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Abstract

Aims

Smooth muscle 22-alpha (SM22α) is an actin-binding protein that plays critical roles in medi-

ating polymerization of actin filaments and stretch sensitivity of cytoskeleton in vascular

smooth muscle cells (VSMCs). Multiple lines of evidence indicate the existence of SM22α in

cardiomyocytes. Here, we investigated the effect of cardiac SM22α on the membrane archi-

tecture and functions of cardiomyocytes to pressure overload.

Methods

SM22α knock-out (KO) mice were utilized to assess the role of SM22α in the heart. Echocar-

diography was used to evaluate cardiac function, transverse aortic constriction (TAC) was

used to induce heart failure, cell shortening properties were measured by IonOptix devices

in intact cardiomyocytes, Ca2+ sensitivity of myofilaments was measured in permeabilized

cardiomyocytes. Confocal microscopy, electron microscopy, western blotting, co-immuno-

precipitation (co-IP), Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) tech-

niques were used to perform functional and structural analysis.

Results

SM22α ablation did not alter cardiac function at baseline, but mRNA levels of atrial natri-

uretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC)

were increased significantly compared with wild type (WT) controls. The membrane archi-

tecture was severely disrupted in SM22α KO cardiomyocytes, with disassembly and flatten-

ing of caveolae and disrupted T-tubules. Furthermore, SM22α was co-immunoprecipitated

with caveolin-3 (Cav3), and the interaction between Cav3 and actin was significantly

reduced in SM22α KO cells. SM22α KO cardiomyocytes displayed asynchronized SR Ca2+

release, significantly increased Ca2+ spark frequency. Additionally, the kinetics of sarco-

mere shortening was abnormal, accompanied with increased sensitivity and reduced
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maximum response of myofilaments to Ca2+ in SM22α KO cardiomyocytes. SM22α KO

mice were more prone to heart failure after TAC.

Conclusions

Our findings identified that SM22αmay be required for the architecture and function of

caveolae and T-tubules in cardiomyocytes.

Introduction

Smooth muscle 22-alpha, or transgelin, is an actin-binding protein that is abundantly

expressed in adult vascular smooth muscle cells (VSMCs) [1–4]. SM22α plays critical roles in

mediating polymerization of both cortical and sarcomeric actin filaments and stretch sensitiv-

ity of cytoskeleton, which is important for maintaining the differentiated phenotype of VSMCs

[1, 5–7]. Moreover, SM22α, as a scaffolding protein, mediates protein-protein interactions,

and modulates the signaling activity in VSMCs [8–10]. The expression level of SM22α in

VSMCs is sensitive to changes in blood pressure, as hypertension increases and mechanical

unloading reduces its expression level [11]. Multiple lines of evidence indicate that SM22α
may exist in cardiomyocytes [12–14]. However, the existence and physiological role of cardiac

SM22α remain to be defined.

Specialized membrane structures, caveolae [15–17] and T-tubules [18], are emerging as

essential components in mechanotransduction in cardiomyocytes. These structures allow the

cardiac action potential to propagate into the interior of myocytes, initiating the process of

excitation-contraction coupling (ECC). Both caveolae and T-tubules are shaped and main-

tained mainly by membrane scaffolding proteins such as cortical actins, as well as surrounding

extracellular matrix [19]. A recent study suggested that caveolae function as a membrane reser-

voir to buffer membrane tension and to accommodate mechanical stresses [15]. It has been

known that cortical actin cytoskeleton and actin-associated proteins are involved in shaping

and maintaining the plasma membrane architecture in cardiomyocytes.

In the present study, we identified that the cardiomyocytes of SM22α KO mice displayed

asynchronized SR Ca2+ release and abnormal contractile properties, accompanied with the dis-

organization of the plasma membrane architecture, making the heart more vulnerable to pres-

sure overload. Our data suggested that SM22α may be required for the architecture and

function of caveolae and T-tubules in cardiomyocytes.

Materials and methods

An expanded Materials and Methods section is available in the S1 Protocol. SM22α KO mice

(B6.129S6-Taglntm2(cre)Yec/J), purchased from the Jackson Laboratory. Pressure overload was

produced by transverse aortic constriction (TAC). Mouse left ventricular myocytes were iso-

lated by the Langendorff method, using retrograde perfusion through the aorta with enzyme-

containing solutions. T-tubules of ventricular myocytes was visualized by Di-8-ANEPPS stain-

ing. For calcium imaging, isolated cardiomyocytes were stained with the Ca2+-sensitive dye

Fluo-4-acetoxymethyl ester. Data are presented as mean ± SEM. One-way ANOVA and the

Student t test was used for statistical analysis as appropriate. P<0.05 was considered statisti-

cally significant.
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Results

Cardiac function is reduced in SM22α KO mice

It is still under debate whether SM22α exists in the heart growing into adulthood [2, 3, 13, 14,

20]. By using anti-SM22α antibody, here we showed that a band of approximately 22 kDa was

detected in lysates of cardiac tissues and isolated cardiomyocytes from adult WT mice (Fig

1A), the expression level was the greatest in WT, less in heterozygous and was missing in the

cardiomyocytes of SM22α KO mice (Fig 1B and 1C). Similarly, the expression of SM22α
mRNA was validated by RT-PCR in the cardiomyocytes from adult WT mice, and increased

in the cells of mice with heart failure (Fig 7A, S1 Fig). Next we examined the effect of SM22α
disruption on cardiac function. Ejection fraction was slightly decreased in SM22α KO mice

(55.93 ± 0.92%) compared with WT controls (57.36 ± 0.71%; Fig 1D), but the difference was

statistically insignificant. SM22α KO mice also exhibit phenotypically normal vascular system

under basal condition [5, 10, 21, 22]. However, the mRNA level of ANP, BNP and β-MHC was

significantly increased in the myocardial tissues of SM22α KO mice (Fig 1E). Our finding vali-

dates that SM22α protein exists in the heart of adult mice, and the disruption of SM22α may

induce a hypertrophic phenotype similar to that elicited by pressure overload.

Fig 1. The cardiac function is reduced in SM22α KO mice. (A) and (B) Representative Western blot of the expression of SM22α protein in heart tissue and

cardiomyocytes of WT, SM22α KO (SM22α-/-) and heterozygous (SM22α+/-) mice. (C) Bar graphs showing the expression of SM22α protein in WT (+/+), heterozygous

(+/-) and KO (-/-) mice (n = 6 per group). (D) Echocardiographic assessment of ejection fraction (EF) (n = 40 per group). (E) RT-PCR analysis of cardiac fetal genes and

hypertrophic markers ANP, BNP, β-MHC (n = 5 per group). All data are represented as mean ± SEM from 3 independent experiments. �P< 0.05, ��P< 0.01, ���P<
0.001 vs. WT control.

https://doi.org/10.1371/journal.pone.0271578.g001
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Disassembly and flattening of caveolae occur in the cardiomyocytes from

SM22α KO mice

Caveolae are membrane invaginations that play critical roles in cardiac mechano-protection

during pressure overload [23]. Therefore, we next performed transmission electron micros-

copy to assess whether caveolae structure is altered in SM22α KO mice under basal condition.

We showed that the density of caveolae on the plasma membrane was significantly reduced in

the cardiomyocytes of SM22α KO mice (Fig 2A–2C). Importantly, the morphology of individ-

ual caveolae was strikingly altered under basal condition. As highlighted by the yellow dashed-

lines in Fig 2D and 2E, the caveolae of WT cardiomyocytes displayed a classic flask-shape or

omega-shape invagination that is characterized as a restricted neck region and an enlarged

chamber (Fig 2D). However, the caveolae in SM22α KO cells were typically dome-shape invag-

ination with enlarged opening width (Fig 2E). The opening width of SM22α KO caveolae was

approximately 70% greater than the control (Fig 2F), with the maximum width and the depth

of caveolae being comparable in KO and WT control animals (Fig 2G and 2H).

The interaction between actin and Cav3 is decreased in SM22α KO

cardiomyocyte

Cav3 is a major constituent of cardiac caveolae [24]. The expression level of Cav3 in SM22α
KO heart is comparable to that in WT control (Fig 3A). Next we performed co-immunopre-

cipitate (Co-IP) to assess whether Cav3 interacts with SM22α or whether actin-Cav3 interac-

tion is affected by SM22α deletion. We showed Cav3 was co-immunoprecipitated with anti-

SM22α antibody and vice versa (Fig 3B). Additionally, we found that actin interacted with

Cav3 (S2 Fig), and the interaction was reduced by 34% in SM22α KO cardiomyocytes (Fig 3C

and 3D), implying that SM22α may confine caveolae to the plasma membrane through associ-

ation with actin in the cells.

T-tubules are disrupted in the cardiomyocytes of SM22α KO mice

The integrity of T-tubules is crucial in maintaining calcium homeostasis and normal contrac-

tile function in cardiomyocytes, and disrupted T-tubular system is a common feature in heart

failure [25]. We stained plasma membrane with Di-8-ANEPPS and performed confocal

microscopy to evaluate the integrity of T-tubules in SM22α KO mice. We showed that the

well-organized T-tubule network observed in WT cardiomyocytes was disrupted in SM22α
KO cells at baseline (Fig 4A), similar to the appearance of T-tubules in failing heart [26]. Quan-

tification of T-tubule organization showed that the integrity of T-tubules was significantly

impaired in SM22α KO cells, with reduced TT power and TT score (Fig 4B and 4C), suggest-

ing that SM22α may be involved in the organization of T-tubules.

Transcriptomic analysis of the arteries of SM22α KO mice revealed a significant reduction in

JPH2 mRNA level [27], which was validated by qRT-PCR in cardiac tissue. We found that the

expression of JPH2 displayed an approximately 50% reduction in mRNA (Fig 4D) and 30%

reduction in protein level (Fig 4E and 4F) in cardiomyocytes. Co-IP experiment further revealed

that SM22α was immunoprecipitated with anti-JPH2 antibody (Fig 4G), suggesting that SM22α
may promote the formation of well-organized T-tubule network via its interaction with JPH2.

Disruption of SM22α is associated with abnormal SR Ca2+ handling in

cardiomyocytes

T-tubule integrity is an important determinant of healthy Ca2+ release in cardiomyocytes [26].

To test whether T-tubule disruption correlated with defective Ca2+ release, we first used
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Fig 2. Disassembly and flattening of caveolae occur in the cardiomyocytes from SM22α KO mice. (A, B) Low-

magnification electron micrographs of caveolae in the cardiomyocytes from WT (A) and SM22α KO (B) mice

(arrowheads denote caveolae), Scale bars = 500 nm. (C) Bar graphs showing decreased caveolae density in the

cardiomyocyte of SM22α KO mice (WT: 22 micrographs from 3 mice; KO: 27 micrographs from 3 mice). (D, E)

Zoom-in images of representative caveolae. Yellow dashed-lines: highlighting the shape of representative caveolae.

Scale bars = 100 nm. (F) Bar graphs showing increased opening width of caveolae in cardiomyocytes of SM22α KO

mice (n = 67 caveolae from 3 WT mice and n = 77 caveolae from 3 KO mice). (G, H) Bar graphs showing no

significant changes of caveolae maximal width (G) and depth (H) in cardiomyocytes of SM22α KO mice (n = 67

caveolae from 3 WT mice and n = 77 caveolae from 3 KO mice). Data are presented as the mean ± SEM. ��P< 0.01,
���P< 0.001 vs. WT control.

https://doi.org/10.1371/journal.pone.0271578.g002
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confocal line scan imaging to visualize Ca2+ sparks in isolated cardiomyocytes. SM22α KO car-

diomyocytes displayed a significantly increased Ca2+ spark frequency (Fig 5A and 5B), accom-

panied with decreased SR Ca2+ content observed from a caffeine dump protocol (Fig 5C and

5D). Furthermore, we examined Ca2+ transients in both WT and SM22α KO cardiomyocytes

with confocal microscopy in line-scan mode, and showed that there were abnormal Ca2+ tran-

sients in SM22α KO cells (Fig 5E). The amplitude of Ca2+ transients and Ca2+ decay constant

(τ) were comparable between WT and SM22α KO cardiomyocytes (Fig 5F and 5G). However,

the time to peak (TtP) was significantly prolonged in SM22α KO cells compared with WT con-

trol (Fig 5H), suggesting that disruption of T-tubules is associated with asynchronized SR Ca2+

release in SM22α KO cardiomyocytes.

SM22α KO exhibits altered kinetics of cell shortening of cardiomyocytes,

making the heart more vulnerable to pressure overload

The disruption of SM22α reduces the contractility of VSMCs [28]. Next we studied whether

SM22α ablation alters kinetics of cell shortening in cardiomyocytes. We showed that the

amplitude of cell shortening was reduced by approximately 12% in the cardiomyocytes of

SM22α KO mice (3.843 ± 0.363%) compared with the WT controls (4.354 ± 0.201%), though

it was statistically insignificant (Fig 6A and 6B). Additionally, the time to peak of cell shorten-

ing was significantly briefer and the maximum contraction velocity was significantly greater

(Fig 6C–6E). Taken together, these data suggested that the kinetics of sarcomere shortening

was altered in SM22α KO cardiomyocytes. To assess the effect of SM22α deletion on the Ca2+

Fig 3. The interaction between actin and Cav3 is decreased in SM22α KO cardiomyocyte. (A) Western blot for the expression of Cav3. (B, C) Co-

immunoprecipitation (co-IP) analysis for the interaction between SM22α, Cav3 and α-actin. Input lanes correspond to the original extracts used for the co-IP

assays. IgG was used as negative control. (D) Bar graphs showed the quantification of α-actin-Cav3 interaction. WCL: whole cell lysate. Data are presented as

the mean ± SEM from 3 independent experiments (n = 3). �P< 0.05 vs. WT control.

https://doi.org/10.1371/journal.pone.0271578.g003
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Fig 4. T-tubules are disrupted in SM22α KO cardiomyocytes. (A) Confocal fluorescence images of representative di-

8-ANEPPS-stained single cardiomyocytes isolated from WT and SM22α KO mice (upper). Respective high-resolution

views and of areas within the red rectangles (middle). Corresponding Fast Fourier transformed images of T-tubule

images (bottom). Scale bar = 10 μm. (B) Representative power vs. spatial frequency along the x axis computed using

Fourier analysis. (C) Bar graph showing TT score vs. WT control (n = 20 cells from 3 hearts in each group). (D)

qRT-PCR analysis of JPH2 mRNA levels (WT: n = 9; KO: n = 8). (E) Western blot of JPH2 protein level in

cardiomyocytes of WT and SM22α KO mice. (F) Bar graph showed the mean ± SEM from 3 independent experiments

(n = 4 per group). (G) Co-IP analysis for the interaction of SM22α with JPH2. �P< 0.05, ���P< 0.001 vs. WT control.

https://doi.org/10.1371/journal.pone.0271578.g004
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Fig 5. The disruption of SM22α is associated with abnormal SR Ca2+ handling in the cardiomyocytes. (A) Confocal microscopy

line scans revealing increased number of Ca2+ sparks in SM22α KO mice. (B) Bar graph showing frequency of spontaneous Ca2+

sparks (n = 15 cells from 3 WT mice and 16 cells from 3 SM22α KO mice). (C) Representative tracings of Ca2+ transient amplitudes

when paced at 1 Hz and total SR Ca2+ content as measured by the amplitude of caffeine-induced Ca2+ transient. (D) Bar graphs
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sensitivity of myofilament, next we permeabilized the plasma membrane of cardiomyocytes

with saponin and perfused the cells with the same set of intracellular buffers, then assessed the

free Ca2+-sarcomere length relationship in WT and KO mice. We found that the Ca2+ sensitiv-

ity was increased, but the maximum response of sarcomere length to Ca2+ was reduced in

comparison with WT controls (Fig 6F).

showing average SR Ca2+ content (n = 10 cells from 3 WT mice and 8 cells from 3 SM22α KO mice). (E) Representative confocal

line scan images showing desynchronized Ca2+ transient in SM22α KO mice. (F) Bar graphs showing the average Ca2+ transient

amplitude (n = 23 cells from 3 WT mice and 20 cells from 3 SM22α KO mice). (G) Bar graphs showing the Ca2+ decay constant (τ)

(n = 23 cells from 3 WT mice and 20 cells from 3 SM22α KO mice). (H) Bar graphs showing the time to peak (TtP) (n = 23 cells

from 3 WT mice and 20 cells from 3 SM22α KO mice). Data are presented as the mean ± SEM. �P< 0.05 vs. WT control.

https://doi.org/10.1371/journal.pone.0271578.g005

Fig 6. SM22α KO cardiomyocytes display altered kinetics of cell shortening. (A) Representative tracings showed

altered kinetics of cell shortening in SM22α KO cardiomyocytes. (B) The amplitude of contraction of the

cardiomyocytes. (C-E) Bar graphs showing decreased TtP (C), increased Dep v (D) and reduced Dep v t (E) in SM22α
KO mice (n = 72 cells from 6 WT mice; n = 31 cells from 4 SM22α KO mice). �P< 0.05, ���P< 0.001 vs. WT control.

(F) Perfused cells with 0, 200, 300, 400, 500 nmol/L Ca2+ buffer to record cell shortening in saponin permeabilized

myocytes. Continuous lines showed Hill fits with Hill coefficients (nH) = -6.22 and concentration for 50% of maximal

effect (EC50) = 515 nmol/L for WT cells, and nH = -4.99, EC50 = 288 nmol/L for the KO cells (n = 9 or 10 from 3 mice

in each group). Ca2+ sensitivity of myofilament was increased (right), but maximum response of myofilament was

decreased in SM22α KO cells (left). Data are presented as the mean ± SEM. �P< 0.5, ���P< 0.001 vs. WT control.

https://doi.org/10.1371/journal.pone.0271578.g006
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The disruption of SM22α accelerates the development of heart failure

induced by TAC

To test our hypothesis, SM22α KO and WT mice were challenged with pressure overload

induced by TAC. The expression of SM22α at protein and mRNA levels was increased in the

cardiomyocytes of WT mice following TAC (Fig 7A–7C), implying that SM22α might be

required for cardiac adaptive remodeling in response to pressure overload. Furthermore, the

ejection fraction was significantly reduced in SM22α KO mice subjected to TAC for 2 weeks

compared with WT control that exhibited similar reduction after TAC for 4 weeks (Fig 7D

Fig 7. The disruption of SM22α accelerates the development of heart failure induced by TAC. (A) Western blot of SM22α in cardiomyocytes of WT mice

sham and TAC hearts. (B) Bar graph showed increased level of SM22α protein post TAC (n = 5 in each group). (C) qRT-PCR analysis of SM22α mRNA (WT:

n = 21; KO: n = 12). (D) Echocardiographic assessment of heart function using M-mode images of left ventricle. (E) Quantitative evaluation of systolic function

in LV EF of 0, 2, 4 and 8 weeks post TAC (n = 35–40 per group). Data are presented as the mean ± SEM. �P< 0.5, ���P< 0.001 vs. WT control for the same

week, ###P< 0.001 vs. WT baseline, +++P< 0.001 vs. SM22α KO baseline. (F) Kaplan-Meier curve revealing increased mortality in SM22α KO mice compared

with WT mice after TAC (WT: n = 20; KO: n = 26). (G) Whole mount of representative hearts from WT and SM22α KO sham or 4 weeks post TAC. (H, I)

Heart weight to body weight ratio (HW/BW) (H) and lung weight to body weight ratio (LW/BW) (I) for WT and SM22α KO mice 2 and 4 weeks post TAC or

sham surgery (n = 6–10 per group). Data are represented as mean ± SEM. �P< 0.05, ��P< 0.01, ���P< 0.001.

https://doi.org/10.1371/journal.pone.0271578.g007
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and 7E). Additionally, SM22α KO mice subjected to TAC had significantly reduced survival

(Fig 7F), accompanied with increased heart weight and lung weight corrected to body weight,

compared with WT mice (Fig 7G–7I). Taken together, our data demonstrated that the disrup-

tion of SM22α accelerates the development of heart failure induced by pressure overload.

Discussion

Although SM22α is well recognized as a marker of VSMCs, it is still under debate whether it

exists in the heart growing into adulthood [2, 3, 13, 14, 20]. We showed that SM22α is present

in the heart tissues of adult mice, and is up-regulated upon pressure overload. To circumvent

the potential contamination of SM22α from other tissues in the heart (such as coronary ves-

sels), we enzymatically isolated and purified cardiomyocytes from the left ventricle, and indeed

we detected SM22α protein and mRNA in the lysates from purified cardiomyocytes which

increased the expression of SM22α in response to TAC. Our finding is consistent with multiple

lines of evidence from other groups. Crossing SM22α-Cre mice with Nrp-1flox/flox mice led to

knockout of NRP-1 in both SMCs and cardiomyocytes [12]. Cre-mediated β-galactosidase

expression was observed in SMCs and cardiac myocytes of heterozygous SM22α-Cre-R26R

mice [13]. Additionally, eGFP SM22α-CreKI mouse exhibits cre recombinase activity in the

cardiac myocytes of adults [14]. Taken together, here we provided evidence indicating the

expression of SM22α in cardiomyocytes.

Caveolae have emerged as vital plasma membrane sensors that can respond to plasma

membrane stresses [15, 29, 30]. Caveolae physically associate and functionally interplay with

the actin cytoskeleton, particularly the stress fibers to adapt to the changing environment. We

showed that the caveolae structure was altered in the cardiomyocytes of SM22α KO mice,

which exhibited reduced density and the flattening morphology. The abnormal morphological

alterations of the caveolae were accompanied with reduced interaction between actin and

Cav3 in SM22α KO cells. Furthermore, we found that SM22α interacted with both actin and

Cav3 in the WT cells, in accordance with a characteristic omega (O) shape, suggesting that

SM22α may be required for the interaction between caveolae and actin cytoskeleton, and the

disruption of SM22α may impair caveolae function in buffering mechanical stress at the

plasma membrane via disassembly of caveolae. It has been known that caveolae associate with

actin filaments, and the actin cytoskeleton is also shown by the flattening of caveolae in

response to excessive actin polymerization [31]. This marked change of the caveolae may have

a potentially significant impact on the ability of cardiomyocytes to handle increased stress fol-

lowing TAC. SM22α decorates the contractile filament bundles and promotes stress fiber for-

mation in VSMCs exhibiting differentiated phenotypes via its interaction with SM α-actin [9,

32]. The down-regulation of SM22α was accompanied by decrease in stress fibers and increase

in cortical actin rearrangement in synthetic VSMCs [33, 34]. The tension in the plasma mem-

brane determines the curvature of caveolae because they flatten at high tension and invaginate

at low tension, thus providing a tension-buffering system [35]. There was flattening of caveolae

in SM22α KO cardiomyocytes, suggesting that SM22α may be a linker protein that can regu-

late the physical association of caveolae with stress fibers and bridge caveolae and stress fibers.

It has been reported that Filamin A, an actin cross linker, anchors caveolae to stress fiber [36,

37]. The caveolae that are anchored to stress fibers remain static that is of omega-like invagina-

tion morphology observed from WT cardiomyocytes. Caveolae flattening and disassembly,

together with increased expressions of ANP, BNP and β-MHC, may also represent an increased

biomechanical stress in the cardiomyocytes of SM22α KO mice due to pressure overload. The

association of SM22α with caveolae might fulfill a particular function that differentiates it

from stress fibers.

PLOS ONE SM22α deletion promotes heart failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0271578 July 18, 2022 11 / 15

https://doi.org/10.1371/journal.pone.0271578


T-tubule is a key structure in cardiac ECC [38]. Their functional junctions with the sarco-

plasmic reticulum, or dyad, is critical to intracellular Ca2+ release. Recent data have indicated

that the dyadic anchoring protein JPH2 is a key regulator of dyadic formation and mainte-

nance. A central role of the T-tubule is to relay the electrical depolarization signal throughout

the depth of the cardiomyocyte, thus it is critical to the synchronization of cell-wide Ca2+

release. T-tubule remodeling can have major impact on Ca2+ handling, and is a key mecha-

nism of cardiac dysfunction. In the current study, we showed that the integrity of T-tubules

was disrupted in SM22α KO cardiomyocytes at baseline, which displayed the disorganization

of the T-tubule network similar to that of failing heart [39]. Caveolae are invaginations of the

plasma membrane with a diameter of 60–80 nm and a characteristic omega (O) shape. Caveo-

lae are abundantly present in mechanically stressed cells including cardiomyocytes [29, 40].

T-Tubules, on the other hand, are deeper invaginations of the surface membrane that occur at

each Z-line [41]. We speculated that SM22α, as a scaffolding protein, may mediate the associa-

tion of JPH2 with T-tubule via its interaction with JPH2, as it is able to regulate protein inter-

actions either in an actin-dependent or actin-independent manner [8, 10, 42]. The mechanism

underlying SM22α regulating the structural organization of T-tubule and its association with

JPH2 expression remains to be identified. T-tubule remodeling is correlated with congestive

heart failure [43, 44]. Disrupted T-tubules will lead to asynchronized SR Ca2+ release following

depolarization. We found the asynchronized SR Ca2+ release and a significant higher Ca2+

spark frequency, accompanied with reduced SR Ca2+ content in SM22α KO cardiomyocytes.

In addition, we also showed that most kinetic properties of cell shortening were significantly

altered in SM22α KO cells, such as time to peak and maximal contraction velocity, although

the amplitude of contraction is as same as controls. Furthermore, the maximum response of

sarcomere length to Ca2+ was reduced and the Ca2+ sensitivity of myofilaments was increased,

suggesting that the cardiomyocytes losing SM22α are tendency to overload, which is consistent

with a subtle loss of cardiac function in SM22α KO mice. The ejection fraction of SM22α KO

mice was already decreased only two weeks following TAC, whereas WT mice were still nor-

mal at this time point.

Conclusion

SM22α in cardiomyocytes may act as a key element in the regulation of biomechanical stress,

SR Ca2+ release and kinetic properties. SM22α KO mice have asynchronized SR Ca2+ release

and abnormal contractile properties in cardiomyocytes, accompanied with altered membrane

structure, making the heart more vulnerable to increased workload. Our findings suggest that

SM22α may be required for the architecture and function of caveolae and T-tubules in cardio-

myocytes. However, as our work does not provide direct causal evidence linking SM22α to the

specialized membrane structure and cardiac functions, further in vitro and in vivo study of the

effects of specific knockout/rescuing SM22α expression in cardiomyocytes on the reorganiza-

tion and functions of caveolae and T-tubules are warranted.
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