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Abstract
Target capture has emerged as an important tool for phylogenetics and population 
genetics in nonmodel taxa. Whereas developing taxon-specific capture probes re-
quires sustained efforts, available universal kits may have a lower power to recon-
struct relationships at shallow phylogenetic scales and within rapidly radiating clades. 
We present here a newly developed target capture set for Bromeliaceae, a large and 
ecologically diverse plant family with highly variable diversification rates. The set 
targets 1776 coding regions, including genes putatively involved in key innovations, 
with the aim to empower testing of a wide range of evolutionary hypotheses. We 
compare the relative power of this taxon-specific set, Bromeliad1776, to the univer-
sal Angiosperms353 kit. The taxon-specific set results in higher enrichment success 
across the entire family; however, the overall performance of both kits to reconstruct 
phylogenetic trees is relatively comparable, highlighting the vast potential of univer-
sal kits for resolving evolutionary relationships. For more detailed phylogenetic or 
population genetic analyses, for example the exploration of gene tree concordance, 
nucleotide diversity or population structure, the taxon-specific capture set presents 
clear benefits. We discuss the potential lessons that this comparative study provides 
for future phylogenetic and population genetic investigations, in particular for the 
study of evolutionary radiations.
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La captura selectiva de secuencias de ADN ha surgido como una herramienta 
importante para la filogenética y la genética de poblaciones en taxones no-modelo. 
Mientras que el desarrollo de sondas de captura específicas para cada taxón requiere 
un esfuerzo sostenido, las colecciones de sondas universales disponibles pueden 
tener una potencia disminuida para la reconstrucción de relaciones filogenéticas poco 
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1  |  INTRODUC TION

Targeted sequencing approaches have emerged as a promising tool 
for studying evolutionary relationships in nonmodel taxa, enabling 
researchers to retrieve large data sets while requiring few ge-
nomic resources (Bossert & Danforth, 2018; Escudero et al., 2020; 
McDonnell et al., 2021; Soto-Gomez et al., 2019). Using custom 
baits, the method largely retrieves the same loci across a wide tax-
onomic scale, obtains comparable and mergeable data sets and may 
be combined with genome-skimming (Lemmon & Lemmon, 2013; 
Weitemier et al., 2014). Pre-existing knowledge of the targeted 
loci further provides opportunities to address specific questions on 
both deep and shallow timescales (Hale et al., 2020; Lemmon et al., 
2012). Finally, the method does not necessarily require a reference 
genome, is highly cost-effective and, with the ability to sequence 
herbarium samples, reduces the need for extensive sampling cam-
paigns (Blaimer et al., 2016; Hale et al., 2020; Weitemier et al., 2014). 
Target capture has been successfully applied to resolve phylogenies 
in diverse groups, from arthropods such as bees (Xylocopa, Blaimer 
et al., 2016; Apidae, Bossert et al., 2019) and Araneae (Hexathelidae, 
Hedin et al., 2018) to mammals (Cetacea, McGowen et al., 2020), and 
in numerous plant groups (Heuchera, Folk et al., 2015; Gesneriaceae, 
Ogutcen et al., 2021; Zingiberales, Sass et al., 2016 to name a few). 
The method's utility for studies at microevolutionary scales has 
been to date marginally explored, but several studies have pointed 
to the ability to analyse genomic diversity and estimate population 
genomic parameters (Choquet et al., 2019; Christmas et al., 2017; 
Derrien & Ramos-Onsins, 2020; de La Harpe et al., 2019; Sanderson 
et al., 2020). Nonetheless, the development of probes for target 
enrichment may pose several challenges: first, the need to iden-
tify regions conserved enough to ensure recovery, yet polymorphic 

enough to provide ample information (Soto-Gomez et al., 2019; 
Villaverde et al., 2018). Second, probe design requires detecting re-
gions without pervasive copy number polymorphism (Kadlec et al., 
2017; Lemmon et al., 2012), a particular challenge for angiosperms 
and other groups, where duplication events are ubiquitous (Van de 
Peer et al., 2017).

In contrast, universal kits offer an attractive alternative that 
require reduced efforts to establish, and provide comparable data 
sets across wider ranges of taxa (Johnson et al., 2019; Kadlec et al., 
2017). Such kits were designed to retrieve single-copy markers, for 
example, in the broad scope of amphibians (Hime et al., 2021), an-
thozoans (Quattrini et al., 2018), vertebrates (Lemmon et al., 2012) 
or angiosperms (Johnson et al., 2019). In the latter example, the 
Angiosperms353  kit is designed to target 353  single-copy genes 
across angiosperms. So far the kit has been employed successfully 
in resolving phylogenies, including but not limited to Nepenthes 
(Murphy et al., 2020), Schefflera (Shee et al., 2020) and the rapid ra-
diations of Burmeistera (Bagley et al., 2020) and Veronica (Thomas 
et al., 2021), establishing the kit as an eminent tool in macroevolu-
tionary research. Its utility at microevolutionary levels is yet to be 
fully realized, although several works have established its suitability 
to deliver informative signals at a lower taxonomic level (Beck et al., 
2021) and in acquiring population genomics parameters (Slimp et al., 
2021). The use of highly conserved markers in a universal kit may, 
however, limit resolution power. Generally, taxon-specific baits are 
expected to deliver a higher information content and hence more ac-
curate results (Kadlec et al., 2017), as enrichment success is known 
to drop with the level of divergence between sequences used for 
probe design and the targeted taxa (Liu et al., 2019). However, one 
study comparing the power of the universal Angiosperms353  kit 
and a taxon-specific kit to resolve phylogenomic relationship in 

profundas o de radiaciones rápidas. Presentamos aquí un conjunto de sondas para 
la captura selectiva desarrollado recientemente para Bromeliaceae, una familia de 
plantas extensa, ecológicamente diversa y con tasas de diversificación muy variables. 
El conjunto de sondas se centra en 1776 regiones de codificación, incluyendo genes 
supuestamente implicados en rasgos de innovación clave, con el objetivo de potenciar 
la comprobación de una amplia gama de hipótesis evolutivas. Comparamos la potencia 
relativa de este conjunto de sondas diseñado para un taxón específico, Bromeliad1776, 
con la colección universal Angiosperms353. El conjunto específico da lugar a un mayor 
éxito de captura en toda la familia. Sin embargo, el rendimiento global de ambos kits 
para reconstruir árboles filogenéticos es relativamente comparable, lo que pone 
de manifiesto el gran potencial de los kits universales para resolver las relaciones 
evolutivas. Para análisis filogenéticos o de genética de poblaciones más detallados, 
como por ejemplo la exploración de la congruencia de los árboles de genes, la diversidad 
de nucleótidos o la estructura de la población, el conjunto de captura específico para 
Bromeliaceae presenta claras ventajas. Discutimos las lecciones potenciales que este 
estudio comparativo proporciona para futuras investigaciones filogenéticas y de 
genética de poblaciones, en particular para el estudio de las radiaciones evolutivas.
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Cyperaceae reported surprisingly similar performance (Larridon 
et al., 2020) and similar findings were reported in Malinae (Ufimov 
et al., 2021) and in Ochnaceae (Shah et al., 2021). It remains to be 
established whether these findings apply to other taxa and other 
evolutionary scales, including at population level, where ample ge-
nomic variability is required to resolve intraspecific relationships and 
investigate patterns of genetic differentiation.

Until recently, the technology available to investigate evolu-
tionary questions in rapidly evolving groups featuring high net di-
versification rates has presented major obstacles, in particular for 
nonmodel groups. Decreasing costs of sequencing coupled with an 
ever-growing plethora of bioinformatic tools for data processing and 
downstream analysis has led to an increase in the use of methods 
like whole-genome sequencing, RNA sequencing and restriction-site 
associated DNA sequencing (RAD-Seq) in lieu of traditional meth-
ods employing few conserved markers (de La Harpe et al., 2017; 
McKain et al., 2018; Weitemier et al., 2014; Zimmer & Wen, 2013). 
Whole-genome sequencing however remains costly, posing barriers 
for research targeting large numbers of samples, organisms with 
large genomes and nonmodel organisms for which the availability 
of high-quality genomic resources is often limited (Hollingsworth 
et al., 2016; Supple & Shapiro, 2018). While RAD-seq is an afford-
able alternative and widely used in population genetics, the resulting 
data sets may fall short when screened for homologous sequences 
across distantly related lineages (but see, e.g., Heckenhauer et al., 
2018). Additionally, RAD-seq is less feasible when using degraded 
DNA from herbarium samples, and the use of short and inconsis-
tently represented loci across phylogenetic sampling may result in 
low information content and difficulties in assessing paralogy (Jones 
& Good, 2016; Lemmon & Lemmon, 2013; McKain et al., 2018).

Rapid evolutionary radiations are key stages in the evolutionary 
history across the Tree of Life and highly recurrent, hence an essen-
tial part of biodiversity research (Gavrilets & Losos, 2009; Givnish 
et al., 2014; Hughes et al., 2015; Soltis et al., 2019; Soltis & Soltis, 
2004). Fast evolving groups provide potent opportunities to inves-
tigate important questions in evolutionary biology, such as the in-
terplay between ecological and evolutionary processes in shaping 
biodiversity. A few notable study systems are the cichlid fish (McGee 
et al., 2020; Salzburger, 2018), Heliconius butterflies (Dasmahapatra 
et al., 2012; Moest et al., 2020), Anolis lizards (McGlothlin et al., 
2018; Stroud & Losos, 2020), Darwin's finches (Lamichhaney et al., 
2015; Zink & Vázquez-Miranda, 2019), white-eyes birds (Moyle et al., 
2009) and New World lupins (Nevado et al., 2016). Nevertheless, 
much remains unknown about the genomic basis underlying species 
diversification outside these intensively studied systems.

Research of rapidly diversifying lineages presents several chal-
lenges. First, a brief diversification period typically leads to imper-
fect reproductive barriers and incomplete lineage sorting, reflected 
in significant gene tree discordance and ambiguous relationships 
(Degnan & Rosenberg, 2009; Lamichhaney et al., 2015; Pease et al., 
2016; Straub et al., 2014). In addition, understanding ‘speciation 
through time’ poses a methodological challenge and requires con-
necting two conceptual worlds: macroevolutionary investigations, 

concerned with spatial and ecological patterns over deeper times-
cales, and microevolutionary approaches, providing insight into the 
processes acting during population divergence and speciation (Bragg 
et al., 2016; de La Harpe et al., 2017). Resolving phylogenomic rela-
tionships and disentangling the contribution of different genomic 
processes through time typically require large-scale genomic data 
sets and thorough taxon sampling efforts (Lemmon & Lemmon, 
2013; Linder, 2008; Straub et al., 2012).

Here, we present Bromeliad1776, a new bait set for targeted 
sequencing, designed to address a wide range of evolutionary hy-
potheses in Bromeliaceae: from producing robust phylogenies to 
studying the interplay of genomic processes during speciation and 
the genetic basis of trait shifts, such as photosynthetic and pollina-
tion syndrome. This highly diverse Neotropical radiation provides an 
excellent research system for studying the drivers and constraints of 
rapid adaptive radiation (Benzing, 2000; Givnish et al., 2011; Loiseau 
et al., 2021; Mota et al., 2020; Palma-Silva & Fay, 2020; Wöhrmann 
et al., 2020). Bromeliaceae as a whole is considered an adaptive 
radiation (Benzing, 2000; Givnish et al., 2011) and contains sev-
eral rapidly radiating lineages, most notably within Bromelioideae 
(Aguirre-Santoro et al., 2020) and Tillandsioideae (Loiseau et al., 
2021). It is a species-rich and charismatic monocot family, consist-
ing of over 3000 species, including crops in the genus Ananas and 
other economically important species (Luther, 2008). Members of 
the family are characterized by a distinctive leaf rosette that often 
impounds rainwater in central tanks (phytotelmata). A diversity of 
arthropods and other animal species and microbes reside in brome-
liad tanks, in some cases even leading to protocarnivory and other 
forms of nutrient acquisition (Givnish et al., 1984; Leroy et al., 2016). 
Bromeliads present a diversity of repeatedly evolving adaptive 
traits, which allowed them to occupy versatile habitats and ecolog-
ical niches (Benzing, 2000). CAM photosynthesis, water-absorbing 
trichomes, formation of tank habit, extensive rates of epiphytism 
and a diversity of pollination syndromes are some of the adapta-
tions correlated with high rates of diversification within the family 
(Benzing, 2000; Crayn et al., 2004; Givnish et al., 2014; Kessler et al., 
2020; Quezada & Gianoli, 2011).

To assess the utility of the Bromeliad1776  kit, we performed 
a comparison between our taxon-specific kit and the universal 
Angiosperms353 kit using several methods across different evolu-
tionary timescales. We present Bromeliad1776 in the light of meth-
odological considerations on bait design, data handling, analyses and 
other practical considerations.

2  |  MATERIAL S AND METHODS

2.1  |  Custom bait design

Whole-genome sequences and gene models from Ananas comosus 
v.3 (Ming et al., 2015) were used to design a bait set aiming to tar-
get (i) single-copy protein coding genes distributed across the whole 
genome, (ii) genes previously described as associated with key 



930  |    YARDENI et al.

innovation traits in Bromeliaceae (see below), (iii) markers previously 
used for phylogenomic inference in Bromeliaceae and (iv) genes or-
thologous to those in the Angiosperms353 bait set. The 1776  se-
lected genes are detailed in Table S1.

Genes in subset i were selected based on genetic diversity pa-
rameters calculated using whole-genome sequence and RNAseq 
data previously published by de La Harpe et al. (2020); data publicly 
available online at SRA Bioproject (PRJNA649109) with the popge-
nome R package v.2.1.6 (Pfeifer et al., 2014). Genomic regions were 
retained in this category if they shared at least 70% identity between 
A. comosus and T. sphaerocephala, and if they had nucleotide diver-
sity (π) values not exceeding the 90% quantile of the (π) distribution 
across genes for four Tillandsia species (Tillandsia australis, Tillandsia 
fasciculata, Tillandsia floribunda and T. sphaerocephala; data and anal-
ysis performed by de La Harpe et al. (2020)). We further excluded 
genes with a total exonic size smaller than 1100  bp, or individual 
exons smaller than 120 bp. Next, copy number variation was calcu-
lated based on clustering of A. comosus and Tillandsia transcriptome 
assemblies to generate three copy number categories—’single copy’, 
‘low copy’ (i.e. less than five copies) and ‘high copy’ (i.e. five or more 
copies). We included only single-copy genes in the design for bait 
subset i. Finally, we excluded genes that were located in genomic 
regions outside those assigned to linkage groups in the A. comosus 
reference (Ming et al., 2015). A total of 1243 genes were identified 
for this part.

The bait subset of genes associated with key innovative traits in 
Bromeliaceae (subset ii above) included (1) genes putatively under 
positive selection along branches relevant to C3/CAM shifts (de La 
Harpe et al., 2020), (2) genes that exhibit differential gene expression 
between CAM and C3 Tillandsia species (de La Harpe et al., 2020) 
and (3) genes putatively associated with photosynthetic and devel-
opmental functions, or with flavonoid and anthocyanin biosynthe-
sis, according to the literature (e.g. Goolsby et al., 2018; Ming et al., 
2015; Palma-Silva et al., 2016; Wai et al., 2017). Ananas comosus 
genes with the highest match scores (calculated as lowest E-score in 
BLASTP, Madden (2003)) against the sequences of genes from the 
literature were added to the bait set (see Table S2 for details). A total 
of 1612 genes underpinning innovative traits were included in the 
bait design, regardless of criteria used for subset i for size, similarity 
and duplication rate.

Markers previously used for phylogenomic inference in 
Bromeliaceae (subset iii) were obtained from the literature, spanning 
13  genes (e.g. Barfuss et al., 2016; Machado et al., 2020; Schulte 
et al., 2009, see TS2 for full list). Genes orthologous to those in the 
Angiosperms353 bait set (Johnson et al., 2019) were identified using 
the orthologous gene models from A. comosus based on gene anno-
tations (Ming et al., 2015) or using BLASTP (Madden, 2003), totalling 
281 genes.

Finally, we used a draft genome of T. fasciculata (Jaqueline Hess, 
personal communication) to exclude from all candidates genes that 
exhibited multiple BLASTN hits, if they have not been previously 
described as duplicated within the genus (de La Harpe et al., 2020). 
Specifically, we excluded genes that matched another genomic 

sequence of at least 100 bp with high similarity score (>80%) and 
low E-value (<10−5). In an additional round of filtering performed 
by the manufacturer of the final bait set, Arbor Biosciences (Ann 
Arbor, MI, USA), multicopy genes with sequences that are more than 
95% identical were collapsed into a single sequence and baits with 
more than 70% GC content or containing at least 25% repeated se-
quences were excluded. In addition, targets including exons smaller 
than 80  bp were completed with regions flanking the exons ac-
cording to the A. comosus reference genome. The final kit included 
1776 genes: 801 genes in subset i, 681 genes associated with key 
innovative traits, 13 genes representing phylogenetic markers and 
281 genes orthologous to the Angiosperms353 set. Probes were de-
signed with 57,445 80-mer baits tiling across targets in 2× coverage, 
targeting approximately 2.3 Mbp. The kit is subsequently referred to 
as the Bromeliad1776 bait set. Further specifications can be found 
in Tables S1 and S2 and in the github repository: https://github.com/
giyan​y/Brome​liad1​776/tree/main/MS_2021_scripts.

2.2  |  Plant material collection

We sampled a total of 70/72 Bromeliaceae samples (for 
Angiosperms353 and for Bromeliad1776, accordingly; Table S3), in-
cluding 56 accessions from the Tillandsioideae subfamily and 16 rep-
resenting the other subfamilies, except Navioideae. The divergence 
time between Tillandsioideae and subfamily Bromelioideae to which 
A. comosus belongs is estimated at 15  Mya (according to Givnish 
et al., 2014). Within Tillandsioideae, we sampled 38/40 individuals 
from five species of the Tillandsia subgenus Tillandsia (‘clade K’ in 
Barfuss et al., 2016; Sampling in Mexican populations illustrated in 
Figure S1).

2.3  |  Library preparation & enrichment

DNA extractions were performed using a modified CTAB protocol 
(Doyle & Doyle, 1987), purified using Nucleospin® gDNA cleanup kit 
from Macherey-Nagel (Hudlow et al., 2011) following the supplier's 
instructions with a twofold elution step and finally quantified with 
Qubit® 3.0 Fluorometer (Life Technologies).

For each sample, 200  ng DNA was sheared using Bioruptor® 
Pico sonication device (Diagenode) aiming for an average insert size 
of 350 bp, dried in a speed vacuum Eppendorf concentrator 5301 
(Eppendorf) and eluted in 30  L ddH2O. Genomic libraries were 
prepared using the NEBNext® Ultra TM II DNA Library Prep Kit 
for Illumina® (New England Biolabs) using reagents at half volumes 
following Hale et al. (2020) and using 11 PCR cycles, increased up 
to 13 cycled for libraries with low genomic output. Samples were 
double-indexed with NEBNext® Multiplex Oligos for Illumina® 
(New England Biolabs). Fragment sizes were inspected with Agilent 
Bioanalyzer (Agilent Technologies), and concentrations were mea-
sured with Qubit® 3.0 Fluorometer. Subpools of 11–14  equimolar 
genomic libraries were prepared using phylogenetic proximity and 

https://github.com/giyany/Bromeliad1776/tree/main/MS_2021_scripts
https://github.com/giyany/Bromeliad1776/tree/main/MS_2021_scripts
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DNA concentrations of the genomic libraries, which ranged from 
2.62 to 118.0 ng/L, following Soto-Gomez et al. (2019).

We used the Angiosperms353 and the Bromeliad1776 bait sets 
from Arbor Biosciences to enrich each subpool of genomic libraries 
independently with a single hybridization reaction of myBaits® tar-
get capture kits from Arbor Biosciences, following Hale et al. (2020). 
Average fragment size and DNA yield were estimated for each sub-
pool using Agilent Bioanalyzer and Qubit® 3.0 Fluorometer. Subpools 
were then pooled in equimolar conditions and sequenced at Vienna 
BioCenter Core Facilities on Illumina® NextSeq™ 550 (2  ×  150  bp, 
Illumina). Sequencing was conducted independently for either bait kit.

2.4  |  Data processing

The raw sequence data in BAM format were demultiplexed using 
deml v.1.1.3 (Renaud et al., 2015) and samtools view v.1.7 (Li et al., 
2009), converted to fastq using bamtools v.2.4.0 (Barnett et al., 2011) 
and quality checked using fastqc v.0.11.7 (Andrews, 2010). Reads 
were then trimmed for adapter content and quality using trimgalore 
v.0.6.5 (Krueger, 2019), a wrapper tool around fastqc and cutadapt, 
using settings --fastqc --retain unpaired. Sequence quality and 
adapter removal were confirmed with FastQC reports.

Quality and adapter-trimmed reads were aligned to A. comosus 
reference genome v.3 (Ming et al., 2015) using bowtie2 (Langmead 
& Salzberg, 2012) with the --very-sensitive-local option to increase 
sensitivity and accuracy. Samtools (Li et al., 2009) was then used to 
remove low-quality mapping and sort alignments by position, and 
PCR duplicates were marked using MarkDuplicates from picardtools 
v.2.25 (Picard Toolkit, 2019). Summary statistics of the mapping step 
were generated using samtools stats. Variants were called using 
freebayes v1.3.2-dirty (Garrison & Marth, 2012), and sites marked as 
MNP/complex were decomposed and normalized using the script 
‘vcfallelicprimitives’ from vcflib (Garrison, 2012). Next, AN/AC field 
was calculated using bcftools v.1.7 (Li, 2011) and variant calls were 
filtered using vcflib (Garrison & Marth, 2012) and bcftools. Given 
that freebayes does not perform automatic variant filtering steps, 
we identified sets of parameters that generate reliable final SNP 
sets, based on two independent criteria: the highest transition/
transversion ratios as reported by snpsift (SnpEff Cingolani et al., 
2012) and the lowest πN/πS (see Section 2.7). After a detailed eval-
uation, we used the following criteria to generate two high-quality 
SNP sets, one for each bait set: we considered genotype calls with 
per-sample coverage below 10×—as missing (NA) and excluded vari-
ants (i) marked as indels or neighbouring indels within a distance of 
3 bp, (ii) with depth of coverage at the SNP level lower than 500×, 
(iii) with less than 10 reads supporting the alternate allele at the 
SNP level or (iv) with more than 40% missing data. All genes in the 
Bromeliad1776 that passed the filtering criteria were included in the 
SNP set, regardless of their function. Summary statistics of the final 
SNP sets were generated using the script vcf2genocountsmatrix.py, 
namely the total number of SNPs, the proportion of on-target SNPs 
and the proportion of SNPs in some specific genomic contexts, with 

A. comosus genome v.3 as a reference. The full data processing script 
align_and_trim.sh and the vcf2genocountsmatrix.py script are both 
available at https://github.com/giyan​y/Brome​liad1776.

2.5  |  Bait specificity and efficiency

To explore bait specificity, we calculated the percentage of high-
quality trimmed reads on-target using samtools stats and bedtools 
intersect v2.25.0 (Quinlan & Hall, 2010) using the script calculat_
bait_target_specifity.sh (available from https://github.com/giyan​
y/Brome​liad1776). Targets for Bromeliad1776 were defined as 
the bait sequences plus their 500-bp flanking regions. Targets for 
Angiosperms353 were defined using orthogroups to A. comosus: 
gene annotations from the bait set were used to assign genes to 
orthogroups using orthofinder (Emms & Kelly, 2019). When several 
orthogroups were found for a single Angiosperms353  gene, we 
included all, resulting in 559 A. comosus genes assigned to ortho-
groups. Within the orthogroups, targets were again defined as ex-
onic regions plus their 500 bp flanking regions.

To provide insights into determinants of bait capture success, we 
calculated bait efficiency for all baits of Bromeliad1776. For each 
bait, efficiency was calculated as the number of high-quality reads 
uniquely mapping to each bait target region, averaged over samples. 
We then tested for the correlation of capture efficiency to several 
bait characteristics (copy number, GC content, number and size of 
exons in targeted gene, size of baits and phylogenetic distance to A. 
comosus) with a generalized linear model or Kruskal–Wallis test in r 
v.4.0.3 (R Core Team, 2020) using a negative binomial family.

2.6  |  Phylogenomic analyses

We inferred phylogenomic relationships for all samples using two 
methods: a concatenation method, and a coalescent-based species 
tree estimation. The latter method was included as concatenation 
methods do not account for gene tree incongruence, which may re-
sult in high support for an incorrect topology (Kubatko & Degnan, 
2007), especially in the presence of notable incomplete lineage sort-
ing. In addition, gene tree incongruence analysis provides insight 
into molecular genome evolution, including the extent of incomplete 
lineage sorting and other genomic processes such as hybridization 
and introgression (Galtier & Daubin, 2008; Wendel & Doyle, 1998).

We used the variant and nonvariant genotypes to create a 
phylip matrix with vcf2phylip v.2.0 (Ortiz, 2019) and constructed 
a maximum-likelihood species tree for each bait set with raxml-ng 
v.0.9.0 (Kozlov et al., 2019), using 250 bootstrap replicates and a GTR 
model with an automatic MRE-based bootstrap convergence test. 
Next, we constructed a species tree using astral-iii v.5.7.7 (hereaf-
ter: ASTRAL, Zhang et al., 2018). For both the Angiosperms353 and 
the Bromeliad1776 sets, we separated the matrix into independent 
genomic windows, defining each window as a gene according to the 
known exons and a 500-bp flanking region. For Angiosperms353, 

https://github.com/giyany/Bromeliad1776
https://github.com/giyany/Bromeliad1776
https://github.com/giyany/Bromeliad1776
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we extracted the 559  genes (assigned to orthogroups as ex-
plained above) as genomic windows using bedtools intersect. For 
Bromeliad1776, genomic windows were extracted using the A. co-
mosus gene sequences included in bait design. All loci and all ac-
cessions were included in species tree inference regardless of the 
percentage of missing data, since taxon completeness of individual 
gene trees is important for statistical consistency of this approach, 
and we expected only low levels of fragmentary sequences (Mirarab, 
2019; Nute et al., 2018). After excluding genes with zero coverage, 
269 genes and 1600 genes were included in species tree inference 
for Angiosperms353 and Bromeliad1776, respectively.

For each gene, a maximum-likelihood gene tree was inferred using 
pargenes (Morel et al., 2019) with raxml-ng (Kozlov et al., 2019), using 
a GTR model with an automatic MRE-based bootstrap convergence 
test. Loci with insufficient signal may reduce the accuracy of species 
tree estimation (Mirarab, 2019), hence, in all gene trees, nodes with a 
bootstrap support smaller than 10 were collapsed using Newick util-
ities (Junier & Zdobnov, 2010). A species tree was then generated in 
ASTRAL with quartet support and posterior probability for each tree 
topology. The number of conflicting gene trees was calculated using 
phyparts and visualized using the script phypartspiecharts.py (avail-
able from https://github.com/mossm​atter​s/MJPyt​honNo​tebooks).

2.7  |  Population structure and nucleotide 
diversity estimates

To explore the genetic structure within the Tillandsia species complex, 
we focused on five species from 15  localities (Table S3 and Figure 
S1). We first used plink v.1.9 (Chang et al., 2015) to filter out SNPs 
in linkage disequilibrium. Population structure was further explored 
through individual ancestry analysis, with identity-by-descent matrix 
calculated by plink and inference of population structure using admix-
ture v.1.3. with K values ranging from one to ten, and 30 replicates for 
each K, using a block optimization method (Alexander & Lange, 2011). 
A summary of the admixture results was obtained and presented using 
pong (Behr et al., 2016). The set of LD-pruned biallelic SNPs was fur-
ther filtered to allow a maximum of 10% missing data and used to 
perform a principal components analysis (PCA) with snprelate v.1.20.1 
(Zheng et al., 2012). Finally, for each Tillandsia species, we used the 
strategy of Leroy et al. (2021) to compute synonymous (πS) and non-
synonymous (πN) nucleotide diversities and Tajima's D, from fasta se-
quences using seq_stat_coding (Leroy et al., 2021).

3  |  RESULTS

3.1  |  Higher mapping rates and capture efficiency 
for taxon-specific set

On average, 4,401,958 (803,464–12,693,516) paired-end reads 
per accession were generated per Angiosperms353  library and 
2,962,023 (1,282,762–6,298,880) per Bromeliad1776  library. 

Overall, the mapping rates to the A. comosus reference genome were 
higher for libraries enriched with Bromeliad1776, with an average 
mapping rate of 82.3% (61.8%–95.9%) and 42.8% (22.1%–77.9%), 
for Bromeliad1776 and Angiosperms353, respectively (Figure S2, 
Table S4). Higher mapping rates were recorded for subfamilies 
Bromelioideae and Puyoideae, as compared to Tillandsioideae, for 
both the Angiosperms353 and Bromeliad1776 sets (see Figures S3 
and S4, respectively). This may reflect the effect of reference bias, 
and in the case of Bromeliad1776, it may be further amplified by 
our kit design based on A. comosus (subfamily Bromelioideae). Bait 
specificity was high for Bromeliad1776 with on average 90.4% reads 
on-target (76.5%–94.2%), while for Angiosperms353 bait speci-
ficity was 14.0% (4.6%–30.1%; see Figure S2). Mapping rates and 
bait specificity were positively correlated for both bait sets (GLM, 
p < .01).

3.2  |  Bait efficiency depends on the 
genomic context

We investigated factors that may influence bait efficiency, starting 
with the contribution of gene copy number variation. We assumed 
three categories regarding the number of paralogs per orthogroup: 
single-copy, low-copy (i.e. less than five copies) and high-copy (i.e. 
five or more copies). The number of gene copies had a significant 
effect on bait efficiency and post hoc Dunn's test supported sig-
nificant differences in efficiency for comparisons between low-copy 
and high-copy, and between single-copy and low-copy (P = 2.8−44). 
Low-copy genes exhibit the lowest enrichment success, suggesting 
that the bait efficiency is not simply correlated with the number of 
gene copies (Figure 1). We also recovered a significant effect of the 
intragenic GC content and GC content of the baits on bait efficiency 
(GLM, P = 1.5−68). Finally, we investigated the possible link between 
efficiency and gene structure. Average exon sizes (P < 2.0−16) and 
total number of exons per gene (P = 1.1−89) were also positively cor-
related with enrichment success. The size of the smallest exon for 
all targeted genes was however not correlated with bait efficiency. 
Sequence similarity, measured as per cent of identity between 
Tillandsia sequences and those of A. comosus, was positively cor-
related with capture success (P = 4.8−13; Figure 1).

3.3  |  Both kits provided a large number of SNPs

After variant calling and filtering, we identified 47,390 and 
209,186  high-quality SNPs for the Angiosperms353 and the 
Bromeliad1776 bait sets, respectively. On average, missing data rep-
resented 23.7% of genotype calls per individual in Angiosperms353, 
but only 6.3% for the Bromeliad1776 kit. The differences in amount 
of missing data are likely associated with the higher mean depth 
per site across the Bromeliad1776  kit (6602), as compared to 
Angiosperms353 (3437). Focusing on the subgenus Tillandsia, we 
identified 15,622 SNPs for Angiosperms353 (including a total of 

https://github.com/mossmatters/MJPythonNotebooks
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18.9% missing data) compared to 65,473 polymorphic sites (2.9% 
missing data) for Bromeliad1776. In both full data sets and the 
subset including only Tillandsia samples, Bromeliad1776 recovered 
more variants in intronic regions compared with Angiosperms353. 
Angiosperms353 recovered a large proportion of off-target SNPs, 
whereas in Bromeliad1776 approximately 15% of the SNPs were re-
covered from flanking regions (Table 1). We discuss ascertainment 
bias that may rise due to the nonrandom selection of markers in the 
supporting information.

3.4  |  Similar phylogenomic resolution in 
concatenation method, Bromeliad1776 outperforms 
Angiosperms353 for species tree reconstruction

The Angiosperms353 and Bromeliad1776-based maximum-
likelihood phylogenetic trees recovered the same backbone phy-
logeny of Bromeliaceae, clustering subfamily Tillandsiaoedeae and 
the subgenus Tillandsia with high bootstrap values (Figure S5). 
Neither set obtained high support for interpopulation structure for 
Tillandsia gymnobotrya, but highly supported nodes separated T. fas-
ciculata accessions from Mexico and from other locations, and the 
populations of T. punctulata for the Bromeliad1776 data set were 

similarly separated. The tree topologies were identical, with the no-
table exception of the placements of Tillandsia biflora and Racinaea 
ropalocarpa and the genus Deuterocohnia (Figure S5, purple arrow). 
Overall, internal nodes are strongly supported for both sets, except 
for Hechtia carlsoniae as sister to Tillandsioideae, which is poorly 
supported for both sets. While several internal nodes are slightly 
less supported for the Angiosperms353  set, overall these results 
demonstrate the efficacy of both kits in phylogenomic reconstruc-
tion using concatenation approaches, indicating that as few as 47 k 
SNPs within variable regions provide reliable information to resolve 
phylogenetic relationships within the recent evolutionary radiation 
of Tillandsia.

Species trees as inferred with ASTRAL for both data sets like-
wise provided an overall strong local posterior support (Figure 2, see 
also Figures S8 and S9). Several nodes however exhibit lower local 
posterior support values for the Angiosperms353 tree than for the 
Bromeliad1776 tree. The topology for the Bromeliad1776 ASTRAL 
tree was similar to the ML tree, but differed again by placing 
Deuterocohnia as sister taxa to Puyoideae only. In the Angiosperms353 
tree, the topology differed from both ML trees and the ASTRAL 
Bromeliad1776 tree in several nodes. H. carlsoniae was placed as a 
sister taxa to all other subfamilies in the Angiosperm353 phylogeny. 
Notably, the placement of Catopsis and Glomeropitcrania differed, 

F I G U R E  1  Effects of (a) putative gene copy number, (b) gene GC content, (c) average exon size, and (d) per cent of identity on bait 
efficiency in Bromeliad1776 bait set, measured as the number of high-quality reads uniquely mapping to bait target region across samples. 
Continuous variable was binned and y-values higher than 1000 excluded for visualization in b–d
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as well as the placement of Cipurosis subandinai, T. biflora and R. 
ropalocarpa. Several internal nodes were poorly supported, such as 
the node separating the tribe Catopsideae and core Tillandsioideae, 
and the nodes separating Tillandsioideae from all other subfamilies. 
The differences in topology between the Angiosperms353 ASTRAL 
tree to all other trees (ML trees and Bromeliad1776 ASTRAL tree) 
together with the low posterior support suggest lower resolution 
power and a poor fit of this data set for resolving a species tree.

The length and average size of the input gene trees different 
among sets, with average window length of 304.6 bp and 819.9 bp 
and average gene tree support of 16.9 and 38.9 for Angiosperms353 
and Bromeliad1776 bait sets, respectively (Figure 2). An examina-
tion of gene tree concordance constructed with Bromeliad1776 data 
set allowed us to identify variable levels of gene tree conflict among 
nodes (Figure 2). Gene tree discordance was especially high for the 
split between Tillandsioideae and other subfamilies, as well as for 
the split between Puyoideae and taxa assigned to Bromelioideae. 
Furthermore, gene tree discordance and the proportion of uninfor-
mative gene trees were especially high for splits among clades within 
the K.1 and K.2 clades of subgenus Tillandsia. A similar analysis with 
Angiosperms353 yielded evidence for gene tree discordance, but a 
considerable number of gene trees were reported to be noninforma-
tive (grey part of the pie charts), especially within subgenus Tillandsia 
(Figure 2).

3.5  |  Strong interspecific structure, but little 
evidence for within-species population structure

After LD-pruning and retaining maximum 10% missing data, 1025 
and 32,941 biallelic SNPs were included for the Tillandsia PCA analy-
sis of the Angiosperms353 and Bromeliad1776 data sets, respec-
tively. Overall, both data sets provided evidence for interspecific 
structure, but not for population structure, with Bromeliad1776 re-
sulting in border-line higher resolution (slightly better separating T. 
foliosa from T. fasciculata). The percentage of explained variance was 
higher in the Bromeliad1776 set (19.3% and 16.5% for PC1 and PC2) 
as compared to the Angiosperms353 data set (14.5% and 11.8%, see 
Figures 3 and S6). Based on these two PCAs, we found no evidence 
for spatial genetic structure within each species, since accessions did 
not cluster by geographic origin on the two PCs presented, or any 
other PCs we investigated (see Figure S6).

In addition to PCA, we performed admixture analyses based 
on 9804 and 42,613 variants for the Angiosperms353 and 
Bromeliad1776  sets, respectively (Figure 4). We used a cross-
validation strategy to identify the best K and found clear support 
for K = 5 for the Bromeliad1776 set (Figure S7). In contrast, the 
CV pattern for the Angiosperms353  set varied widely, provid-
ing limited information about the best K. Lowest CV values were 
however observed for K = 9 with locally low values for K = 5 and 
K = 3 (Figure S7). We further investigated the admixture bar plots 
at different values of K. For K  =  5, very similar patterns can be 
observed for both sets, with the recovered clusters reflecting the TA
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expected species boundaries. The main difference between the 
two data sets was the ability of the Bromeliad1776 set to reach a 
more consistent solution (‘consensus’) among 30 runs, especially 
at large K, as compared to the runs based on the Angiosperms353 
bait set. The Bromeliad1776 was also able to distinguish between 
different sampling localities of T. punctulata and of T. fasciculata at 
K = 7–8 (Figure 4).

3.6  |  Distinct diversities hint at different 
demographic processes

Nucleotide diversity estimates were calculated for the 
Bromeliad1776 data set only, due to difficulties obtaining a relia-
ble SNP set with Angiosperms353 (see Section 2.4). Averaged lev-
els of nucleotide diversity at synonymous sites πS greatly varied 

F I G U R E  2  Coalescent-based species trees generated ASTRAL-III for samples enriched with Bromeliad1776 (left) and Angiosperms353 
(right, flipped for mirroring), on 269 and 1600 genes for each set, respectively. Node values represent local posterior probabilities (pp) for 
the main topology and are equal to 1 unless noted otherwise. Pie charts at the nodes show levels of gene tree discordance: the percentages 
of concordant gene trees (blue), the top alternative bipartition (green), other conflicting topologies (red) and uninformative gene trees 
(grey). At bottom, length and average bootstrap support for gene trees from either data set, according to the design of the bait set used for 
enrichment: Angiosperms353 (right) and Bromeliad1776 (left). Each gene was considered a single genomic window
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F I G U R E  3  Principal component analysis (PCA) plot for samples of Tillandsia subgenus Tillandsia enriched with two bait sets: (a) 
Angiosperms353 (1025 variants); (b) Bromeliad1776 (32,941 variants). Colours indicate different species according to legend
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among species, from 4.1 × 10
−3 to 8.1 × 10

−3 for T. foliosa and T. 
fasciculata, respectively (Table S5; Figure 5). Given the recent di-
vergence of these different species and their roughly similar life 
history traits, they are expected to share relatively similar muta-
tion rates; hence, the observed differences in πS are expected to 
translate into differences of long-term Ne. Looking at the distri-
bution of πS across genes, we found broader or narrower distri-
butions depending on the species, which explains the observed 

differences in averaged πS, as typically represented by the median 
of the distribution (vertical bars, Figure 5). Most species exhibit 
distributions of Tajima's D (Figure 5) that are centred around zero, 
with the notable exception of T. punctulata. The distribution of 
this species is shifted towards positive Tajima's D values, there-
fore indicating a recent population contraction, suggesting that 
this species experienced a unique demographic trajectory as com-
pared to the other species.

F I G U R E  4  Population structure of 5 Tillandsia subgenus Tillandsia species from 14 sampling locations inferred with the ADMIXTURE 
software. Samples were enriched with either of two bait sets: Angiosperms353 (9804 variants after LD-pruning) and Bromeliad1776 (42,613 
variants after LD-pruning), showing values of K = 2 to K = 9. Colours represent genetically differentiated groups, while each accession is 
represented by a vertical bar

F I G U R E  5  Distribution of Tajima's D and synonymous (πS) nucleotide diversity within each species for the Bromeliad1776 kit
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4  |  DISCUSSION

4.1  |  A taxon-specific bait set performs marginally 
better for phylogenomics

In this study, we compared the information content and performance 
of a taxon-specific bait set and a universal bait set for addressing 
questions on evolutionary processes at different scales in a highly 
diverse Neotropical plant group, including recently radiated clades. 
We found that the taxon-specific kit provided a greater number of 
segregating sites, yet contrary to our expectations, the abundance 
of information content did directly translate to a greater resolution 
power.

The universal and taxon-specific sets performed comparably 
when investigating macroevolutionary patterns: the inferred species 
trees are remarkably consistent between the two bait sets (Figures 
2 and S5). Notably, both sets were sufficiently informative to recon-
struct the relationships among the fastest radiating clades. These re-
sults resonate with previous comparative works (e.g. in Burmeistera, 
Bagley et al., 2020; in Buddleja, Chau et al., 2018; and in Cyperus, 
Larridon et al., 2020), where taxon-specific markers provided higher 
gene assembly success, but a comparable number of segregating 
sites for phylogenetic inference, indicating that universal bait sets 
are nearly as effective as taxon-specific bait sets, even in fast evolv-
ing taxa. The main advantage of the bromeliad taxon-specific set is 
its ability to provide additional resolution for deeper examination 
of gene tree incongruence (Figure 2), currently a fundamental tool 
in phylogenomic research (Edwards, 2009; Morales-Briones et al., 
2021; Pease et al., 2016).

The taxon-specific bait set performed marginally better to address 
hypotheses at more recent evolutionary scales and provided argu-
ably clearer evidence for inference of species genomic structure using 
clustering methods. In fact, genetic markers obtained from both data 
sets provided sufficient information to infer species but no geographic 
structure, suggesting that Tillandsia could be characterized by high gene 
dispersal among populations. Considering that the Angiosperms353 kit 
has shown potential to provide within-species signal, as recently 
demonstrated by Beck et al. (2021) on Solidago ulmifolia, and to esti-
mate demographic parameters from herbarium specimen (Slimp et al., 
2021), we would expect the taxon-specific set to accurately reveal a 
geographical genetic structure. However, the present study is gener-
ally based on small sample sizes per species (n = 4–8), mostly sampled 
within a limited geographic range, limiting our ability to draw robust 
conclusions on the levels of intraspecific population structure.

The Bromeliad1776  kit provided a substantially larger number 
of segregating sites (more than 200 k vs. 47 k in Angiosperms353; 
Table 1, Figure S2) due to higher enrichment success, following 
the expectation for higher sequence variation in custom-made loci 
(Figure 1, see also Bragg et al., 2016; de La Harpe et al., 2019; Kadlec 
et al., 2017). We accordingly found that rates of molecular diver-
gence are distinctly correlated with enrichment success in our sam-
pling (Figure 1), following the expectation that a universal kit will 
provide fewer segregating sites.

However, the difference in resolution power between the kits 
cannot be ascribed solely to the different numbers of SNPs, but rather 
to the length and variability of the obtained regions. The topology 
obtained with the Angiosperm353 data set under the multispecies 
coalescent model was substantially different from all other inferred 
trees and the input gene trees provided a low power to detect pat-
terns of gene tree discordance (Figure 2). We additionally observed 
that the highly conserved regions targeted by Angiosperms353 are 
shorter in comparison to Bromeliad1776 targets and thus result in 
shorter input windows for species tree inference (Figure 2). Hence, 
the patterns of gene tree discordance in the Angiosperms353 data 
set likely indicate incorrect gene tree estimation or other model 
misspecifications, rather than a biological signal. Specifically, 
coalescence-based methods are sensitive to gene tree estimation 
error (Zhang et al., 2018) and perform better with gene trees esti-
mated from unlinked loci long enough and variable enough to render 
sufficient signal per gene tree—this is especially true for data sets 
with many taxa. The high rates of uninformative genes trees, found in 
almost half of the intergenic nodes in the Angiosperms353 data set, 
are expected with increased levels of gene tree error, which in turn 
reduce the accuracy of ASTRAL (Mirarab, 2019; Sayyari & Mirarab, 
2016). In contrast, the Bromeliad1776 ASTRAL tree (Figure 2, left 
and Figure S9) resolved phylogenetic relationships among taxa with 
high posterior probability and a topology similar to the ML tree. 
Gene tree discordance analysis revealed high incongruence around 
certain nodes, possibly reflecting rapid speciation events.

Since inference of phylogenetic relationships under the mul-
tispecies coalescent and exploration of gene tree discordance are 
both pivotal to phylogenomic research (Degnan & Rosenberg, 2009; 
Edwards et al., 2016; Pease et al., 2016), a taxon-specific kit pro-
vides a clear advantage especially in recent rapid radiations, where 
gene tree conflict and incomplete lineage sorting are expected to be 
prevalent (Dornburg et al., 2019; Kubatko & Degnan, 2007; Roch & 
Warnow, 2015). In that regard, inference of the species tree with the 
Bromeliad1776 is a tool to drive further hypotheses concerning evo-
lutionary and demographic processes in the evolution of Tillandsia. 
Moreover, the features of the loci targeted provide an important op-
portunity to study selection (see Section 4.3).

4.2  |  Insights on Bromeliaceae phylogeny and 
demographic processes in Tillandsia

Both bait sets resolved the phylogeny of Bromeliaceae, including 
the fastest evolving lineages of the subfamily Tillandsioideae. The 
results generally agreed with previous findings of the relationships 
among taxa (Givnish et al., 2011, 2014). Several findings that con-
trast with the expected known phylogeny may point at a complexity 
of genomic processes in the evolutionary history of Bromeliaceae 
subfamilies. Both the ML tree and species tree did not support a 
monophyly of the subfamily Pitcairnioideae, which was represented 
by four samples and two genera in our phylogeny: Deuterochonia 
and Pitcarnia. Rather, the genus Deuterochonia was sister to 
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subfamily Puyoideae or sister to both Puyoideae and Bromelioideae 
subfamilies, inconsistent with the results of Barfuss et al. (2016) and 
Granados Mendoza et al. (2017). Interestingly, in a visualization of 
gene tree discordance we found high levels of incongruence and a 
high percentage of trees supporting an alternative topology in the 
node splitting the genera, indicating that several genomic processes 
such as hybridization and incomplete lineage sorting may have ac-
companied divergence in this group, contributing to the phylogenetic 
conflict and extending the challenges in resolving these evolutionary 
relationships. Within the core Tillandsioideae, the tribes Tillandsieae 
and Vrieseeae were found to be monophyletic, in accordance with 
previous work on the subfamily (Barfuss et al., 2016). Finally, within 
our focal group Tillandsia subgenus Tillandsia, clade K as suggested 
by Barfuss et al. (2016) and clades K.1 and K.2 as proposed by 
Granados Mendoza et al. (2017) were all well supported, further in 
agreement with their interpretation of Mexico and Central America 
as a centre of diversity for subgenus Tillandsia. Within Tillandsia, in-
congruence was prominent at the recent splits within clade K.1. and 
clade K.2 as expected in a recent rapid radiation, a result of high 
levels of incomplete lineage sorting, hybridization and introgression 
(Berner & Salzburger, 2015).

When applied to methods in population genetics, we obtained 
some evidence for a difference in demographic processes and in 
the level of genetic variation among species. This was especially 
true for the taxon-specific bait set: for example, the bait set dif-
ferentiated between populations of T. punctulata and T. fasciculata, 
but not T. gymnobotrya in a maximum-likelihood tree and ancestry 
analysis (Figures 4 and S5), indicating differences in interpopula-
tion genetic structure among species. The evidence for different 
demographic processes in these species extended to estimates of 
Tajima's D, where lower values may indicate a recent bottleneck. In 
addition, we found a unique distribution of nucleotide diversity for 
T. foliosa, possibly reflecting a low effective population size for this 
endemic species in contrast to the closely related, but widespread 
T. fasciculata. In all cases, our limited sampling given the large size 
of the family constrains our ability to draw conclusions of a ‘true’ 
phylogeny and to account for population structure. Our finding 
however suggests that nuclear markers obtained with a target 
capture technique can highlight genomic processes and be further 
applied to address questions in population genomics with a wider 
sampling scheme.

4.3  |  Future prospects and implications for 
research in Bromeliaceae and rapid radiations

Beyond the scope of this study, the availability of a bait set kit for 
Bromeliaceae provides a prime genetic resource for investigating 
several topical research questions on the origin and maintenance of 
Bromeliaceae diversity. Manifold studies of bromeliad phylogenom-
ics set forth the challenges of resolving species-level phylogenies 
with a small number of markers, particularly in young and speciose 
groups (Goetze et al., 2017; Granados Mendoza et al., 2017; Loiseau 

et al., 2021; Versieux et al., 2012). This particularly curated bait 
set allows highly efficient sequencing across taxa: within our study, 
we found high mapping success with 82.3% average read mapping. 
As expected, we documented a difference in enrichment success 
among taxa, explained by divergence time to the reference used for 
bait design (see Figure S4), suggesting possible deviations from the 
assumptions of nonrandomly distributed missing data that may mis-
lead phylogenetic inference (Lemmon et al., 2009; Streicher et al., 
2016; Xi et al., 2016). However, given the large enrichment success, 
downstream analysis with deliberate methodology can account for 
possible biases and provide robust inference with strict data filtering 
(Molloy & Warnow, 2018; Streicher et al., 2016). Hence, target en-
richment with Bromeliad1776 can produce large data sets with con-
sistent representation between taxa, allowing repeatability between 
studies and retaining the possibility for global synthesis by including 
sequence baits orthologous to the universal Angiosperms353 bait 
set. Moreover, with specific knowledge of the loci targeted in this 
set, the ability to obtain the same sequences across taxa and experi-
ments and to differentiate genic regions with the use of A. comosus 
models, this bait set offers a broad utility for research in population 
genomics.

Another important feature in the Bromeliad1776  set is the in-
clusion of genes putatively associated with key innovative traits in 
Bromeliaceae with a focus on C3/CAM shifts. Little is known about 
the molecular basis of the CAM pathway, an adaptation to arid en-
vironments which evolved independently and repeatedly in over 
36 plant families (Chen et al., 2020; Heyduk et al., 2019; Silvera 
et al., 2010). CAM phenotypes are considered key adaptations 
in Bromeliaceae, associated with expansion into novel ecological 
niches. In Tillandsia, C3/CAM shifts were found to be particularly 
associated with increased rates of diversification (Crayn et al., 2004; 
Givnish et al., 2014; de La Harpe et al., 2020). The Bromeliad1776 
bait set offers opportunities to address specific questions on the 
relationship between rapid diversification and photosynthetic syn-
dromes in this clade, including testing for gene sequence evolu-
tion. Additionally, the inclusion of multicopy genes, combined with 
newly developed pipelines for studying gene duplication and ploidy 
(Morales-Briones et al., 2021; Viruel et al., 2019), is beneficial for 
studying the role of gene duplication and loss in driving diversifica-
tion. With the increasing ubiquity of target baits as a genomic tool, 
we expect to see additional pipelines and applications emerging, 
further expanding the utility of target capture for both macro-and 
microevolutionary research.

5  |  CONCLUSIONS

Even as whole-genome sequencing becomes increasingly economi-
cally feasible, target capture is expected to remain popular due to its 
extensive applications in research. We found that evaluating the dif-
ferences in resolution power between universal and taxon-specific 
bait sets is far from a trivial task, and we attempted to lay out a 
methodological roadmap for researchers wishing to reconstruct the 



940  |    YARDENI et al.

complex evolutionary history of rapidly diversifying lineages. While 
a taxon-specific set offers exciting opportunities beyond phylog-
enomic and into research of molecular evolution, its development is 
highly time-consuming, requires community-based knowledge and 
may cost months of work when compared with out-of-the-box uni-
versal kits. Our results suggest that universal kits can continue to be 
employed when aiming to reconstruct phylogenies, in particular as 
this may offer the possibility to use previously published data to gen-
erate larger data sets. However, for those wishing to deeply investi-
gate evolutionary questions in certain lineages, a taxon-specific kit 
offers certain benefits during data processing stages, where knowl-
edge of the design scheme and gene models is extremely useful, and 
the possible return of costs is especially high for taxa emerging as 
model groups. We furthermore encourage groups designing taxon-
specific kits to include also universal probes, furthering the mission 
to complete the tree of life.
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