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Artificial Intelligence in the
Assessment of Female Reproductive
Function Using Ultrasound
A Review

Zhiyi Chen, MD, PhD, Ziyao Wang, MD, Meng Du, MD, Zhenyu Liu, MD

The incidence of infertility is continuously increasing nearly all over the world in
recent years, and novel methods for accurate assessment are of great need.
Artificial Intelligence (AI) has gradually become an effective supplementary
method for the assessment of female reproductive function. It has been used in
clinical follicular monitoring, optimum timing for transplantation, and prediction
of pregnancy outcome. Some literatures summarize the use of AI in this field, but
few of them focus on the assessment of female reproductive function by AI-aided
ultrasound. In this review, we mainly discussed the applicability, feasibility, and
value of clinical application of AI in ultrasound to monitor follicles, assess endome-
trial receptivity, and predict the pregnancy outcome of in vitro fertilization and
embryo transfer (IVF-ET). The limitations, challenges, and future trends of ultra-
sound combined with AI in providing efficient and individualized evaluation of
female reproductive function had also been mentioned.
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T he incidence rate of infertility is continuously rising worldwide
in that approximately one in every six couples suffers from
infertility.1,2 Assessment of female reproductive function is one

of the significant steps in infertility. However, there are many factors
which are correlated with the success rate of pregnancy (including age,
environment, endocrine level, ovarian reserve, endometrial receptivity,
etc.), and the pregnancy results are always caused by various factors.3–5

The important role of ultrasound in female reproductive function is
evaluation of ovarian reserve (OR) and endometrial receptivity (ER).6

In the assessment of OR, serial ultrasound examinations can provide
reliable markers to follicular monitoring, the diagnosis of Polycystic
Ovary Syndrome (PCOS), and prediction of oocyte quality and
pregnancy outcomes, such as ovarian follicular diameter and volume,
number of follicles, ovarian stromal blood flow index, etc.7 For ER,
endometrial thickness and volume, endometrial morphology, and spiral
arterial blood flow index are effective evaluation indicators.8,9 However,
the predictive values were still controversial due to the complex
markers, limited sample size, and different diagnostic standards among
previous studies. In this circumstance, Artificial Intelligence (AI)-aided
diagnosis may be one of the effective solutions.

Over the past few years, AI was regarded as an efficient and
reliable method to aid diagnosis, treatment, and prognosis in the
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medical field, especially after the breakthrough of
medical big data analysis and management.10,11

Regarding the female reproductive system, a number
of studies have focused on the diagnosis and treat-
ment of diseases (such as ovarian cancer and cervical
cancer) aided by the AI technique,12,13 however, func-
tional assessment is equally important. Currently, AI
is currently being tested in several areas of reproduc-
tive medicine, including sperm identification and
morphology, automatic embryo cell stage prediction,
embryo evaluation, and prediction of live birth, as
well as the development of improved stimulation pro-
tocols.14,15 Ultrasound in reproductive medicine, like
other disciplines, has been constantly improved by
the advances of AI technology. However, there is no
consensus on the efficiency and clinical value of
AI-aided ultrasound in the assessment of female
reproductive function, and to the best of our knowl-
edge, there is no systematic review which discusses
this topic. This paper aims to systematically review
the application of AI-aided ultrasound in female
reproductive function. We mainly focused on the
application of AI-aided ultrasound in the assessment
of ER and OR, as well as the prediction of pregnancy
outcomes (Figure 1). Meanwhile, we briefly discussed
its prospects of development. With an increased need
in improving the diagnostic abilities and increasing
treatment efficiency, it is important to provide effi-
cient and objective acquisition and evaluation of ultra-
sound images which would bring great benefits to
infertile patients.

Basics of Artificial Intelligence in Medical
Imaging

Artificial intelligence in medicine means dealing with
the prevention, diagnosis, and cure of diseases
through knowledge- and/or data-intensive computer-
based solutions.16 Medical imaging is one of the most
important application fields for artificial intelligence
in medicine, and its first application can date back to
the mid-twentieth century.17 We can see artificial
intelligence in medical imaging in two perspectives:
algorithm method and its clinical application. For
algorithm methods, Figure 2 shows the relationship
among artificial intelligence, machine learning, and
deep learning. Machine learning is a sub-field of

artificial intelligence, which consists primarily of tradi-
tional machine learning methods (such as regression,
decision tree, random forest, naïve Bayes and support
vector machine, etc.) and deep learning algorithms
(such as convolutional neural network, recurrent neu-
ral network, etc.). According to the aim of study,
machine-learning algorithms fall roughly into super-
vised and unsupervised. Supervised machine-learning
methods work based on apriori knowledge (a large
number of training cases containing inputs and the
desired output labels). More specifically, deep learn-
ing is a sub-field of machine learning, which employs
artificial neural networks with many layers to identify
patterns in huge dataset.18 The basic structure of deep
neural networks consists of an input layer, a number
of hidden layers, and an output layer. 19 For the clini-
cal application, AI in medical imaging is commonly
used for image segmentation (recognition and seg-
mentation of the region of interest), feature extrac-
tion (such as morphological and texture features),
and definition of classification systems (disease diag-
nosis).20 Nowadays, for the development of tech-
nique and algorithm, AI-aided ultrasound has become
a research hotspot.

AI-Aided Ultrasound in Ovarian Reserve:
From Accurate Segmentation to Clinical
Evaluation

Application Based on 2D and 3D Ultrasound
The first step for the diagnosis and treatment of infer-
tility is to understand the ovarian status and follicle
monitoring. Transvaginal ultrasound (TVUS) is an
essential diagnostic tool for women undergoing
assisted reproductive technology (ART), which can
visually observe the development of ovaries and folli-
cles, monitor ovulatory time, and guide the timing of
clinical embryo transfer. 21 However, it is inconve-
nient and time-consuming to perform continuous
measurement of follicles and estimation of follicular
development during multiple examinations. In the
meantime, the inter- and intra-observer difference are
significant among clinicians. Since the demand for
ART and follicular monitoring is great, AI-aided ultra-
sound for the detection of follicles is necessary. As
early as 1997, Potocnik et al used an optimal
thresholding method to coarsely estimate ovaries and
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Figure 1. Application of AI in the assessment of female reproductive function. ET, embryo transfer.45-47,49

Figure 2. Relationship among artificial intelligence, machine learning and deep learning.
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recognize follicles for the first time.22 However, the
efficiency of this automated method was low (at least
six min for processing one image, with a low recogni-
tion rate of 70%). Follow-up studies mainly focused
on two aspects; one was optimization of the segmen-
tation algorithms,23,24 and another one was the devel-
opment of new algorithms. Optimal thresholding,
edge-based method, watershed transformation,
scanline thresholding, and active contour method
were typical algorithms in ovarian follicular boundary
segmentation.25 Additionally, many studies focused
on effectively improving the accuracy of segmenta-
tion, shortening the consumed time of segmentation,
and verifying the segmentation performance of differ-
ent algorithms through the same validation set. For
example, in view of the limitations of the region
growth method which was the need to set the seed
point (the origin of “growth” in the algorithm),
researchers have adopted an improved discrete wave-
let transform-based k-means clustering algorithm to
improve the accuracy of segmentation.26 However,
the methods mentioned above were either semi-
automated due to limiting factors, including noise,
inability to delineate the boundary of individual folli-
cles, and not being fast enough to be used in real-time
clinical practice. Further strategies on fully automated
and rapid segmentation were performed based on
image analysis. In Rose’s study, follicles were detected
by performing different segmentation techniques
depending on features of the image (such as pixel
intensity level) and features of the areas of detected
follicles (such as roundness) to automatic detection
of follicles.27 In addition, another research conducted
texture analysis on ultrasound images of follicles and
discovered that the texture features could be used to
effectively predict the physiological changes related
to future ovulation. This method was conducive to
determining the time of oocyte retrieval.28 When
combined with diagnostic classifiers, these image
processing studies could provide novel diagnostic
methods for relevant diseases, such as PCOS and pre-
mature ovarian failure.29 Even so, one issue was that
since ovaries and follicles were three-dimensional
organs, two-dimensional ultrasound imaging could
not include all the diagnostic information (Figure 3).

Three-dimensional ultrasound could be a useful
adjunct for follicular monitoring, with a significant
reduction in time and a good correlation with manual

counts.30 The automatic measurements of follicular
diameter in 3D ultrasound images seemed to be asso-
ciated with several advantages when compared to 2D
ultrasound images.31 Firstly, examination time was
reduced because the ultrasound scan data were stored
and can be analyzed in detail at a later time. Another
advantage was that this new technique reduced the
operator’s influence on scan interpretation and objec-
tivity; therefore, interobserver variability was
reduced.32,33 However, it was difficult and time-
consuming for doctors or sonographers to locate the
correct planes and measure each individual follicle
when there are many follicles in the ovary, even in a
3D ovarian volume. Therefore, an automatic way to
detect and measure the follicles is highly desired.34

For the improvement of methodology, an algorithm
which used multiple concentric layers was proposed
in the detection of cattle follicles. The results were
compared with the edge-based method and demon-
strated that the proposed algorithm was more effec-
tive in follicle detection.35 Another research by the
same team constructed a system which integrated
image denoising algorithm, edge detection algorithm,
and 3D reconstruction algorithm. The system showed
that monitoring and analysis could improve the suc-
cess rate of pregnancy outcomes.36 In clinical applica-
tions, these algorithms were used to estimate the
existence of an ovum in the ovarian follicle from ultra-
sound images37 and detect the follicles in stimulation
and nonstimulation examination cycles using different
ultrasound machines.38 It seemed that improved accu-
racy, faster speeds, and higher robustness was the
trend of automatic 3D-US in follicular monitoring.

Clinical Implications
No matter if the model was based on 2D or 3D
imaging, low generalization was always a big common
problem, which limits the clinical application of AI
models. In our previous serial studies, we constructed
an AI model to segment ovaries and follicles based on
the CR-Unet framework.39 The model was
experimented on 3204 images with a Dice similarity
coefficient of 0.912 and 0.858 in the segmentation of
follicles and ovaries, respectively. It was the first work
to employ deep learning-based methods for
segmenting both the ovary and follicles in TVUS, and
it was proved to have an obvious advantage in the
recognition of small follicles (especially <5 mm) over
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the other state-of-the-arts. Its inter- and intra-observer
variability were then validated in a clinical research.40

Currently, we are performing this research by loading
the software onto the ultrasound equipment. “From
laboratory to clinic” for AI-aided ultrasound is diffi-
cult, and the interobserver variability cannot be
ignored. To be of high value, the use of the AI-aided
ultrasound model in the assessment of OR should
not only focus on the accuracy but also on its clinical
utility.

AI-Aided Ultrasound: Improving Accuracy
in the Assessment of Endometrial
Receptivity

In IVF-ET cycles, inadequate ER is responsible for
approximately two-thirds of implantation failures.41 It
had been proved that repeated embryo implantation
failure, recurrent abortions, and other related diseases
were strongly associated with embryo quality and
inadequate ER.42 Numerous studies showed that vari-
ous factors such as endometrial thickness and blood
supply affected ER, and ultrasound has increasingly

been applied for the assessment of ER. However, in
the systematic review published in the Human Repro-
duction Update in 2019, the author used the term
“poor ability” to describe the application of ultra-
sound in the assessment of ER.43 The problem may
be that sonographers mainly visually observed ultra-
sound images with their eyes, and manually delin-
eated the boundary of the endometrium for
measuring and staging.44 Not only was manual seg-
mentation more subjective, time-consuming, labori-
ous, and poorly reproducible, but also the accuracy of
endometrium positioning by junior sonographers was
low, and it was easier to make large measurement
errors. In recent years, researchers are trying to solve
these problems through AI techniques.

AI-aided ultrasound in the assessment of ER
includes segmentation of region of endometrium,
classification of endometrial pattern, estimating the
accurate motion of endometrium, and assessing the
blood supply of endometrium quantitatively. Accurate
segmentation of the endometrium is the foundation
of a precise measurement. A fully automated segmen-
tation method became the first thought for
researchers. The solution provides a performance

Figure 3. Advanced ultrasound techniques in follicular monitoring.
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improvement of approximately 30% over a contem-
porary supervised learning method on a database of
59 TVUS images.45 Since there was no gold standard
for identifying the boundary of the endometrium,
semi-automatic segmentation such as setting four key
points (endometrium cavity tip, the internal os of the
cervix, and the two points between the basal layers on
the anterior and posterior uterine walls located on the
thickest area) to describe the shape of the endome-
trium was more accurate than fully automatic seg-
mentation.46 Using segmentation based on U-net, the
medial axis transformation method was used to esti-
mate endometrial thickness.47 The results were within
the clinically acceptable range of 2 mm, which greatly
reduced the error of manual measurement. Another ultra-
sound feature in the evaluation of ER is the endometrial
pattern, which can be divided into a trilinear (or leaf),
semi-trilinear, and unilinear (or homogeneous) patterns.48

Observation by humans may lead to errors in evaluation,
hence AI-aided ultrasound can be used to automatically
identify the type of endometrium. However, subjected to
the image quality and inadequate sample size, the effi-
ciency was worse than expected (69.7% for overall accu-
racy, 60.0% for accuracy of leaf pattern and 78.9% for
accuracy of homogeneous pattern).49 The result could
also be associated with the final outcome, where a num-
ber of studies have demonstrated the relationship
between the type of endometrial pattern and pregnancy
rate.50,51

Uterine peristalsis characteristics (or endometrial
wavelike activity) has been a research hotspot in
recent years. It is caused by the contraction of sub-
endometrial myometrium.52 According to the code
requirement, sonographers should record a 5 min
video for post-image analysis.53 However, it was not
convenient for clinical practice. Based on this, Yang
et al proposed a new approach for estimating the
endometrium based on a multiple threshold tech-
nique. His team utilized a recursive algorithm to
quickly determine the correct sampling frequency and
estimate the accurate motion of endometrium. This
method was proven to be successfully and effectively
applied to accurately estimate the frequency of
motion and the thickness of the endometrium.54 For
the blood supply of endometrium, Nanni et al devel-
oped an artificial intelligence system based on a data
mining approach that extracts data from under the
endometrium/lumen and evaluates angiogenesis. Age,

subendometrial volume, and endometrial vasculariza-
tion/flow index were observed to obtain the best
model for predicting pregnancy rate with an area
under the curve (AUC) of 0.85.55 In ideal scenarios,
automation can reduce the variability in the assess-
ment of ER, thereby enabling consistent and objective
measurements to be made. So far, this technique is
restricted to the activity of the endometrium, the sub-
jectivity of transvaginal ultrasound, and other factors,
and it is just at a research phase. Segmentation, auto-
matic measurement, and diagnosis based on endome-
trial pattern and automatic recognition of the
standard plane are essential steps for this attempt.

AI-Aided Ultrasound in Prediction of
Pregnancy Outcome: Further Investigation
Is Needed

Currently, many infertile couples are under tremen-
dous financial and mental pressure due to the low
clinical pregnancy rates and the high cost per IVF-ET
cycle. Predicting the chances of pregnancy in IVF
cycles is a long-standing problem for reproductive sci-
entists.56 Therefore, early prediction of the outcomes
of pregnancy can guide treatment and reduce the bur-
den of patients. Most of the previous studies com-
bined anti-Müllerian hormone, antral follicle count,
age, and follicle-stimulating hormone in pairs as effec-
tive indicators for predicting pregnancy performance
in female reproduction.57 However, since pregnancy
outcome was affected by various related factors, as
well as each factor having individual inaccuracy, the
results obtained were different from the actual results
and could hardly predict the outcome of pregnancy
accurately. Therefore, correlation of the included indi-
cators was closely related to the prediction efficiency
of the pregnancy rate, especially for those potential
correlations which cannot be easily found.

AI (particularly for deep learning technique) is
one of the most effective ways in finding potential
correlations.58 The first attempt to use the AI tech-
nique in predicting the outcome of pregnancy
appeared 4 years later than the great assumption of
analyzing zona-free hamster egg sperm penetration by
neural network in the animal model.59 In that study,
indicators of age, number of follicles, number of
embryos transferred, and the utilization of embryo
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freezing were used to construct a neural network
model to predict the outcome of pregnancy. The
model managed to achieve an overall accuracy of
59%.60 Although the accuracy was not satisfactory,
and only a few indicators were adopted, the study
had laid a foundation for AI-aided diagnosis in
predicting pregnancy outcomes. In terms of how to
improve the accuracy, on one hand, the inclusion of
more indicators could improve the prediction accu-
racy in general, no matter what kind of algorithm was
used (collecting 27 indicators to build an artificial
neural network (ANN) and achieving an accuracy of
90%; or the use of multiple logistic regression analysis
to identify risk factors with AUC of 0.78).61 On the
other hand, the selection of the proper algorithm is
equally important.62 Hafiz et al verified the accuracy
of different classifiers including support vector
machine (SVM), recursive partitioning (RP), random
forest (RF), adaptive enhancement, and nearest
neighbor classifiers on the prediction of pregnancy
outcomes in 486 IVF patients. The results showed
that the RF and RP methods had good performance
of prediction.63 However, these results were just the
representation of these 486 cases. An interesting
series of research demonstrated the whole process of
how the AI-aided method assisted the prediction of
the pregnancy rate. The authors proposed the predic-
tion of the pregnancy rate by including majority indi-
cators of IVF cycle assessment (such as stimulation
protocol, gonadotrophin dose, hormone level, and
couple’s information, etc.).64,65 However, no further
progress has been made due to the difficulties of data
collection. In the latest study, this team collected mul-
tiple indexes to construct ANN models, where the
result showed that ANN models could actually
improve the prediction rate of pregnancy outcomes.66

Apart from early prediction of pregnancy rate,
AI-aided technique can also help clinicians carry out
related reproductive risk aversion. For example, to
reduce the risk of multiple pregnancies from the
transfer of multiple embryos, Uyar et al expected to
provide support for the decision making of the num-
ber of embryos to be transferred by predicting the
result of single-embryo transfer in IVF. The study
established a traditional Bayesian model with an eval-
uation accuracy as high as 80.4% and a sensitivity of
63.7%, which was higher than that of expert judgment
alone.67 Similar conclusions were drawn in a study of

fresh periodic single-embryo transfer (the latter
included more cases) published by Blank.68 These
results were possible for assisting the decision of car-
rying out or postponing the embryo transfer. Addi-
tionally, a study has developed three different
approaches (clustering, SVM, and C-SVM) to predict
the cumulative pregnancy rate of IVF in multiple
cycles of oocyte pickup using basic patient character-
istic, which might help the patient make optimal deci-
sions on whether to use her own oocyte or donor
oocyte, how many oocyte pickup cycles she may
need, and whether to use frozen embryos, etc.3

However, these models which were based on AI tech-
niques have unavoidable shortcomings: unitary appli-
cation of the model due to small sample size (not
applicable to other research samples), incomplete tar-
get index (artificial subjective selection), and ineffec-
tive pursuit of probability (meaningless probability
enhancement). These limitations often lead to dis-
trust of the established models in clinical practice.

To a certain extent, ultrasound-related informa-
tion was neglected in previous studies. At present,
researchers are exploring the construction of AI
models by combining multiple indicators. However,
no study has achieved the desired results because the
storage and collection of data was extremely difficult,
and insufficient sample sizes led to unsatisfactory
results. Therefore, collecting sufficient samples and
performing data mining analysis on the relationship
between the indicators and pregnancy prediction
rates are urgent issues in the field of female reproduc-
tion. Besides, recognizing that multiple factors, both
on the male and female side, may influence the
achievement of a successful pregnancy, future deep
learning models must not only capture information
on embryos, but they must also integrate other rele-
vant patient data.

Limitations and Strategies

With the advancement of science, AI technology has
become increasingly mature and widely used in the
medical field. However, current research in assessing
female reproductive function is still in the preliminary
stage (Table 1). Additionally, there are also ethical
issues of responsibility regarding AI technology. Such
opacity of lacking a general understanding of the
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internal processes of AI and human-machine interac-
tion will produce ethical and liability issues, as well as
legal risks, which may lead to the distrust of AI by
patients and clinicians.69-71 Especially in the field of
reproduction, most patients do not consent to the
uploading of their data to the network for intelligent
analysis because of the privacy and security of
data.72,73 In addition, the performance of AI models
was closely related to various factors, including the
quantity and quality of the data. If the training data
sample size was small, the sample diversity was insuf-
ficient, or the ratio among samples was not balanced,
this could lead to bias in the model regarding moni-
toring and learning, which would further result in the
low generalization of the models with poor practical
application effects.74 This problem is more obvious in
female reproductive evaluation because of its compli-
cated indicators and uncertainty. Furthermore, high-
quality images and accurate data are the basis of
accuracy, which depends on the evaluation standards
and the consistent programs of data collecting. A mul-
ticenter study is a solution to expand the sample size.
Considering the robustness and generalization of the
models, data from different machines and different
hospitals are needed to construct a highly accurate
and high-performance model.75 Since the evaluation
standards for female reproductive functions vary,
increased efforts should be made to unify the stan-
dards and storage methods adopted by different insti-
tutions.76 Last but not least, the assessment of female
reproductive function is very dependent on

systematic thinking. This means that despite most of
the current research showing that AI can meet or
even exceed the performance of experts, it is unneces-
sary to worry if AI will replace physicians or not. The
proper role of AI in the evaluation of female repro-
ductive function should be for screening and early
warning. It is important that clinicians should not
blindly follow the prediction of the model and should
always consider whether the construction of the
model is reasonable and whether it is consistent with
the actual clinical situation.

Conclusion

In the assessment of female reproductive function,
AI-aided ultrasound is a novel type of interdisciplin-
ary integration.77 It will bring digital transformation
and automatization to the field of reproductive medi-
cine and will ultimately provide benefits to infertile
couples and the society. The combination of AI-aided
ultrasound imaging is conducive to the integration of
clinical information, thereby outputting a more objec-
tive result, reducing the time of treatment, and pro-
viding information for accurate diagnosis and
treatment. AI will not replace reproductive medicine
practitioners, sonographers, and embryologists, but
rather, will streamline their efforts with the goal of
better helping their patients. Despite the challenges
of application, with the standardized development of
technology and the medical industry, AI will assist in

Table 1. Limitations of AI-Aided Ultrasound in the Assessment of Female Reproductive Function

Types Limitation Results Solution

Ethical issues Lack of human-machine interaction Lead to the distrust of AI Informed consent, ensure data
safetyOpacity caused by general

understanding of AI’s internal
processes

Data privacy and security
Problems from images Lack of quality Low generalization and

diagnostic efficiency
Optimize the instrument, image
pro-processing

Small sample size Direct a multicenter study and
establish standardsRatio among samples is not

balanced
Complexity of
reproductive medicine

Lack of universal diagnosis standard Nonstandard data collection
Lack of consistent programs of data
collecting

Requiring systematical thinking Cannot reach the clinical
problem

Interdisciplinary integration
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the conduct of individualized treatment through the
holistic medical information of patients, and its appli-
cation has unlimited potential for development.
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