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The discovery of insulin in Toronto in 1921, now 100 years 
ago, was nothing less than a miracle. It quite rightly stands 
out as one of the most significant accomplishments of mod-
ern medicine and has undoubtedly saved the lives of millions 
of people now able to live with diabetes. It would, however, 
be neglectful to imagine a world without insulin without con-
sidering the true impact of its discovery on so many other 
aspects in medicine and science.

The discovery of insulin can be attributed to two groups 
of two people, Frederick Banting and Charles Best, and John 
Macleod and James Collip, all four of whom played distinct 
roles in orchestrating or conducting the experiments that led 
to the successful extraction of the active hormone from pan-
creata and the subsequent demonstration of its life-saving ef-
fect on blood glucose in people with diabetes.1,2 Banting and 
Macleod received the Nobel Prize for the discovery in 1923, 
and each decided to share their awards with Best and Collip, 
respectively. The pharmacological effect was so remarkable 
that it allegedly inspired one of the most renowned diabetol-
ogists at the time and in history, Elliott P Joslin, in Boston, to 
analogise what happened in front of him to a scene from the 
Old Testament in which God says ‘I will attach tendons to 
you and make flesh come upon you and cover you with skin; 
I will put breath in you and you will come to life’.2

Since the discovery, insulin preparations and insulin reg-
imens have been under continuous development. In the first 
decades, the challenge was to optimise the extraction and 
purification protocols and to provide longer-acting insulin 

preparations. The development of NPH (neutral protamine 
Hagedorn) insulin by Nordisk Insulin Laboratorium in 
Copenhagen in 1946 was an important milestone that made 
available a ready-to-use suspension-based product that re-
mains widely used even today. Another major event in the 
history of insulin development was the advent of recombi-
nant processes for insulin production in the late 1970s and 
early 1980s. This pivotal advance made it possible to pro-
duce human insulin in unlimited quantities and paved the way 
for engineering today's insulin analogues, offering crucial 
improvements in terms of, most prominently, convenience 
of use and the achievable magnitude of glycaemic control 
alongside a low risk of hypoglycaemia.

At this centenary hallmark in 2021, it is worthwhile re-
flecting on where science and medicine and in particular di-
abetes would have been without 100 years of insulin-inspired 
innovation. A stone's throw from the miracle that Joslin 
paraphrased, the discovery of insulin offered an immediate 
life-saving treatment for people with type 1 diabetes. Prior 
to its discovery in 1921, life expectancy was limited to a few 
years from diagnosis3; by 2015, a person with type 1 diabetes 
could expect to live for almost 50 years after a diagnosis at 
age 20 years, or achieve a life expectancy to within 10 years 
of that expected for someone without diabetes.4 The key re-
alisation leading to this unprecedented development was the 
importance of good glycaemic control to reduce the risk of 
microvascular complications as demonstrated in the 1980s 
and 1990s by the seminal DCCT5 and UKPDS6 studies. 
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Clearly, developments in insulin delivery systems combined 
with increasingly convenient and accurate self blood glucose 
monitoring, have also made a major contribution to improved 
outcomes. That said, the ensuing pursuance of blood glucose 
normalisation would have been associated with greater risks 
of hypoglycaemia and more limitations to life style, had new 
and better insulin preparations not been made possible. With 
the positive impact of improved glycaemic control not just on 
microvascular but also macrovascular complications7,8 and 
numerous clinical outcomes, including, for example, preg-
nancy,9 and indeed many aspects of quality of life, it is almost 
impossible to imagine a world without insulin.

Undoubtly, the reality of diabetes therapy and of living 
with diabetes would have been tremendously different had 
insulin not been discovered. But the full impact of the dis-
covery of insulin goes far beyond the benefits to people with 
diabetes, and includes what insulin has done for a wide range 
of scientific disciplines, such as protein science, biotechnol-
ogy and device and delivery technology. For example, insu-
lin has been widely canonised as the scholarly example of a 
therapeutic protein, and many technologies have been devel-
oped based on insulin as an arguably universally applicable 
model among proteins. One reason has been the relatively 
easy access to large quantities of pure product, an obvious 
but often forgotten prerequisite in experimental laboratory-
based protein chemistry. It is remarkable to think that it was 
not until 30–35  years after insulin was discovered that its 
molecular composition was actually identified. In the early 
1950s, insulin became the first protein to be sequenced, and 
this milestone finally led to the realisation that proteins are 
composed of distinct, linear chains of amino acids.10 This 
seminal work of sequencing the A and B chains of the insulin 
molecule, as well as identifying the three disulphide bridges, 
earned Fred Sanger in Cambridge, UK, his first Nobel Prize 
in 1958. Sanger allegedly described himself as ‘just a chap 
who messed about in his lab’11; nevertheless, he later went on 
to win his second Nobel Prize in 1980 for sequencing DNA 
(shared with Walter Gilbert), establishing the pivotal recog-
nition of the need for the genetic code for protein production 
to also be ordered. Without the access to large amounts of 
pure insulin, when would we would have concluded on the 
primary structure of proteins, and later gone on to under-
stand how this links to gene translation? Moving forward, in 
1964, insulin became one of the first proteins, for which the 
3D structure was established; Nobel Prize laureate Dorothy 
Hodgkin and team solved the insulin structure, revealing the 
secondary, tertiary and quaternary structures.12

Following the identification of its amino acid sequence, 
insulin has been widely claimed as being the first protein 
to be chemically synthesised.13 Insulin was also among the 
polypeptides to be synthesised by Bruce Merrifield's pio-
neering solid phase approach,14 a method that revolutionised 
peptide and protein synthesis and also awarded Merrifield 

a Nobel Prize in chemistry in 1984. Moreover, proinsulin, 
which was discovered by Don Steiner and published in a sem-
inal paper in 1967,15 was the first prohormone to be isolated 
and sequenced. Steiner outlined the biosynthetic pathway for 
insulin production via proinsulin in the beta cells in the islets 
of Langerhans in the pancreas, and we have later come to 
understand the more general significance of prohormones in 
protein expression and secretion. Paving the way for the cru-
cial quantification of substances in biological fluids, insulin 
was also among the first peptide hormones to be measured 
with high sensitivity and specificity by radioimmunoassay, 
contributing to Rosalyn Yalow winning the Nobel Prize in 
physiology and medicine in 1977.

As a consequence of its history, it is not unreasonable to 
conclude that the reach of insulin, as a model compound, 
has extended from medicine to biology and to chemical 
technology.

But probably the greatest example of insulin as a model 
compound with implications for both medicine and technol-
ogy is the successful production of the hormone by genetic 
engineering, when it became the first application of recom-
binant technology for large-scale protein production. It was 
shown in 1978 that bacteria could be induced to produce 
proinsulin.16 The first process to be taken forward in an in-
dustrial setting was developed by researchers at Genentech 
and published in 1979,17 and was based on separate cloning 
in Escherichia coli of the insulin A and B chains, followed 
by recombination of the two individual chains. This process 
was expanded on to an industrial scale by Eli Lilly, whereas 
Novo Nordisk in 1985 published a recombinant technology 
to produce single-chain insulin precursors in yeast followed 
by enzymatic conversion to insulin.18 Since that time, re-
combinant production of peptides and proteins has become 
an integrated part of biopharmaceutical and biotechnological 
research and development with far-reaching impacts on med-
icine and beyond.

Genetic engineering above all has allowed for the rational 
design of protein drugs. In the field of insulin, it has allowed 
for the intricate design of analogues with tailored time-action 
profiles with associated benefits on convenience, glycaemic 
control and risk of hypoglycaemia. Starting with insulin, in-
tegration of recombinant technology and chemical protein 
modification, such as acylation with fatty acids,19 has been 
successfully applied to extend the stability and thereby the 
duration of action to 1 day or 1 week and possibly even longer 
for several licensed and in-development drugs such as insu-
lin degludec,20 insulin icodec21 and glucagon-like peptide-1 
(GLP-1) analogues including liraglutide and semaglutide,22 
as well as tirzepatide.23 Finally, completing the quest for a 
holy grail that has been going on since the advent of protein-
based pharmaceuticals, the technologies have recently been 
shown to facilitate oral delivery of proteins such as GLP-1 
analogues24 and insulin itself.25
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Lastly, because of its narrow therapeutic window and 
the ensuing need for timely delivery to regulate blood glu-
cose and maximising time in range, insulin has also been the 
prime example within development of device and delivery 
technologies. Technologies built around insulin include pen 
injection devices, first commercially introduced in 1985,26 
which in the present age of digitalisation are also made avail-
able in versions with memory functions and connectivity for 
data transfer. Together with data from glucose monitoring 
systems, connected pens allow for more informed dialogue 
between patient and physician about compliance and con-
trol. Starting with insulin, pen-like injection devices have 
later been developed for other injectable therapies as well. 
Moreover, insulin has also been the first target for develop-
ment of advanced pump systems, so far culminating in the 
recent development of ‘hybrid closed loop’ systems that pro-
vide automatic feedback from a continuous glucose sensor 
to regulate the rate of insulin delivery.27,28 Taken together, 
insulin also holds promise to be spearheading the application 
of digital technologies for delivery and dialogue in a world 
where data and information gets more and more critical for 
individualised therapy.

Their brilliance notwithstanding, the chance was little that 
the four scientists whose group was honoured by the Nobel 
Prize in 1923 could have foreseen what would be the expan-
sive consequences of their discovery a century ago. We are 
allowed to hope that future science will be as impactful on 
both technological development and patient care in diabetes 
and beyond.
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