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Abstract

Environmental heterogeneity is a major driver of plant-microbiome assembly, but the

specific climate and soil conditions that are involved remain poorly understood. To

better understand plant microbiome formation, we examined the bacteria and fungi

that colonize wild strawberry (Fragaria vesca) plants in North American and European

populations. Using transects as replicates, we found strong overlap among the envi-

ronmental conditions that best predict the overall similarity and richness of the plant

microbiome, including soil nutrients that replicate across continents. Temperature is

also among the main predictors of diversity for both bacteria and fungi in both the

leaf and, unexpectedly, the root microbiome. Our results indicate that a small number

of environmental factors, and their interactions, consistently contribute to plant

microbiome formation, which has implications for predicting the contributions of

microbes to plant productivity in ever-changing environments.
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1 | INTRODUCTION

Plant-microbial communities play a part in host nutrient uptake

(Castrillo et al., 2017; Hiruma et al., 2016), responses to abiotic stress

such as drought (Xu et al., 2018) and interactions with pathogens

(Durán et al., 2018; Mendes et al., 2011) and herbivores (Schardl, Leu-

chtmann, & Spiering, 2004). Understanding the factors that shape the

plant microbiome and identifying beneficial microbes within these

communities (Zhang et al., 2019) could be key to developing sustain-

able agriculture or protecting plant productivity in challenging

environments.

The factors that shape leaf and root microbiota seem to differ

(Bergelson, Mittelstrass, & Horton, 2019; Wagner et al., 2016) but

both communities are influenced by the local environment (Thiergart

et al., 2020; Vorholt, 2012), seasonal variability (Walters et al., 2018)

and the order in which taxa colonize the microbiome (Carlström

et al., 2019; Fukami et al., 2010; Werner & Kiers, 2015). The discovery

that plant genetic differences also play a role (Kuske et al., 2002;

Redford, Bowers, Knight, Linhart, & Fierer, 2010; Walters et al., 2018)

has inspired interest in identifying the specific plant genes that are

involved (Bergelson et al., 2019; Horton et al., 2014; Wallace,

Kremling, Kovar, & Buckler, 2018). If the climate and soil nutrients

that affect the plant microbiome were better understood, then impor-

tant environmental measurements could be used as covariates to

reduce experimental noise, which would increase the statistical power

to map influential genes (Igl et al., 2010; Wang et al., 2016). Doing so

would also provide insights into the loci and environmental conditions

that underlie genotype-by-environment (G � E) interactions, which

are believed to heavily shape the plant microbiome (Wagner

et al., 2016; Walters et al., 2018).

The wild strawberry F. vesca is common in forests, meadows, on

hillsides and alongside trails and roads (Liston, Cronn, &
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Ashman, 2014). With extensive environmental variability across its

distribution, F. vesca is an ideal model for investigating the ecological

and environmental factors that influence leaf- and root-microbial

communities. Notably, the dominant sub-genome within cultivated

strawberry, an octoploid (F. � ananassa), derives from the diploid

F. vesca (Edger et al., 2019), which further adds to the value of

F. vesca as an emerging model system.

Here, we compare the leaf- and root-microbial communities of

F. vesca, using samples collected from populations in North America

and Europe. We also measured the climate characteristics and soil

chemistry of each population, which enabled us to examine how the

environment influences microbial assembly at both local and global

scales. In contrast with our expectations, our results reveal that many

of the environmental conditions that predict plant-microbiome diver-

sity are shared across large geographic distances.

2 | MATERIALS AND METHODS

2.1 | Sample collection and processing

We collected F. vesca plants across two transects in Europe and North

America. All of the European samples were collected between 12 and

21 June, 2017; the US samples were collected between 1 and

6 August, 2017. The coordinates of each sample are listed in Data S1.

Three soil samples and eight plants were collected at each site using

sterile technique and then stored on dry ice. All of the soil samples

were collected in plant-free areas and represent the bulk or unplanted

soil microbiome. The samples were transferred to the lab on dry ice,

flash frozen in liquid nitrogen and stored at �80�C until further

processing.

Prior to DNA extraction, the leaves and roots of each sample

were separated and placed in separate 50 ml Falcon tubes. To charac-

terize epiphytes, we modified an earlier approach (Bodenhausen,

Horton, & Bergelson, 2013; Qvit-Raz, Jurkevitch, & Belkin, 2008).

Briefly, each sample was washed three times in 15 ml of potassium

phosphate buffer (pH 8, 0.1 M, 4�C). That is, 15 ml of buffer was

added to each Falcon tube, which was vortexed for 5 s. The samples

were then transferred to Steriflip filter tubes (0.22 μm Millipore

Express plus Membrane, Millipore Corporation, US), and then the

wash through was discarded. After two additional washes, the filter

membranes were removed to characterize the epiphytes. To examine

endophytes, the washed samples were removed from the filter tubes

and the leaves were lyophilized for �12 hr. Once dry, the samples

were ground to a fine powder in liquid nitrogen and 1% PVP using a

sterile mortar and pestle.

2.2 | DNA extraction

The filter membranes (discussed above) were used as input material

to extract the leaf and root epiphytic fractions. For endophytes,

�200 mg of the lyophilized and mortar-ground tissue powder was

used. Each sample was placed in a 2 ml Eppendorf tube containing 6–

8 sterile glass beads (1.7–2 mm). The incubation buffer from Qiagen

DNA Isolation Kits (see below) was added to the tubes, and the mix-

ture was homogenized twice for 30 s at 1400 rpm (Geno/Grinder

2010, SPEX SamplePrep). The samples were incubated at 65�C for

10 min to increase cell lysis, and, after cooling (4�C), the samples were

homogenized once more with a MoBio vortex adaptor for 15 min at

maximum speed. All of the soil samples were extracted using

PowerSoil DNA Isolation kits (Qiagen). The plant samples were

extracted using a combination of PowerSoil DNA Isolation kits and

PowerPlant Pro-htp 96 kits (Data S1) using the manufacturer's proto-

col. After homogenization, the samples processed using PowerPlant

kits were loaded into the 96-well plates before the first

centrifugation step.

2.3 | Amplicon sequencing

The extracted DNA was quantified using high sensitivity Qubit assays

(Invitrogen) and amplified using a two-step PCR protocol (Gohl

et al., 2016). To characterize bacteria, we amplified the hypervariable

regions V3 and V4 of the 16S ribosomal RNA gene using the primers

V3F (Chakravorty, Helb, Burday, Connell, & Alland, 2007) and 799R

(Chelius & Triplett, 2001). To identify fungi, the primers ITS1F

(Gardes & Bruns, 1993) and ITS2 (White, Bruns, Lee, & Taylor, 1990)

were used to sequence the first internal transcribed spacer (ITS1). The

primers for the first PCR (PCR1) of the V34 region included V3F_1:

[FOR]-8N-AGCCAGACTCCTACGGGAGGCAG and 799R_1: [REV]-

8N-CGCMGGGTATCTAAT-CCKGTT. During PCR1 of ITS1, we used

the primers ITS1F_1: [FOR]-8N-GGCTTGGTCATTTA-GAGGAAGTAA

and ITS2_1: [REV]-8N-CAGCTGCGTT-CTTCATCGATGC. The

sequences (50 - 30) include a 2-bp linker (shown in bold) at the 50 end

of each marker gene primer. The label [FOR] represents Illumina

sequence: CTTTCCCTACACGACGCTCTTCCGATCT, while [REV] rep-

resents the Illumina sequence: GGAGTTCAGACGTGTGCTCTTCCG

ATCT. Exactly 8N refers to the eight degenerate bases between the

Illumina adaptor and linker.

PCR1 was performed using an initial 5 min denaturation at 95�C,

followed by 25 cycles of denaturing (98�C for 20 s), annealing (55�C

for 30 s) and extension (72�C for 30 s). A final elongation step was

performed for 7 min at 72�C before storing the samples at 4�C. The

fragments were amplified with the KAPA HotStart PCR Kit (Roche),

using 5 μl of 5x KAPA HiFi buffer, 0.75 μl of 10 mM dNTPs, 0.75 μl of

each primer (both 10 μM), 0.5 U Hotstart Taq and 2 μl of template

DNA. Two replicate PCRs were performed with each sample, each in

a total volume of 25 μl. After PCR, the replicates were pooled, visual-

ized on an agarose gel and cleaned using solid phase reverse immobili-

zation (SPRI) magnetic beads (Deangelis, Wang, & Hawkins, 1995) at

the Genetic Diversity Center (GDC) laboratories (ETH, Zurich,

Switzerland).

During the second PCR (PCR2), 5 μl of cleaned PCR1 product

was amplified using 25 μl of KAPA HotStart Ready Mix (Roche), 10 μl

of PCR grade water, the forward primer (0.4 μM, 5ul) AATGATACG

2 MITTELSTRASS ET AL.37463746



GCGACCACCGAGATCTACAC and the reverse primer (0.4 μM, 5ul)

CAAGCAGAAGACGGCATACGAGAT; these primers were attached to

barcodes from the Illumina TruSeq HT and Amplicon kits

(D501-D508, D701-D712, A501-A508, and A701-A712; Data S1).

The primer binding sites for PCR2 ([FOR] and [REV] discussed above)

were located downstream of the barcoded indices. PCR2 was per-

formed using an initial 5-min denaturing step (98�C), followed by eight

cycles of denaturing (98�C for 30 s), annealing (55�C for 30 s) and

extension (72�C for 30 s). A final extension step was performed for

5 min (72�C). The final PCR products were cleaned with SPRI beads

(as discussed above), and the libraries were quantified on a Spark

microplate reader (Tecan Group Ltd, Switzerland) using the Qubit

broad range assay. Then, the libraries were normalized and pooled on

a BRAND (Wertheim, Germany) liquid handling station and visualized

on an Agilent TapeStation. The final concentration of each library was

adjusted to 4 nM before sequencing on an Illumina MiSeq instrument.

In total, five 16S MiSeq libraries and four ITS1 MiSeq libraries (Data

S1) were sequenced at the GDC and Functional Genomics Center

Zurich (FGCZ) in Switzerland.

2.4 | Sequence data processing

The demultiplexed sequences have been deposited in the European

Nucleotide Archive (ENA) under accession code: PRJEB39612.

QIIME2 (Bolyen et al., 2019) was used during data processing of the

demultiplexed sequences (version qiime2-2018.6). First, after

importing the demultiplexed sequences of each run, the phylogenetic

primers were removed using cutadapt (version 1.16 implemented in

QIIME2). These trimmed sequences were then denoised and merged

using DADA2 (Callahan et al., 2016). The sequences from each library,

for each kingdom, were then truncated to 219 and 221 bp from the

forward and reverse reads, respectively.

After merging the sequences within each run, we merged the

results from each separate run for each separate kingdom. To identify

bacteria, the bacterial sequences were classified using SILVA (Quast

et al., 2013); the fungal sequences were classified using the UNITE

(Nilsson et al., 2019) database (version November 18, 2018). The

sequences were clustered into phylotypes that share 97% nucleotide

similarity using vsearch (v2.7.0). We excluded sequences that were

unassigned at the kingdom level, assigned to Chloroplast at the class

level, or assigned to Mitochondria at the family level.

2.5 | Environmental data

Data from the FAO GeoNetwork (Food and Agriculture Organization

of the United Nations, 2012), the USGS (USGS digital elevation

dataset SRTM mission, 2020), Worldclim (Fick & Hijmans, 2017) and

other sources were used during all environmental analyses (Table S2

and Data S2). Data in raster format (average temperature, maximum

temperature, minimum temperature, precipitation, solar radiation,

water vapour pressure, wind speed) were first aggregated into

monthly average datasets to create seasonal average variables. To

estimate actual and potential seasonal evapotranspiration, the data,

which are available as gridded point shapefiles (Global GIS: Global Cli-

mate Database: Actual evapotranspiration in EarthWorks, n.d.), were

first transformed into continuous gridded surfaces using the ordinary

kriging geostatistical interpolation method. Kriging assesses the uncer-

tainty of the predictions at each location using a cross validation

approach. The Geostatistical Analyst tools package available in ESRI

ArcGIS Desktop 10.7.1 was used to model surfaces (ESRI, California,

USA). Variables related to slope and aspect are based on data from

NASA's shuttle radar topography mission (SRTM), using the 30 m ele-

vation dataset. To facilitate interpretation, the variable aridity was

converted into �1 � aridity, and thus larger values are consistent with

higher aridity. The cosine and sine of the slope's aspect were used to

estimate the northing and easting of slope direction, respectively. The

final 21 climatic variables were used to interpolate the conditions that

each plant experienced based on its GPS coordinates, using the spatial

overlay functions available in the Spatial Analyst package within

ArcGIS.

Three soil samples were collected at each field site. One half of

each sample was used to sequence soil microbial DNA (as discussed

above). The remaining material was analysed by Labor für Boden and

Umweltanalytik (LBU; Thun, Switzerland) to characterize the soil con-

ditions at each site. Data S2 lists the raw data for the final 49 climate,

geographic and soil variables used during analysis, while Table S2 con-

tains the descriptions of each of the variables.

2.6 | Microbiome structure

To identify taxonomic groups enriched in either the soil, root or leaf

compartment (Data S1), we fit quasi-Poisson generalized linear models

using the function glm within R (R Development Core Team, 2012). To

control for differences in sequencing effort among samples, we set

the offset argument in glm to the log of the number of sequencing

reads for each sample.

To perform center log ratio (CLR) normalization, we used the

aldex.clr function available in the R package ALDEx2 (Fernandes

et al., 2014). Principal component analyses (PCAs) were performed

with the R function prcomp using CLR transformed data after remov-

ing singletons. Due to differences in the composition of the leaf, root

and soil microbiome, the heatmaps (Figure 2b,d and Figure S4) focus

on the most abundant 100 phylotypes in either the soil, root or leaf

microbiome. The overlap among the top 100 taxa from these three

separate compartments (i.e., taking the union of phylotype-ids) results

in 167 total bacterial and 214 total fungal phylotypes.

For each microbial habitat, we examined the overall similarity

(that is, beta diversity) of all samples using redundancy analysis (RDA)

with the functions rda and Condition, both of which are available in

the R package vegan (Oksanen et al., 2011). In rda, the function Condi-

tion was included on the right side of all formulae to control for the

effects of latitude and longitude. This initial RDA model was then used

as input in the function ordiR2step, also available in vegan, to perform
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forward selection (n = 99,999 permutations). To control the false dis-

covery rate (FDR, q ≤ 10%) of forward selected variables, we

implemented the Benjamini and Hochberg method (Benjamini &

Hochberg, 1995).

2.7 | The distribution of microbes

Before examining the relationship between CLR enrichment

(a measure of abundance) and the pattern of sharing across transects

(Figure S5), we corrected for differences in sequencing depth among

samples. To do so, each sample was resampled once to contain 5,000

reads, using the relative abundance distribution in the raw data to

model the probability of sampling each taxon. The top shared and

unique taxa are illustrated in Figure S5. Figure 3 shows the pattern of

sharing across transects using the raw data.

2.8 | Analyses of alpha diversity

To investigate whether and how strongly environmental variability

affects richness in the microbiome, we examined the number of epi-

phytic or endophytic taxa in the leaf and (separately) the root micro-

biome. These count data were investigated using quasi-Poisson

generalized linear models with the R function glm. To correct for dif-

ferences in the number of reads among samples, the offset argument

within glm was set to the log of the number of sequencing reads for

each sample. To analyse the total number of bacteria and fungi, we

included the factor kingdom before testing the effect of each environ-

mental variable or any interactions between environmental variables.

The mantel function (n = 99,999 permutations) in vegan was used

to perform Mantel tests on the �log10 (p value) matrices from envi-

ronment � environment (E � E) interaction tests, after setting the

diagonal of each matrix to 0.5. To identify the environmental variables

that underlie the Mantel r result for the rhizosphere, we iteratively

removed the row and column corresponding to each individual envi-

ronmental variable from these matrices and then repeated the Mantel

test for each missing variable.

3 | RESULTS

To characterize the wild strawberry microbiome, we established two

transects (Figure S1), consisting of 12 populations in North America

and 14 populations in central Europe (Table S1). Three soil and eight

whole-plant samples were collected from each population, and the

leaves and roots of each plant were then separated into their epi-

phytic and endophytic compartments using sterile techniques.

To classify bacteria and archaea, we amplified and sequenced the

V3-4 region of the 16S ribosomal gene using Illumina sequencing.

Fungal community profiles were created by sequencing the first inter-

nal transcribed spacer (ITS1) within eukaryotes. A significant propor-

tion of next-generation sequencing reads are expected to contain

errors due to intrinsic technical artefacts (for example, cross-talk

between clusters (Wang, Wan, Wang, & Li, 2017)) and run-to-run vari-

ability due to polymerase errors (Ma et al., 2019) or incomplete

washes between cycles (Pfeiffer et al., 2018). Moreover, microbial

genomes often contain multiple copies of genetically divergent ribo-

somal DNA (Schoch et al., 2012). We therefore clustered the

sequences into species-level phylotypes that share ≥97% pairwise

nucleotide sequence similarity. After omitting singletons, we identified

7,000 bacterial and 13,162 fungal phylotypes across all samples.

3.1 | The bacteria and fungi within the wild
strawberry microbiome

Although our main aim was to understand the environmental condi-

tions that shape plant-microbiota, we first used quasi-Poisson general-

ized linear models to evaluate differences in the composition of the

soil, root and leaf microbiome. We found broad differences between

organs. For example, Proteobacteria are enriched in leaves compared

with roots (for epiphytes, p = 2.3 � 10�21), while Actinobacteria

(p = 5.45 � 10�7) and Acidobacteria (p = 9.32 � 10�6) are more com-

mon in roots (Figure S2 and Data S1). In particular, the F. vesca micro-

biome is heavily colonized by the class Alphaproteobacteria

(Figure 1a), which is more prevalent in leaves than roots

(p < 2.8 � 10�22).

In soil, the proportion of Alphaproteobacteria is similar across

transects, but the abundances of Actinobacteria and Acidobacteria

vary widely; specifically, the Actinobacteria are more abundant in the

soils of North American sites (p = 4.05 � 10�24), while the

Acidobacteria are more abundant in European sites (p = 3.14 � 10�14).

Despite strong transect-specific differences in soil communities, how-

ever, these taxa are found in increasingly consistent proportions in the

root-epiphytic (hereafter rhizosphere) and endophytic compartments

of each transect (Figure S3 and Data S1), which demonstrates that

assembly can be similar across large geographic distances. In contrast,

compared with bacteria, the abundances of fungi in the rhizosphere

and soil are roughly similar (Figures S2 and S3 and Data S1). Along

each transect, the Agaricomycetes are more abundant in roots

(Figure 1b), while the Dothideomycetes and Leotiomycetes are more

abundant in leaves.

PCA of the top (that is, the most heavily sequenced taxa) 250 bac-

teria revealed little differentiation among samples. Instead, leaf epi-

phytes overlap soil and root samples (Figure 2a), which suggests that

root and soil bacteria also disperse to the leaf surface. Moreover,

despite the physical distance between transects (�8,500 km), samples

from both continents overlap, which indicates that wild strawberry is

colonized by many of the same bacteria across its range. Indeed, many

bacteria are found in the leaves and roots of both transects

(Figure 2b, the labels are shown in Figure S4), although some strains

are enriched in one organ or along one transect. As an example, a

member of Bradyrhizobium, a common genus in soils (Delgado-

Baquerizo et al., 2018), is the dominant root bacterial phylotype along

both transects. This bacterium is also found in the phyllosphere but at
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a lower median abundance than other bacteria. Likewise, a wide-

spread Sphingomonas phylotype dominates the phyllosphere of both

North American and European samples. Although this phylotype is

found in roots, it usually occurs at a lower abundance than other taxa.

Compared with bacteria, PCA of fungal communities results in

more clearly clustered samples (Figure 2c), as PC1 separates samples

by transect and PC2 separates leaf and root samples. These patterns

are driven by differences in the enrichment and presence–absence of

taxa (Figure 2d). Notably, only two of the top 10 fungi in leaves are

also among the top 10 root fungi, and only one of these is common

along both transects, a member of the Mycosphaerella, a genus that

includes the cultivated strawberry pathogen M. fragariae (Ehsani-

Moghaddam, Charles, Carisse, & Khanizadeh, 2006).

Taken together, these patterns are consistent with the hypothesis

that fungi are dispersal limited compared with prokaryotes (Coleman-

Derr et al., 2016). To explore this possibility further, we compared the

distribution patterns of bacteria and fungi. Specifically, we examined

whether the top 250 taxa from each kingdom were found along one

or both transects. Overall, we found that the top bacteria are more

widely distributed than the top fungi (Figure 3 and Figure S5), as 50%

(b)

(a)

F IGURE 1 The taxa in the F. vesca microbiome. The relative abundances of (a) bacterial and (b) fungal classes in the leaf, root and soil
microbiome. The North American (NAm) and European samples are plotted in the top and bottom row of each panel, respectively [Colour figure
can be viewed at wileyonlinelibrary.com]
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of the top bacteria, but fewer than 30% of the top fungi, were

detected along both transects.

3.2 | The drivers of plant microbiome variation

We next examined how soil, climate and geography influence the

overall similarity (beta diversity) and the number of taxa (richness, a

measure of alpha diversity) within the microbiome. The environmental

measurements include the availability of soil nutrients, seasonal esti-

mates of precipitation and temperature, slope and more (Figure S6,

Table S2, and Data S2). Each compartment of the microbiome was

analysed separately to investigate whether the factors that drive
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microbiome assembly differ between leaves and roots, epiphytes and

endophytes, and bacteria and fungi. Using transects as replicates also

enabled us to consider the local and global importance of each envi-

ronmental factor.

First, we performed PCA of the top 250 taxa within each micro-

bial compartment. A forward selection procedure was used to under-

stand which factors affect community similarity while adjusting for

the geographic coordinates of each sample to control for dispersal

limitation. With leaf-epiphytic fungi (Figure 4ab), for example, we

explained 27% of the variation in North American and 30% in

European sites (FDR ≤ 10%). Although much of this variation is

explained by local environmental variability, some environmental con-

ditions surprisingly predict beta diversity along both transects

(Figures S7 and S8). For example, in the case of leaf-epiphytic fungi,

variation along PC1 is consistently associated with temperature and

precipitation, while variation along PC2 is linked to the ratio of iron to

manganese (Fe/Mn) and other local factors. Similarly, temperature

and manganese predict the structure of bacterial communities

(Figure 4c,d and Figure S7). Manganese was recently found to pro-

mote carbon fixation in bacteria (Yu & Leadbetter, 2020), which may

explain its role in plant-microbiome assembly. Compared with epi-

phytes, analyses of endophytes generally resulted in weaker R2 values,

which implies that endophytes are more strongly influenced by

unmeasured abiotic variables, the granularity of our measurements

and/or host-genetic effects. Nevertheless, we found a few consistent

predictors of endophytic similarity across transects, such as wind

speed for leaf bacteria and water vapour pressure for fungi

(Figure S7).

The number of microbes (that is, richness) within each micro-

biome compartment differs among habitats (Figure S9). In addition,
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richness is strongly predicted by the environment. We found that bac-

terial and fungal richness are predicted by many of the same environ-

mental factors. For example, variation in both the bacterial and fungal

communities is driven by the amount of humus, the Ca/Mg ratio and

other factors in North America (Figure S10). In Europe, both bacterial

and fungal richness are predicted by variables related to evapotranspi-

ration, clay and copper. To improve power, we combined both king-

doms into one analysis, which revealed that the variables that best

predict alpha diversity are related to temperature (Figure 5a), which is

consistent with analyses of beta diversity (Figure 4, Figures S7 and

S8). On average, richness in the microbiome is lower for plants col-

lected from areas that have historically experienced colder

temperatures.

Apart from temperature, leaf- and root-microbiome richness

appears to be driven by local environmental heterogeneity along each

transect (Figure 5a). As one example, diversity in the leaf microbiome

is associated with the availability of the cations Ca and K in North

American populations; however, neither mineral has a strong main

effect in European sites, where the abundance of each cation is highly

variable (Figure S11). This raises the possibility that the effects of

these elements are masked by other environmental conditions in our

European sites.

We thus asked whether the soil and climatic drivers of micro-

biome assembly are context-dependent. To do so, we used quasi-

Poisson generalized linear models to identify environment-by-

environment (E � E) interactions associated with total richness. For

example, despite no evidence of a relationship between richness and

Ca availability along the European transect, a crossover interaction

between soil pH and Ca predicts rhizosphere (p = 1.21 � 10�12) and

leaf-epiphytic (p = 9.23 � 10�10) richness (Figure 5b). Like Ca, a weak

main effect of K availability in Europe is outweighed by crossover

interactions within the rhizosphere between K and lime

(p = 9 � 10�13), water vapour pressure (p = 9.1 � 10�11) and pH

(Figure 5b; p = 1.7 � 10�10). Soil pH is less acidic and, like the
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availability of Ca and K, less variable along our North American tran-

sect (Figure S11a–c). Likewise, the abundance of copper predicts

diversity in our European but not North American sites (Figure 5a).

Nevertheless, copper is part of several E � E interactions linked to

richness along the North American transect (Figure S11 and Table S3).

Overall, we found several E � E interactions where one of the

two variables in the interaction independently predicts diversity along

the other transect as a main effect (Figure 5, Figure S11, and

Table S3). Moreover, the E � E interactions that predict rhizosphere

diversity partly overlap across transects (Mantel r = 0.13, p = 0.01;

Figure S11d,e). Taken together, this suggests that the environmental

conditions that shape microbial communities are similar across large

geographical scales. Iteratively dropping out environmental variables

one at a time and repeating Mantel tests reveals that lime, which

buffers soil pH, is the factor that is most responsible for the similarity

of E � E interactions across continents (Figure S11f).

4 | DISCUSSION

Given the impact of microbiota on plant health and productivity

(Castrillo et al., 2017; Hiruma et al., 2016; Mendes et al., 2011; Xu

et al., 2018), it is essential to discover the factors that contribute to

plant-microbiome assembly. To characterize the composition of wild

strawberry's (F. vesca) leaf and root microbiome, we collected plants

from undisturbed populations in North America and Europe. Our

results demonstrate that plants collected from different continents

host many of the same taxa in their leaf- and root-microbial communi-

ties, although there is a stronger overlap among bacterial than fungal

communities. These results, and similar patterns in the soil micro-

biome, suggest that fungi and bacteria are differentially affected by

ecological processes such as dispersal limitation, demographic drift or

environmental selection.

To better understand how the environment affects plant-

microbiome assembly, we characterized the climate and soil condi-

tions in wild strawberry populations in North America and Europe.

We then sought to understand the conditions that best predict the

overall diversity of and within microbial communities. Our results indi-

cate that temperature is a main driver of microbiome assembly, which

has wide-ranging implications for predicting the outcome of climate

warming and reducing the effects of environmental change on plant

productivity. Notably, temperature is a key predictor of the overall

similarity (beta diversity) and the number of taxa (richness, a form of

alpha diversity) within the bacterial and fungal communities of both

leaves and roots.

Our study also demonstrates that many of the climate conditions,

soil nutrients and E � E interactions linked to plant-microbiome varia-

tion are shared across continents, which supports the feasibility of

using microbiome management to promote plant productivity. As one

example, we found a strong overlap in the climatic and soil factors

that predict the similarity of fungal communities on the leaf surface.

This overlap in predictors, combined with the observation that there

is limited overlap among the fungal taxa that actually inhabit these

communities, implies that the role of the environment in shaping

microbial assembly is more general than is often assumed.

Genetic differences among plants also contribute to microbiome

assembly (Balint-Kurti, Simmons, Blum, Ballare, & Stapleton, 2010;

Bergelson et al., 2019; Horton et al., 2014; Wagner et al., 2016;

Wallace et al., 2018; Walters et al., 2018), but few of the genes

involved (Zhang et al., 2019) have been identified or validated in natu-

ral settings. Although the effects of host genes may differ in magni-

tude in different environments, incorporating environmental

covariates (for example, diet and smoking status) in analyses has been

shown to improve power in studies of human disease (Igl et al., 2010)

and the human microbiome (Wang et al., 2016). To accelerate the dis-

covery of genes that influence the plant microbiome, future studies

should similarly model important environmental conditions such as

temperature and soil chemistry. Doing so will also enable the G � E

interactions that are reported to influence microbiome assembly

(Tabrett & Horton, 2020; Thiergart et al., 2020; Wang et al., 2016) to

be better understood.
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