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Summary
Objective: Patients with absence epilepsy sensitivity <10% of their absences. 
The clinical gold standard to assess absence epilepsy is a 24-h electroencepha-
lographic (EEG) recording, which is expensive, obtrusive, and time-consuming 
to review. We aimed to (1) investigate the performance of an unobtrusive, two-
channel behind-the-ear EEG-based wearable, the Sensor Dot (SD), to detect typi-
cal absences in adults and children; and (2) develop a sensitive patient-specific 
absence seizure detection algorithm to reduce the review time of the recordings.
Methods: We recruited 12 patients (median age = 21  years, range = 8–50; 
seven female) who were admitted to the epilepsy monitoring units of University 
Hospitals Leuven for a 24-h 25-channel video-EEG recording to assess their 
refractory typical absences. Four additional behind-the-ear electrodes were at-
tached for concomitant recording with the SD. Typical absences were defined 
as 3-Hz spike-and-wave discharges on EEG, lasting 3 s or longer. Seizures on SD 
were blindly annotated on the full recording and on the algorithm-labeled file 
and consequently compared to 25-channel EEG annotations. Patients or caregiv-
ers were asked to keep a seizure diary. Performance of the SD and seizure diary 
were measured using the F1 score.
Results: We concomitantly recorded 284 absences on video-EEG and SD. Our 
absence detection algorithm had a sensitivity of .983 and false positives per hour 
rate of  .9138. Blind reading of full SD data resulted in sensitivity of .81, precision 
of .89, and F1 score of .73, whereas review of the algorithm-labeled files resulted 
in scores of  .83, .89, and .87, respectively. Patient self-reporting gave sensitivity 
of  .08, precision of 1.00, and F1 score of .15.
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1   |   INTRODUCTION

Typical absence seizures are episodes of sudden onset im-
pairment of consciousness accompanied by regular and 
symmetrical 3-Hz spike-and-wave discharges (SWDs) on 
the electroencephalogram (EEG).1 They appear in .7–4.6 
of 100  000 individuals across the general population.2 
Typical absence seizures occur in three idiopathic gener-
alized epilepsy syndromes, namely childhood absence ep-
ilepsy, juvenile absence epilepsy, and juvenile myoclonic 
epilepsy.3

Absence seizures place a burden on the patient’s qual-
ity of life due to constraints experienced in daily life, for 
example, the inability to drive a car and difficulties experi-
enced at school because of attention problems.4 Prognosis 
and outcomes depend, among other things, on the type 
of epilepsy syndrome and the efficacy of the initial treat-
ment.5 Nevertheless, data on remission rates remain in-
conclusive (range = 51%–93%) due to sparse research and 
the use of heterogeneous classification criteria for the di-
agnosis of absence epilepsy as well as for remission.6–8

To optimize therapy, accurate seizure counting is par-
amount. Current diagnostics are based on clinical history, 
in-hospital monitoring of seizures with video-EEG, and sei-
zure diaries kept by the patient. However, the latter poorly 
reflects the actual seizure frequency, as <50% of seizures 
are accurately reported by patients.9 Absence seizures are 
often the most challenging seizure type to be correctly iden-
tified by caregivers, usually due to the lack of a visible clini-
cal correlate.10 Research showed that patients reported only 
6% of all experienced absences,11 whereas caregivers of 
children reported 14%.10 Moreover, the use of gold standard 
video-EEG is limited to the hospital, is expensive, and does 
not allow for long-term monitoring.9 Other strategies, such 
as ambulatory EEG, are not available everywhere, and can 
add to the stigma that people with epilepsy already have.12

Therefore, the market of wearable seizure detection de-
vices has been growing steadily, but clinical adoption re-
mains challenging.13 EEG is the only biosignal that allows 
accurate detection of absences. EEG-based wearables have 
been previously developed, for example, the ear-EEG14,15 and 
Epilog16; however, little research has been done into wearable 
detection of absence seizures. In addition to achieving high 

detection accuracy, wearables should also be designed to be 
unobtrusive, easy to wear, and nonstigmatizing.17 Accurate 
logging of the frequency of seizures using a wearable would 
significantly contribute to patient management in the outpa-
tient setting. Moreover, (semi-)automated seizure detection 
would facilitate adoption in clinical practice.

We report the performance of an EEG-based wearable 
device detecting absence seizures. This CE-marked de-
vice, the Sensor Dot (SD; Byteflies), is a discrete,18 user-
friendly wearable that makes use of two behind-the-ear 
channels to detect seizures. This device was developed 
during SeizeIT1 (2016–2019). The current study is an ex-
tension of SeizeIT1 and part of a larger multicenter trial 
in which we focus on clinical validation of the SD in peo-
ple with typical absence, focal impaired awareness, and 
generalized tonic–clonic seizures (EIT Health: SeizeIT2; 
clinicaltrials.gov: NCT04284072).19

2   |   MATERIALS AND METHODS

2.1  |  Patients

Patients who were admitted to the epilepsy monitoring 
unit (EMU) for 24-h routine video-EEG monitoring to 
investigate refractory absence epilepsy, were recruited 
at University Hospital Leuven (UZ Leuven), Leuven, 
Belgium, between October 23, 2019 and February 24, 2020. 
Patients were included if they had refractory idiopathic 

Significance: Using the wearable SD, epileptologists were able to reliably detect 
typical absence seizures. Our automated absence detection algorithm reduced the 
review time of a 24-h recording from 1-2 h to around 5–10 min.

K E Y W O R D S

epilepsy, seizure detection algorithm, seizure underreporting, typical absence seizures, 
wearable seizure detection

Key Points
•	 Absence seizures can be accurately detected 

using an unobtrusive two-channel EEG-based 
wearable, the Sensor Dot

•	 The vast amount of recorded EEG data can be 
reduced with an automated absence seizure de-
tection algorithm

•	 Implementation of this algorithm suggests im-
proved performance and reduces time needed 
to review a 24-h EEG from 1–2 h to 5–10 min
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generalized epilepsy with typical absences and either the 
patient or a caregiver could keep a seizure diary. Patients 
with an implanted device, for example, a vagus nerve 
stimulator, were excluded from this study due to possible 
interference of magnets with the SD device. Written in-
formed consent was obtained from every participant. The 
ethical committee of UZ/KU Leuven approved this study.

2.2  |  Data collection

Patients underwent video-EEG monitoring (Schwarzer 
EEG amplifier, O.S.G.) using the standardized 25-electrode 
array of the International Federation of Clinical 
Neurophysiology.20 Behind each ear, two additional Ag/
AgCl cup electrodes (Ambu Neuroline cup, Ambu) were 
attached on the mastoid bone for concomitant record-
ing with the SD. The closest corresponding electrodes on 
25-channel EEG were T7 and T8 for the top electrode and 
P9 and P10 for the lower electrode. The SD, a small device 
of 24.5 × 33.5 × 7.73 mm and 6.3 g, was attached on the 
upper back using a patch (Figure 1), and two bipolar chan-
nels were created by connecting the ipsilateral top and 
lower electrode. Impedance was ≤5 kΩ at the beginning 
and checked throughout. The sampling rate of the SD and 
video-EEG was 250 Hz. Battery life and memory storage of 
the SD were 24 h and 2 Gb, respectively.

During their 24-h EMU stay, patients and caregivers 
(for pediatric patients) were also asked to report experi-
enced absences in a seizure diary.

2.2.1  |  Clinical data analysis

Comparison of SD to 25-channel EEG
BrainRT (O.S.G.) was used for the visualization of the 
EEG data. The 25-channel EEG was annotated for adults 
(W.V.P.) and children (K.J.). Five experienced epileptolo-
gists (A.V.D., C.D., E.V., L.Se., and W.V.P.) annotated the 
two-channel SD EEG blinded to clinical and 25-channel 
EEG data. In both EEG datasets, the onset and end of all 
3-Hz generalized SWDs, lasting 3 s or more, were marked. 
We will refer to these annotations as "absences". Examples 
of absences on the SD are shown in Figure 2.

First, to match the SD annotations to the ground 
truth EEG annotations, alignment of the SD data with 
the 25-channel EEG was needed. In addition to the eas-
ily removable constant offset between the two devices, 
clock drifts or jitters may cause nonstable misalignment. 
Two different clocks on the devices cause clock drifts. 
Even when the initial offset is removed, as time passes, 
the difference between the two clocks will result in an in-
crease in misalignment. In our case, the drift was random, 

meaning that it cannot be corrected for. We noted that the 
maximum drift is around 3  s/h. Furthermore, jitters are 
random variations in the timing offset from measurement 
to measurement. Instead of using time warping meth-
ods,21 in view of their high complexity, we proposed and 
used an alternative method, based on the computation 
of the cross-correlation of the two signals in segments. 
After resampling the SD at the same frequency as the 
25-channel EEG and removing the first 5 min (which are 
usually of lower quality), we performed the alignment 
in 1-h segments. First, we removed the initial onset. The 
cross-correlation of the first 3 h was computed, and the 
entire signal was moved to obtain maximal correlation for 
this segment. Then, we computed the cross-correlation 
of each 1-h segment with the respective segment in the 
25-channel EEG, sequentially. Each segment was moved 
to obtain the maximum correlation; all the following seg-
ments were moved with the same number of samples. 
After applying this method, the mean absolute misalign-
ment that may occur over the entire duration of the signal 
was 600 ms. If we segment the signal into smaller (<1 h) 
windows, the mean absolute misalignment can be further 
decreased at the expense of computation time.

Performance metrics: clinical validation
We compared the annotations of absences on the 
25-channel EEG and SD. Annotation of an overlapping ab-
sence on both datasets was considered a true positive (TP). 
Annotation of an absence on 25-channel EEG, but not on 
SD was considered a false negative (FN). Annotation of an 
absence on SD, but not on 25-channel EEG was consid-
ered a false positive (FP). The primary outcomes were sen-
sitivity, precision, and F1 score of the SD. Sensitivity of SD 
recordings evaluates how many seizures were successfully 
identified and was calculated as follows: TP / (TP + FN). 
Precision of seizure detection was computed using the fol-
lowing formula: TP / (TP + FP); this determines whether 
a seizure detected on SD is an actual seizure. Finally, the 
accuracy of the SD in comparison to the 25-channel EEG 
was measured using the F1 score: 2 × (precision × sensi-
tivity) / (precision + sensitivity), giving a value between 0 
(poor) and 1 (excellent). This analysis was performed for 
each epileptologist, and the median performance across 
epileptologists was calculated.

To evaluate interrater reliability, the intraclass correla-
tion coefficient and 95% confidence intervals were mea-
sured, using SPSS version 27 (IBM). A mean rating (k = 5), 
absolute agreement, two-way random effects model was 
used.

Patient self-reporting of seizures in a seizure diary was 
analyzed in relation to seizure detection on 25-channel EEG. 
Sensitivity, precision, and F1 score of self-reporting were cal-
culated. If the patient reported an event within 5 min after 
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the actual seizure, this was defined a TP. A Mann–Whitney 
U test was performed for nonnormally distributed data.

2.2.2  |  Automatic analysis with machine 
learning algorithm

We also propose a personalized semiautomatic seizure 
detection algorithm for detecting absences on SD EEG. 
The data with the algorithm-flagged regions were pre-
sented to the epileptologists, who only needed to decide 

whether the flagged segment was an actual seizure or 
an FP, leading to a reduction in review time (Figure 
1). The machine learning (ML) algorithm was imple-
mented in MATLAB 2017 and the built-in function, 
therein, for the training of support vector machines 
(SVMs).

Performance metrics: Validation of algorithm
The following metrics were applied to determine the per-
formance of the seizure detection algorithm (following 
the definitions in Vandecasteele et al.22):

FIGURE 1   Concept of the Sensor Dot (SD) used as a wearable to detect absence seizures. (1) Four electrodes (in orange) are placed behind the 
ears of the patient and connected to the mobile electroencephalographic (EEG) device, the SD, which is attached to the upper back via an adhesive (in 
blue). An enlarged image of the SD is given in the circle. (2) After 24 h of recording, the SD is placed in the docking station, which allows recharging 
of the battery. In addition, when the SD is in the docking station, the SD EEG data are automatically uploaded to the cloud via a Wi-Fi connection. (3) 
Afterward, the absence detection algorithm analyzes the data and flags segments of interest (in red). (4) Finally, the flagged data are sent back to the 
treating neurologist, who can then review the flagged SD EEG data in a short time.
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1.	 Detection sensitivity: TP/TP + FN. A seizure was de-
tected correctly (TP) if the detection occurred between 
the EEG onset and end of the seizure.

2.	 FP per hour. FPs within 10 s of each other were counted 
as one FP.

We will not report specificity measures, because for 
all cases the specificity was >99%, due to the highly 
imbalanced classes (the class of background EEG is 
dominant compared to the class of seizure segments).

Subsampling for balancing the classes
As a basis for designing our algorithm, the algorithm pro-
posed by Kjaer et al.23 was used, which is one of the very 
few algorithms designed for single channel absence 

seizure detection. We noticed that this algorithm suffered 
from stability issues, as the standard deviations of the 
sensitivity and the false alarm rate were high, mainly 
arising from the random selection of background sam-
ples for balancing the classes. We, therefore, exploited 
different undersampling approaches and opted for the 
use of an adapted version of the cluster-based undersam-
pling approach proposed by Yen and Lee.24 The number 
of background samples, Nk, selected from each cluster k 
was equal to Nk =mSs

Sbk
Sb

. We defined m as the ratio be-

tween the background and seizure samples we aimed to 
obtain in our training set, K as the number of clusters on 
which we clustered all the background samples, and 
Ss, Sb, Sbk as the total number of seizure samples, the total 
number of background samples, and the number of 

F I G U R E  2   Examples of 3-Hz spike-and-wave discharges visible on the two-channel Sensor Dot during an absence seizure in (A) a pediatric 
patient and (B) an adult patient. A high-pass filter of .53 Hz, a low-pass filter of 35 Hz, and a notch filter were applied. Sensitivity: 100 µV/cm. Time 
base: 10 s. Absences lasting 8 s (A) and 5 s (B) were marked. Ch1#1, left; Ch2#1, right
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background samples in the k cluster, respectively. A de-
tailed analysis on how the selection of the number of 
clusters, K, affected the performance of the subsampling 
can be found in Yen and Lee.24 In this study, m was set 
equal to 25 and K = Ss.

Preprocessing and feature calculation
Each SD channel was filtered with a bandpass filter (1–
25 Hz). Subsequently, the data were segmented in 2-s win-
dows with 50% overlap and features were calculated for each.

We tried to improve the performance obtained from the 
features used in Kjaer et al.23 by adding the features used in 
Vandecasteele et al.22 (and the use of the aforementioned 
subsampling method). To select the subset of the features 
used in Vandecasteele et al.,22 we performed a feature selec-
tion with random forests.25 Features 1, 3, and 11 represent 
the extra features added to those of Kjaer et al.23 The cross-
correlation Features 2 and 10 were not normalized to lag 
0 (contrary to those used in Kjaer et al.23), because we no-
ticed that this normalization decreased their discriminative 
power. Our final feature set is given in Table 1.

The 13 different features were extracted from each 
window and each channel separately. Due to the subject-
dependent differences in the amplitude of the EEG over 
time, normalization of the features was needed to achieve 
optimal detection of seizure events. We have used the 
median decaying memory as the optimal normalization 
method for line length features.26

Classification of seizure segments
A weighted SVM with a radial basis function kernel was 
used as classifier. Although a cluster-sized subsampling 
method was used for balancing the clusters, the ratio m 
was not set to 1 but equal to 25, which is why the weighted 
version of the classifier was used. The weights given to 
each nonseizure and seizure data point were N +Ss

2∗N
and

N +Ss
2∗SS

, 	
respectively, with N being the number of background 
samples selected during the subsampling and Ss the total 
number of seizure points. The number of seizures per pa-
tient (for the majority) was not enough to allow having 
both a training set, to employ cross-validation with k-
folds, and a separate test set. When partitioning the avail-
able data into three sets (test, validation, and training), the 
number of seizures that could be used for learning the 
model would have been drastically reduced, and the re-
sults might be highly affected by the random choice of the 
pair of (train, validation) sets. Hence, we opted for nested 
k-fold cross-validation.27,28 The cross-validation approach 
used was leave-one-seizure-out, if the subject had a maxi-
mum number of 10 seizures. For 10–19 seizures, we cre-
ated folds with two seizures each; for 20–29 seizures, we 
created folds with three seizures each, et cetera. The fold 

splits were set exactly in the middle of the nonseizure data 
between two seizures.

The hyperparameters were optimized per fold. The 
values of the hyperparameters of the SVM model (C and 
gamma) were selected using a fivefold cross-validation 
of the “fold-training set” (in a nested-cross validation 
scheme). The values that resulted in the maximum sen-
sitivity were selected (in our use-case, we were looking 
for maximum sensitivity to mark all possible events, after 
which they were reviewed by an epileptologist). Hence, 
the hyperparameter search is not likely to overfit the data-
set, as it is only exposed to a subset of the dataset provided 
by the outer cross-validation procedure. In the “inner k-
fold split” we optimized the hyperparameters, and in the 
“outer k-fold split” we estimated the generalization error.

Postprocessing
We tested two versions of the algorithm. In the first version, 
an alarm for seizure detection was given when two consecu-
tive windows were noted as seizures. In the second version, 
an alarm for seizure detection was given when three consec-
utive windows were noted as seizures. Furthermore, in the 
second version (hereinafter called “postprocessed version”), 
whenever two seizures (of three windows each) were sepa-
rated only by one nonseizure window, they were merged.

Clinical validation
Six epileptologists (A.V.D., C.D., J.M., L.Se., E.V., and 
W.V.P.) reviewed the files containing the labels made by 
the postprocessed version of the algorithm, and perfor-
mance was again calculated.

T A B L E  1   Feature set of the machine learning algorithm

Time domain (1) Zero crossings

(2) Cross-correlation between two 
consecutive windows

(3) Root mean square error amplitude

Frequency domain (4) Power of the signal in frequency 
band 1–30 Hz

(5) Relative power of the signal between 
bands 3–12 Hz and 1–30 Hz

Log-sum of wavelet transform after 
resampling at 128 Hz: (6) 32–64 Hz, 
(7) 16–32 Hz, (8) 8–16 Hz, (9) 2–4 Hz

(10) Cross-correlation of same window 
in two different bands, 3–12 Hz and 
1–30 Hz

(11) Dominant phase

(12) Mean phase variance

(13) Mahalanobis variance between 
each point of the 3–12-Hz band and 
1–30 Hz
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3   |   RESULTS

3.1  |  Study characteristics

We included 12 patients with typical absence seizures, of 
whom eight were adult and four were pediatric patients 
(median age = 21 years, range = 8–50 years, seven female). 
Further patient details are given in Table 2. Total recording 
time was 237 h, 11 min, and 21 s. The median recording time 
for a patient was 20 h, 28 min, and 22 s (range = 13:36:05–
21:38:47). In these 12 patients, we recorded 284 absences on 
25-channel EEG (Table S1). We obtained a median of 13 ab-
sences (range = 2–81), and a median seizure duration of 5 s 
(range = 3–22 s).

3.2  |  Review of full SD EEG  
recording

We report median performance across five epileptologists 
presented in an ascending order based on their score. A me-
dian sensitivity of .81 (range = .52–.84) and median precision 
of .89 (range = .53–.97) was obtained. Ultimately, a median 
F1 score of .73 (range = .63–.90) was obtained. Sixteen occur-
rences of correctly annotated absences on SD were present on 
25-channel EEG but not annotated. After revision by an epi-
leptologist (W.V.P.), we corrected the 25-channel EEG annota-
tion and rated the SD annotation as TP. The majority of FPs on 
SD were due to chewing artifacts (in 72% of all cases; Figure 
3A). Alternatively, seizures were usually missed because of 
signal distortion due to muscle artifacts and poor EEG quality 
(Figure 3B,C).

3.2.1  |  Interrater reliability

An intraclass correlation coefficient of .642 with a 95% 
confidence interval of .564–.709 was obtained, which cor-
responds to moderate interrater reliability.

3.2.2  |  SD performance metrics of seizures 
with a duration of ≥4 s

We observed that a large number of seizures lasting 3 s on the 
25-channel EEG had a shorter duration on the SD and hence 
were missed (Figure S1). We removed all seizures of 3 s and 
recalculated the performance metrics to observe potential in-
fluence. A median sensitivity of .86 (range =  .56–.88), precision 
of .88 (range = .51–.97), and F1 score of .76 (range = .64–.92) 
was obtained.

3.3  |  Results and review of algorithm-
labeled files

The three automated absence detection algorithms (Kjaer 
et al., our initial, and our postprocessed version of the algo-
rithm) were tested on the data of the 12 subjects. Results of 
these algorithms for each subject are presented in Table S2. 
Every algorithm ran 30 times. Kjaer’s algorithm had a sensi-
tivity of .9503 and FPs/h of 3.1281. The initial version of the 
algorithm outperformed it both in sensitivity and in FPs/h 
rate, with .9967 and 2.3929, respectively. The postprocessed 
version significantly decreased the FPs/h rate to  .9138 with 
a concomitant small drop in sensitivity to .983.

Because the postprocessed version detected >98% of 
absences on the SD EEGs, with approximately 62% fewer 
FP detections in comparison with the first version, we 
selected this algorithm for further study. We presented 
the algorithm-labeled SD EEG files to the epileptologists 
for visual review of seizures. A median sensitivity of .83 
(range = .77–.88), precision of .89 (range = .70–.99), and 
F1 score of .87 (range = .73–.89) was obtained. Although 
the medians of sensitivity and precision did not change 
considerably, the ranges were narrower due to fewer lower 
scores. The average time to review a 24-h, algorithm-
labeled SD EEG file was 5–10 min, in comparison to 1–2 h 
for full EEG review without automated annotations.

3.4  |  Performance of patient self-reporting

Self-reporting by patients or caregivers in seizure diaries 
was compared to the seizures detected on 25-channel 
EEG. Seizure diary data were missing for one patient. 
Seven of 11 patients reported zero absence seizures during 
the 24-h recording, although they had on average 19 ab-
sences. Only three of 11 reported absences, of whom two 
were pediatric patients and seizure reporting was done by 
a caregiver. Patients or caregivers reported 6% of the 3-Hz 
SWDs lasting between 3 and 6 s and 14% of the 3-Hz SWDs 
lasting longer than 6 s (Figure 4). Seizures that were re-
ported had a significantly longer duration (7  s, range = 
3–15  s) than unreported seizures (5  s, range = 3–22  s; 
p = .001). Over 11 patients, a sensitivity of .08, precision of 
1.00, and F1 score of .15 were obtained.

4   |   DISCUSSION

We showed that typical absence seizures can be accurately 
detected (F1 score = .73) using an unobtrusive EEG-based 
wearable with only two behind-the-ear channels. Visual 
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review of the SD EEG files, annotated with our automated 
absence detection ML algorithm, suggested an even better 
result (F1 score = .87) with a review time of only 5–10 min.

The situation of patients with refractory absence epi-
lepsy may be improved by optimizing antiepileptic drugs. 
However, the current basis for therapeutic decision-
making, namely the seizure diary, lacks objectivity. 
Because of the ability to accurately quantify 3-Hz SWDs, 
the benefits of long-term EEG monitoring to document the 

response to absence treatment had already been reported 
more than 25 years ago.29,30 Long-term EEG monitoring 
using current equipment is obtrusive, usually limited to 
24 h, and often performed in the hospital. Currently, the 
SD may allow for long-term unobtrusive, user-friendly 
monitoring at home and offers a new and complete frame-
work to ensure clinical adoption, as is shown in Figure 
1. Although the accuracy is not perfect, absences usually 
occur very frequently, and therefore it seems that this will 

F I G U R E  3   Common reasons for 
a false positive (FP) or false negative 
(FN) annotation on Sensor Dot. (A) 
Chewing artifact, characterized by 2-Hz 
slow waves with superimposed muscle 
artifacts, which were often mistaken for 
seizures (FPs). (B, C) Commonly missed 
absences due to the presence of chewing 
artifacts (B) and muscle artifacts (C). A 
high-pass filter of .53 Hz, a low-pass filter 
of 35 Hz, and a notch filter were applied. 
Sensitivity: 100 µV/cm. Time base: 10 s. 
Ch1#1, left; Ch2#1, right
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not significantly influence the outcome. Furthermore, our 
algorithm requires confirmation by a physician. Although 
some neurologists might not prefer this approach, others 
like to visually interpret the EEG and propose a therapy 
based on seizure frequency as well as waveform. By con-
trast, implementing a fully automated seizure detection 
would require an algorithm with a low computational 
power that can run locally on the SD, which is not yet 
feasible.

Typical absence seizures are characterized by abrupt 
impaired awareness and brief interruption of activities, 
with generalized 3-Hz SWDs on EEG. In our study, we 
defined an absence as having the latter characteristics on 
EEG for at least 3 s. This was done for research purposes 
only, considering that we aimed to study whether these 
typical EEG patterns would be equally recognizable using 
only two channels. A 3-s 3-Hz SWD might not always have 
a clinical correlate. Guo et al.31 found that 3-Hz SWDs 
with impaired behavior had on average a longer duration 
than 3-Hz SWDs without impaired behavior (7.9 ± 6.6 s 
vs. 3.8 ± 3.0 s). It was actually the power on EEG and func-
tional magnetic resonance imaging, and thus the intensity 
of physiological changes, at seizure onset that was associ-
ated with impaired behavior. This means that shorter 3-Hz 
SWDs may also have a clinical correlate, and that it is not 
possible to determine whether an absence was present 
merely based on 3-Hz SWD duration.

In this study, we confirmed the well-known issue of 
absence seizure underreporting. Even patients with 3-Hz 
SWDs lasting 7 s or longer underreported their absences 
in 86% of all cases. Unreported seizures typically had a 
shorter duration (5 s) than seizures that were picked up by 
patients or caregivers (7 s), which is in line with the obser-
vation by Guo et al.31 that seizures with impaired behavior 
usually have a longer duration. Interestingly, the precision 

of reported absences was 100%; that is, none of the patients 
reported an absence without concomitant 3-Hz SWD on 
EEG. From our data, the reason for this underreporting 
is unclear and warrants further study. In contrast to the 
seizure diary, the SD clearly reflected more accurately the 
actual seizure occurrence. As shorter absences arguably 
do not have a clinical correlate, patient underreporting 
remains a major issue even when absences lasted long 
enough to probably change behavior and consequently be 
picked up by someone. Because the SD EEG is an objective 
measure of 3-Hz SWD frequency and duration, it will by-
pass several of the problems with seizure diaries, such as 
unawareness of seizures, noncompliance, and inaccurate 
sensitivity.

We showed that typical absence seizures can be de-
tected using the SD, with a sensitivity of .83; that is, 17% 
of 3-Hz SWD lasting 3 s or longer on the 25-channel EEG 
were missed on SD EEG and represented FNs. Common 
reasons for FNs were artifacts. When using only two EEG 
channels, the presence of artifacts might distort the entire 
signal, whereas on 25-channel EEG patterns might still be 
visible on the remaining leads. Another reason for not an-
notating absences on SD EEG was the location of the elec-
trodes behind the ear. We choose this location to make the 
device as unobtrusive as possible. However, the best loca-
tion to record 3-Hz SWDs is in the frontal regions.32,33 The 
duration of 3-Hz SWDs on SD EEG was frequently some-
what shorter compared to the 25-channel EEG, which also 
covered the frontal regions (Figure S1).

Furthermore, typical absences were detected with a 
precision of .89; that is, only 11% of 3-Hz SWDs lasting 
3  s or longer annotated on SD were not present on the 
25-channel EEG and represented FPs. The majority of FPs 
were due to chewing artifacts, which resemble the SWD 
pattern. However, this chewing artifact is distinguishable 

F I G U R E  4   Percentage of seizures (defined in this study as a discharge lasting 3 s or longer) of different duration reported by the 
patients themselves or by caregivers for children. (A) Each duration separately. (B) Grouped into shorter and longer duration in relation to 
the findings by Guo et al.31 EEG, electroencephalographic
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from 3-Hz SWD by its frequency (around 2 Hz), with su-
perimposed muscle artifacts.

The SD data were read blindly twice by several neurol-
ogists, first the full SD EEG file and second the algorithm-
labeled SD EEG file. We noticed that both sensitivity and 
precision increased when the data were reviewed a second 
time, which in our view reflects a learning curve in read-
ing behind-the-ear SD EEG. We speculate that it is a matter 
of familiarization with the signals and that overall perfor-
mance will increase as readers gain more experience in re-
viewing SD data. It is also possible that the data reduction 
implemented by the automated algorithm allowed a shorter 
and more focused review, leaving less room for human error.

The proposed algorithm exhibited a significant differ-
ence in sensitivity to Kjaer’s algorithm,23 which was mainly 
due to the cluster-size subsampling method used for the 
balancing of the classes. We have shown that the use of a 
seizure detection algorithm is timesaving in reviewing 24-h 
SD EEG files of patients with typical absences. Our algo-
rithm is patient-specific, and hence data from each new 
patient are needed to retrain the algorithm. Practically, the 
first phase will consist of routine monitoring in the EMU, 
after which these data can be used to train the algorithm. 
The patient can then wear the SD at home. We argue that 
the time needed for annotating the hospital data is limited 
compared to the time needed for annotating extensive re-
cordings in the home environment. Furthermore, we be-
lieve that the increased performance of a patient-specific 
approach justifies the time needed to annotate a small por-
tion of the hospital data of each patient.

According to the standards for testing and clinical val-
idation of seizure detection devices,34 our study is clas-
sified as a Phase 2 study,34 because the SD was validated 
in 12 in-hospital patients (although we recorded 284 sei-
zures) at only one center with subsequent offline analysis. 
We plan a Phase 4 study, in which the accuracy and usabil-
ity of the SD in a home environment will be investigated 
in a multicenter trial (EIT Health: SeizeIT2; clinicaltrials.
gov: NCT04284072).19

The wearable, unobtrusive SD has the potential to 
become a game-changing medical device in the manage-
ment and research of patients with typical absences.
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