�on plot from the
tes�ng data set (n=2099)

6. Decision curve analyses (DCA) for the
evalua�on of the clinical net-benefit
using the nomogram for detec�ng the
event of ≥pT3 disease at �me of radical
cystectomy

Le�: Decision curve analysis from the
training data set (n=2100)
Right: Decision curve analysis from the
tes�ng data set (n=2099)

Black line: Reference model without SIR-
biomarkers
Red line: Full model including SIR
biomarkers (NLR and mGPS)

Descrip�on: the x-axis is the threshold probabili�es. The y-axis measures the net benefit which is calculated by adding the true posi�ves and subtrac�ng the false-posi�ves. The horizontal
line represen�ng the x-axis assumes that no pa�ents experiences recurrence whereas the grey line assumes that all pa�ents will experience recurrence at a specific threshold probability.
The dashed red line represents the net-benefit of using our novel logis�c regression model to inform clinical decision making. It will lead to superior outcomes for any decision associated
when the predicted probability is ranged between 40% and 80% rela�ve to a treat-all approach. The dashed black line represents the net-benefit of a similar logis�c regression model
(reference model) which, however, excludes any biomarkers (NLR and mGPS).

Red do�ed line: 10-fold cross valida�on curve along the λ sequence (error bars represent 
the upper and lower standard devia�on). Two selected λ‘s are indicated by the ver�cal 
do�ed lines  (le�: minimum λ = the value of λ that gives minimum mean cross-validated 
error. right: 1.se. λ = cross validated error within one standard devia�on of the minimum). 

Training Cohort

AUC: 70.3 (95%CI 68.1-
72.6)

AUC without blood-
based biomarkers: 
69.6 (95%CI 67.3—
71.8), p=0.09 
(comparison to full 
model)

200-fold bootstrap 
corrected AUC: 70.4

Tes�ng Cohort 

AUC: 73.0 (95%CI 70.8-
75.1)(p=0.09 for 
comparison to training 
cohort)

AUC without blood-
based biomarkers: 
71.3 (95%CI 69.1-73.5) 
p=0.002 (comparison 
to full model)

200-fold bootstrap 
corrected AUC:  73.0

Each curve corresponds
to a variable. The plot
shows the path of its
coefficient against the
L1 penalty which is
controlled by lambda
(λ). The axis above
indicates the number of
non-zero coefficients at
the current λ (=effec�ve
degrees of freedom for
the lasso regression)

Instruc�ons for physicians: Locate the
pa�ents status on the corresponding axis.
Draw a straight line up to the points axis to
determine how many points toward upstaging
the pa�ent should receive. Repeat this
process for each of the remaining axes,
drawing a straight line each �me to the points
axis. Sum the points received for each
predic�ve variable and locate this number on
the total points axis. Draw a straight line
down from the total points to the upstaging
axes for the pa�ents specific risk of ≥pT3
disease

This plot lets us
evaluate the number
of coefficients (axis
above), the
respec�ve AUC (y-
axis) as well as the
op�mal LASSO
penalty (λ). Variables
whose LASSO
coefficient were not
equal to zero at λ1.se
were extracted and
used as variables to
construct the logis�c
regression model

Training cohort

Goodness-of-fit test: p=0.16

Tes�ng cohort

Goodness-of-fit test: p=0.22

NLRNLR

NLR

Fig. 2 Model creation and performance evaluation for prediction of ≥pT3 disease in 4199 treated with radical cystectomy for urothelial carcinoma of

the bladder. 1. Model creation through LASSO regression analysis. 2. Logistic regression analysis. 3. Receiver operating characteristic curves and model

performance evaluation. 4. Nomogram based on the logistic regression model. 5. Model calibration curves. 6. Decision-curve analyses. AGR, albumin–

globulin ratio; AUC, area under the curve; mGPS, modified Glasgow prognostic score; MLR, monocyte-lymphocyte ratio; NLR, neutrophil-lymphocyte

ratio; OR, odds ratio; UCB, urothelial carcinoma of the bladder.
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1. Model crea�on for predic�on of
upstaging to MIBC

Le�: Lasso Coefficient profiles of all
prognosis related variables in the
training cohort (n=763)

Right: 10 Fold cross valida�on for tuning
parameter selec�on in the least
absolute shrinkage and selec�on
operator (LASSO) Model

List of variables used: age, gender, blood
transfusion, AGR, NLR, mGPS, MLR,
thrombocytosis, hypoalbuminemia, de
Ri�s ra�o and clinical tumor stage

2. Mul�variable logis�c regression
models for predic�on of upstaging to
MIBC in pa�ents with clinically staged
NMIBC treated with radical cystectomy
and bilateral lymphadenectomy. The
model was created using LASSO
regression with 10-folds cross
valida�on.

Le�: Training cohort (n=763)
Right: Tes�ng cohort (n=764)

3. Receiver opera�ng characteris�c
(ROC) curves for the predic�on of
upstaging to MIBC based on the logis�c
regression model.

Le�: Training cohort (n=763)
Right: Tes�ng cohort (n=764)

4. Preopera�ve nomogram predic�ng
upstaging to MIBC based on the logis�c
regression model

5. Calibra�on plots of the preopera�ve
nomogram predic�ng upstaging to
MIBC at �me of radical cystectomy and
bilateral lymphadenectomy

Le�: internal calibra�on plot from the
training data set (n=763)
Right: external calibra�on plot from the
tes�ng data set (n=764)

6. Decision curve analyses (DCA) for the
evalua�on of the clinical net-benefit
using the nomogram for detec�ng the
event of upstaging to MIBC at �me of
RC

Le�: Decision curve analysis from the
training data set (n=763)
Right: Decision curve analysis from the
tes�ng data set (n=764)

Black line: Reference model without SIR-
biomarkers
Red line: Full model including SIR
biomarkers (NLR and mGPS)

Descrip�on: the x-axis is the threshold probabili�es. The y-axis measures the net benefit which is calculated by adding the true posi�ves and subtrac�ng the false-posi�ves. The horizontal
line represen�ng the x-axis assumes that no pa�ents experiences recurrence whereas the grey line assumes that all pa�ents will experience recurrence at a specific threshold probability.
The dashed red line represents the net-benefit of using our novel logis�c regression model to inform clinical decision making. It will lead to superior outcomes for any decision associated
when the predicted probability is ranged between 30% and 80% rela�ve to a treat-all approach. The dashed black line represents the net-benefit of a similar logis�c regression model
(reference model) which, however, excludes any biomarkers (NLR and mGPS).

Red do�ed line: 10-fold cross valida�on curve along the λ sequence (error bars represent 
the upper and lower standard devia�on). Two selected λ‘s are indicated by the ver�cal 
do�ed lines  (le�: minimum λ = the value of λ that gives minimum mean cross-validated 
error. right: 1.se. λ = cross validated error within one standard devia�on of the minimum). 

Training Cohort

AUC: 64.9 (95%CI 61.0-
68.8)

AUC without blood-
based biomarkers: 
62.9 (95%CI 59.0—
66.9), p=0.1 
(comparison to full 
model)

200-fold bootstrap 
corrected AUC: 65.1

Tes�ng Cohort 

AUC: 65.4 (95%CI 61.5-
69.3)(p=0.87 for 
comparison to training 
cohort)

AUC without blood-
based biomarkers: 
61.1 (95%CI 57.1-65.1) 
p=0.009 (comparison 
to full model)

200-fold bootstrap 
corrected AUC:  65.8

Each curve corresponds
to a variable. The plot
shows the path of its
coefficient against the
L1 penalty which is
controlled by lambda
(λ). The axis above
indicates the number of
non-zero coefficients at
the current λ (=effec�ve
degrees of freedom for
the lasso regression)

Instruc�ons for physicians: Locate the
pa�ents status on the corresponding axis.
Draw a straight line up to the points axis to
determine how many points toward upstaging
the pa�ent should receive. Repeat this
process for each of the remaining axes,
drawing a straight line each �me to the points
axis. Sum the points received for each
predic�ve variable and locate this number on
the total points axis. Draw a straight line
down from the total points to the upstaging
axes for the pa�ents specific risk of upstaging

This plot lets us
evaluate the number
of coefficients (axis
above), the
respec�ve AUC (y-
axis) as well as the
op�mal LASSO
penalty (λ). Variables
whose LASSO
coefficient were not
equal to zero at λ1.se
were extracted and
used as variables to
construct the logis�c
regression model

Training cohort

Goodness-of-fit test: p=0.06

Tes�ng cohort

Goodness-of-fit test: p=0.3

NLR NLR

NLR

Fig. 3 Model creation and performance evaluation for prediction of upstaging tomuscle-invasive bladder cancer in 1527 patients treatedwith radical

cystectomy for urothelial carcinoma of the bladder staged cT1, cTa, or cTis. 1. Model creation through LASSO regression analysis. 2. Logistic regression analysis. 3.

Receiver operating characteristic curves andmodel performance evaluation. 4. Nomogrambased on the logistic regressionmodel. 5. Model calibration curves.

6. Decision-curve analyses. AGR, albumin–globulin ratio; AUC, area under the curve; mGPS,modifiedGlasgowprognostic score;MLR,monocyte-lymphocyte

ratio; NLR, neutrophil-lymphocyte ratio; OR, odds ratio; UCB, urothelial carcinoma of the bladder.
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1. Model crea�on for predic�on of CSS
Le�: Lasso Coefficient profiles of all
prognosis related variables in the
training cohort (n=2100).

Right: 10 Fold cross valida�on for tuning
parameter selec�on in the least
absolute shrinkage and selec�on
operator (LASSO) Model

List of variables used: age, gender, blood
transfusion, AGR, NLR, mGPS, MLR,
thrombocytosis, hypoalbuminemia, de
Ri�s ra�o, clinical tumor stage,
pathological tumor stage, pathological
tumor grade, so� �ssue surgical margin
status, lymphovascular invasion,
concomitant carcinoma in situ, No. of
lymph nodes removed, lymph node
involvement and use of adjuvant
chemotherapy

2. Mul�variable Cox regression models
for predic�on cancer-specific survival in
pa�ents treated with radical cystectomy
and bilateral lymphadenectomy for
urothelial carcinoma of the bladder. The
Cox regression model was created using
LASSO regression with 10-folds cross
valida�on.

Le�: Training cohort (n=2100)
Right: Tes�ng cohort (n=2099)

3. Postopera�ve nomogram predic�ng
cancer-specific survival at two years
based on the Cox regression model

4. Calibra�on plots of the postopera�ve
nomogram predic�ng cancer-specific
survival a�er radical cystectomy and
bilateral lymphadenectomy

Le�: internal calibra�on plot from the
training data set (n=2100)
Right: external calibra�on plot from the
tes�ng data set (n=2099)

5. Time-dependent area under the ROC
curves for predic�on of cancer-specific
survival in the first five years

Le�: training data set (n=2100)
Right: tes�ng data set (n=2099)

6. Decision curve analyses (DCA) for the
evalua�on of the clinical net-benefit
using the Cox model for predic�on of
two year cancer-specific survival

Le�: Decision curve analysis from the
training data set (n=2100)
Right: Decision curve analysis from the
tes�ng data set (n=2099)

Black line: Reference model without SIR-
biomarkers
Red line: Full model including SIR
biomarkers (AGR, MLR and de Ri�s ra�o)

Descrip�on: the x-axis is the threshold probabili�es. The y-axis measures the net benefit which is calculated by adding the true posi�ves and subtrac�ng the false-posi�ves. The horizontal
line represen�ng the x-axis assumes that no pa�ents experiences recurrence whereas the grey line assumes that all pa�ents will experience recurrence at a specific threshold probability.
The dashed red line represents the net-benefit of using the above described Cox model to inform clinical decision. It will lead to superior outcomes for any decision associated when the
predicted probability is ranged between 25% and 70% rela�ve to a treat-all approach. The dashed black line represents the net-benefit of a similar Cox regression model (reference model)
which, however, excludes any biomarkers (AGR, MLR and de Ri�s ra�o).

Red do�ed line: 10-fold cross valida�on curve along the λ sequence (error bars represent 
the upper and lower standard devia�on). Two selected λ‘s are indicated by the ver�cal 
do�ed lines  (le�: minimum λ = the value of λ that gives minimum mean cross-validated 
error. right: 1.se. λ = cross validated error within one standard devia�on of the minimum). 

Training Cohort

C-index: 78.5

200-fold bootstrap 
corrected C-index: 76.3

C-index without blood-
based biomarkers: 77.3

Tes�ng Cohort

C-index:  76.3

200-fold bootstrap 
corrected C-index: 73.3

C-index without blood-
based biomarkers: 75.4

Each curve corresponds
to a variable. The plot
shows the path of its
coefficient against the
L1 penalty which is
controlled by lambda
(λ). The axis above
indicates the number of
non-zero coefficients at
the current λ (=effec�ve
degrees of freedom for
the lasso regression)

Instruc�ons for physicians: Locate the
pa�ents status on the corresponding axis.
Draw a straight line up to the points axis to
determine how many points toward upstaging
the pa�ent should receive. Repeat this
process for each of the remaining axes,
drawing a straight line each �me to the points
axis. Sum the points received for each
predic�ve variable and locate this number on
the total points axis. Draw a straight line
down from the total points to the upstaging
axes for the pa�ents specific risk of cancer-
specific survival

(high)

(low)

(high)

(low)

(male) (male)(male) (male)

Training cohort

Goodness-of-fit test:  p=0.36

Tes�ng cohort

Goodness-of-fit test:  p=0.14

This plot lets us
evaluate the number
of coefficients (axis
above), the
respec�ve C-Index
(y-axis) as well as the
op�mal LASSO
penalty (λ). Variables
whose LASSO
coefficient were not
equal to zero at λ1.se
were extracted and
used as variables to
construct the Cox
regression model

Fig. 4 Model creation and performance evaluation for prediction of two-year recurrence-free survival in 4199 treated with radical cystectomy for

urothelial carcinoma of the bladder. 1. Model creation through LASSO regression analysis. 2. Cox regression analysis and performance evaluation. 3.

Nomogram based on the Cox regression model. 4. Model calibration curves. 5. Time-dependent AUC. 6. Decision curve analyses. AGR, albumin–

globulin ratio; AUC, area under the curve; mGPS, modified Glasgow prognostic score; MLR, monocyte–lymphocyte ratio; NLR, neutrophil-lymphocyte

ratio; OR, odds ratio; UCB, urothelial carcinoma of the bladder.
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1. Model crea�on for predic�on of RFS
Le�: Lasso Coefficient profiles of all
prognosis related variables in the
training cohort (n=2100)

Right: 10-fold cross valida�on for tuning
parameter selec�on in the least
absolute shrinkage and selec�on
operator (LASSO) Model

List of variables used: age, gender, blood
transfusion, AGR, NLR, mGPS, MLR,
thrombocytosis, hypoalbuminemia, de
Ri�s ra�o, clinical tumor stage,
pathological tumor stage, pathological
tumor grade, so� �ssue surgical margin
status, lymphovascular invasion,
concomitant carcinoma in situ, No. of
lymph nodes removed, lymph node
involvement and use of adjuvant
chemotherapy

2. Mul�variable Cox regression models
for predic�on recurrence-free survival
in pa�ents treated with radical
cystectomy and bilateral
lymphadenectomy for urothelial
carcinoma of the bladder. The Cox
regression model was created using
LASSO regression with 10-folds cross
valida�on.

Le�: Training cohort (n=2100)
Right: Tes�ng cohort (n=2099)

3. Postopera�ve nomogram predic�ng
recurrence-free survival at two years
based on the Cox regression model

4. Calibra�on plots of the postopera�ve
nomogram predic�ng recurrence-free
survival a�er radical cystectomy and
bilateral lymphadenectomy

Le�: internal calibra�on plot from the
training data set (n=2100)
Right: external calibra�on plot from the
tes�ng data set (n=2099)

5. Time-dependent area under the ROC
curves for predic�on of recurrence-free
survival in the first five years

Le�: training data set (n=2100)
Right: tes�ng data set (n=2099)

6. Decision curve analyses (DCA) for the
evalua�on of the clinical net-benefit
using the Cox model for predic�on of
two year recurrence-free survival

Le�: Decision curve analysis from the
training data set (n=2100)
Right: Decision curve analysis from the
tes�ng data set (n=2099)

Black line: Reference model without SIR-
biomarkers
Red line: Full model including SIR
biomarkers (AGR and MLR)

Descrip�on: the x-axis is the threshold probabili�es. The y-axis measures the net benefit which is calculated by adding the true posi�ves and subtrac�ng the false-posi�ves. The horizontal
line represen�ng the x-axis assumes that no pa�ents experiences recurrence whereas the grey line assumes that all pa�ents will experience recurrence at a specific threshold probability.
The dashed red line represents the net-benefit of using the above described Cox model to inform clinical decision. It will lead to superior outcomes for any decision associated when the
predicted probability is ranged between 25% and 70%. The dashed black line represents the net-benefit of a similar Cox regression model (reference model) which, however, excludes the
biomarkers AGR and MLR

Red do�ed line: 10-fold cross valida�on curve along the λ sequence (error bars represent 
the upper and lower standard devia�on). Two selected λ‘s are indicated by the ver�cal 
do�ed lines  (le�: minimum λ = the value of λ that gives minimum mean cross-validated 
error. Right: 1.se. λ = cross validated error within one standard devia�on of the minimum). 

Training cohort

C-index: 75.6

200-fold bootstrap 
corrected C-index: 75.9 

C-index without blood-
based biomarkers: 74.4

Tes�ng cohort

C-index:  72.9

200-fold bootstrap 
corrected C-index: 72.9

C-index without blood-
based biomarkers: 72.2

Each curve corresponds
to a variable. The plot
shows the path of its
coefficient against the
L1 penalty which is
controlled by lambda
(λ). The axis above
indicates the number of
non-zero coefficients at
the current λ (=effec�ve
degrees of freedom for
the lasso regression)

Instruc�ons for physicians: Locate the
pa�ents status on the corresponding axis.
Draw a straight line up to the points axis to
determine how many points toward upstaging
the pa�ent should receive. Repeat this
process for each of the remaining axes,
drawing a straight line each �me to the points
axis. Sum the points received for each
predic�ve variable and locate this number on
the total points axis. Draw a straight line
down from the total points to the upstaging
axes for the pa�ents specific risk of cancer-
specific survival

This plot lets us
evaluate the number
of coefficients (axis
above), the
respec�ve C-Index
(y-axis) as well as the
op�mal LASSO
penalty (λ). Variables
whose LASSO
coefficient were not
equal to zero at λ1.se
were extracted and
used as variables to
construct the Cox
regression model

Training cohort

Goodness of fit test:  p=0.35

Tes�ng cohort

Goodness of fit test:  p=0.2

Fig. 5 Model creation and performance evaluation for prediction of two-year cancer-specific survival in 4199 treated with radical cystectomy for

urothelial carcinoma of the bladder. 1. Model creation through LASSO regression analysis. 2. Cox regression analysis and performance evaluation. 3.

Nomogram based on the Cox regression model. 4. Model calibration curves. 5. Time-dependent AUC. 6. Decision curve analyses. AGR, albumin–

globulin ratio; AUC, area under the curve; mGPS, modified Glasgow prognostic score; MLR, monocyte–lymphocyte ratio; NLR, neutrophil-lymphocyte

ratio; OR, odds ratio; UCB, urothelial carcinoma of the bladder.
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blood-based SIR biomarkers were chosen for the fitting of the
most parsimonious, yet informative, models. Even though
several other prognostic and predictive models as well as
nomograms have been developed, the current model possesses
multiple characteristics that distinguishes it from comparable
tools. It is indeed, the first to feature a panel of cheap,
reproducible and ready-available SIR biomarkers.

As calibration and validation of nomograms are paramount
before implementation in clinical practice, we performed a
statistically rigorous evaluation of all models [14]. Indeed, our
models showed nearly perfect calibration properties. The large
sample size of over 4000 patients and the study’s multicentre
nature render the nomograms highly generalizable.
Furthermore, the nomograms demonstrate a wide range of
predicted probabilities. Finally, the inclusion of a maximum
of three readily available SIR biomarkers offers a very low
level of complexity for our nomograms, suggesting that they
are easily reproducible. Due to the large number of available
patients for this retrospective analysis, we aimed to imitate
external validation by splitting our cohort into two equal-
sized large groups of patients. While true external validation
with separate cohorts remains the best assessment of a
model’s accuracy and a crucial step before transferring the
models into clinical practice [14], we found that all results
from the training cohort could be reproduced in the testing
cohort.

The comparison of our prognostic and predictive models,
however, to similar reference models that excluded any SIR
biomarkers revealed that the addition of the selected SIR
biomarkers only offered a minimal additional increase in
discriminative ability. The highest increase was found in the
prediction of LNM through the addition NLR and mGPS to
the model (increase in AUC: 5.8% in the testing cohort). For
all other models, the increase in discriminative ability through
the addition of the selected SIR biomarkers was far below 3%.
Similarly, on decision-curve analysis, most models failed to
offer any relevant net benefit in comparison to a reference
model or only offered a minor benefit for a small group of
patients. However, the accuracy of our models was similar
during both internal and external validation and was
comparable to previously reported nomograms that only
included clinicopathological variables [15,38–41].
Nevertheless, we failed to reach a clinically superior predictive
performance, as clinical applicability of a nomogram has been
previously been proposed only for those who exhibit AUC/C-
indices >0.75 after external validation [42]. As we used a
sophisticated machine-learning-based approach for the
development of our model, the ultimate reason for our
negative findings is probably that the analysed SIR
biomarkers simply do not hold enough unique information to
improve the discriminative ability of the models and that they
are too unspecific to be used in cancer-related outcome
prediction.

While next-generation sequencing has revealed several genetic
alterations in UCB with a potential to become candidate
biomarkers, their implementation into clinical practice
remains hindered by a lack of large and properly powered
external validation studies [28,43]. External validation,
however, is frequently not successful and/or attempted due to
costs, intratumour heterogeneity, absence of a standardized
approach and the overall complexity of next-generation
sequencing [7]. As UCB is more than the sum of genetic
alterations, the complete landscape of features contributing to
this disease, including environmental, hereditary, behavioural
and epigenetic factors, needs to be explored. Consequently,
models that focus on the combination of a greater variety of
data (e.g. a combinatorial approach to identifying genetic and
non-genetic biomarkers from different sources), improved
imaging techniques combined with the use of artificial
intelligence holds the highest potential to generate externally
reproducible results thereby coming a quantum leap closer to
improving individual patient care [44]. In this setting, SIR
biomarkers might yet prove useful for outcome prediction,
especially with respect to novel immunotherapies and their
ease of procurement and high sample homogeneity [7]. Our
approach of testing the incremental predictive accuracy of
such biomarkers beyond that already provided by established
risk factors could serve as a benchmark for the evaluation of
novel biomarkers and thus guide their clinical
implementation.

Although the present study uses a statistically rigorous
validation and calibration process, it has several limitations.
First and foremost are the limitations inherent to any
retrospective data collection, especially with respect to any
potential selection bias and/or attrition bias. Second is the wide
temporal range and the lack of data with respect to the use of
NAC or novel therapies such as Programmed Death-Ligand 1
or Fibroblast Growth Factor Receptor 3 inhibitors. The multi-
institutional nature of our study could be interpreted as a
potential limitation, as it may ignore differences that might
distinguish the contributing centres. However, this approach is
less likely to transfer bias due to varying community practice.
Finally, our results are limited by the singular testing and the
failure to control for additional potential risk factors (e.g.
smoking, therapies before RC such as intravesical instillations
or use of re-transurethral resection of bladder tumour,
occupational exposure).

In conclusion, although our machine-learning approach for
fitting of the model with the highest discriminative ability
incorporated several previously validated, cheap and readily
available SIR biomarkers, these failed to improve the
discriminative ability of the models by a prognostically and
clinically meaningful margin. While the prognostic and
predictive value of such biomarkers warrants further
evaluation in the age of immunotherapy, novel biomarkers
are still needed to improve risk stratification. We established
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a framework for validation of promising biomarkers in a
phased, structured biomarker assessment.
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