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1  |  INTRODUC TION

Bacterial life on Earth is extraordinarily diverse. Our planet is in-
habited by an estimated 1.4–1.9  million bacterial lineages (Louca 
et al., 2018), and every gram of soil hosts between 2000 and 18,000 
distinct such lineages (Daniel, 2005). Understanding how Earth 
holds all this biodiversity is a fundamental challenge to ecology 

and evolution. Part of the difficulty in meeting this challenge is that 
planet Earth offers limited resources, which may impose a ceiling on 
biodiversity. In this vein, the prominent “ecological limits” hypoth-
esis of biodiversity (Rabosky & Hurlbert, 2015; Schluter & Pennell, 
2017) posits that rates of diversification should decrease as diver-
sity increases and fills available ecological niches. In contrast, the 
“diversity begets diversity” hypothesis posits that diversity could 
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Abstract
Microbial communities are hugely diverse, but we do not yet understand how spe-
cies invasions and extinctions drive and limit their diversity. On the one hand, the 
ecological limits hypothesis posits that diversity is primarily limited by environmental 
resources. On the other hand, the diversity-begets-diversity hypothesis posits that 
such limits can be easily lifted when new ecological niches are created by biotic in-
teractions. To find out which hypothesis better explains the assembly of microbial 
communities, we used metabolic modelling. We represent each microbial species by a 
metabolic network that harbours thousands of biochemical reactions. Together, these 
reactions determine which carbon and energy sources a species can use, and which 
metabolic by-products—potential nutrients for other species—it can excrete in a given 
environment. We assemble communities by modelling thousands of species invasions 
in a chemostat-like environment. We find that early during the assembly process, di-
versity begets diversity. By-product excretion transforms a simple environment into 
one that can sustain dozens of species. During later assembly stages, the creation of 
new niches slows down, existing niches become filled, successful invasions become 
rare, and species diversity plateaus. Thus, ecological limitations dominate the late as-
sembly process. We conclude that each hypothesis captures a different stage of the 
assembly process. Species interactions can raise a community's diversity ceiling dra-
matically, but only within limits imposed by the environment.
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stimulate further diversification (Calcagno et al., 2017; Whittaker, 
1972) as species–species interactions get more complex and novel 
niches are created (Erwin, 2008; Laland et al., 1999), or as existing 
niches are partitioned more and more finely as a result of competi-
tion (Bailey et al., 2013; Dieckmann & Doebeli, 1999).

Evidence for either hypothesis in bacteria, animals and plants 
is mixed. For example, a combination of field work and phyloge-
netic analysis of Himalayan songbirds suggests that an observed 
slowdown in their speciation rate is explained by niche filling. Their 
species distributions are well explained by resource abundance 
(Price et al., 2014). Two evolution experiments with Pseudomonas 
fluorescens strains also support the ecological limits hypothesis 
(Brockhurst et al., 2007; Gómez & Buckling, 2013). In these exper-
iments a strain's diversification slowed down as more strains were 
included in a coculture. Conversely, similar experiments with dif-
ferent strains of P. fluorescens support the “diversity begets diver-
sity” perspective. These experiments tracked the diversification of 
a focal lineage of P. fluorescens in bacterial communities that har-
boured from one to eight lineages of P. fluorescens. More novel mor-
photypes evolved when communities were initially more diverse 
(Jousset et al., 2016). Further support for the “diversity begets di-
versity” hypothesis comes from experiments with crops and weeds, 
which show that weed diversity is high whenever crop diversity is 
high (Palmer & Maurer, 1997). It also comes from data on plant and 
arthropod diversity on the Canary and Hawaiian islands, where the 
proportion of endemic species increases with increasing species 
numbers (Emerson & Kolm, 2005). It also comes from inferences of 
microbial diversification rates from several taxonomic ratios, such as 
the species to genus ratio (Madi et al., 2020). In addition, theoretical 
modelling using adaptive dynamics also suggests that some initial 
diversity can facilitate further diversification (Calcagno et al., 2017).

The diversity of a community may increase both through eco-
logical processes, as species disperse and invade a community, or 
through evolutionary processes, as existing member species diver-
sify and speciate. Pertinent evidence on the ecological limits and 
diversity-begets-diversity hypotheses comes in part from experi-
ments or field work that only quantify diversification rates, making 
it difficult to disentangle ecological from evolutionary limitations. 
However, the hypotheses should ideally be distinguished by con-
sidering both evolutionary and ecological processes. In a scenario 
where one can control the appearance of new species in a commu-
nity, either because they evolve in the community or disperse into 
the community, will environmental resources constrain commu-
nity diversity, or will species–species interactions promote ever-
increasing diversity? This is the question we aim to answer here.

To this end, we used a very simple community assembly strategy 
inspired by the environmental filter metaphor (Levy & Borenstein, 
2013; Thakur & Wright, 2017) and by trait-based models (Mcgill 
et al., 2006). Such models organize ecological processes around 
traits—species properties that impact species survival. Typically, 
species show trade-offs in these traits, and a trait that gives a spe-
cies an advantage in one environment might be disadvantageous in 
another. The environment selects (filters) species according to their 

traits. This modelling strategy has been widely successful, for ex-
ample to predict community composition along environmental gra-
dients (Allison, 2012; Laughlin et al., 2012; Litchman & Klausmeier, 
2008; Mcgill et al., 2006; Thakur & Wright, 2017). Here, we use it to 
model the assembly of microbial communities, where a trait refers to 
a species’ ability to thrive on a specific source of carbon and energy.

We simulated the assembly of microbial communities in which 
we represent each individual species by a metabolic network that 
comprises thousands of metabolic reactions needed for an organ-
ism's survival in a given chemical environment. The advantage of this 
approach is that it allows fundamental metabolic traits to emerge 
from first biochemical principles, which are embodied in the met-
abolic reaction network of an organism. Especially important traits 
for our purpose include the ability to survive on a given source of 
carbon and energy, and on the ability to excrete specific by-products 
of metabolism. Traits like these can be computationally predicted 
with flux balance analysis (FBA; Orth et al., 2010), an experimentally 
validated (Orth et al., 2011; Varma & Palsson, 1994) computational 
method that can determine the flux of matter through every reac-
tion in a metabolic network when cells are in a metabolic steady-
state, and when they grow their biomass is at the maximum possible 
rate given the biochemical reactions they can catalyse. FBA has 
been successfully used to predict growth and by-product secretion 
of bacteria in different media (Edwards et al., 2001; Ibarra et al., 
2002; Varma & Palsson, 1994).

Metabolic networks have been characterized for hundreds of 
organisms (Gu et al., 2019a). They are highly valuable to understand 
metabolic biology and evolution because they reflect an organism's 
evolutionary history. For the same reason, however, they are of lim-
ited use for studies like ours, which aim to understand how commu-
nity assembly may be affected by specific metabolic properties of 
the assembled species, such as the number of biochemical reactions 
any one species harbours, and the number of carbon sources it can 
utilize. For this purpose, one needs to vary these properties sys-
tematically, but in the network of any one organism, they are fixed. 
To circumvent this limitation, we started our community assembly 
not from previously characterized metabolic networks of microbial 
species. Instead, we randomly sampled (with a Markov chain Monte 
Carlo [MCMC] method) thousands of metabolic networks from a 
much larger “universe” or “pan-metabolism” of biochemical reac-
tions, such that each network fulfilled specific requirements. These 
requirements include the ability to sustain life on specific carbon 
sources such as glucose, while containing an otherwise random com-
plement of chemical reactions. We refer to such metabolic networks 
as random viable networks. For the purpose of our analysis, each 
such network represents a different “species,” and we used these 
“species” to simulate the assembly of a community in a well-mixed 
chemostat-like environment where resources are supplied by the 
environment at a constant rate.

Our community assembly procedure consists of three iterated 
steps (Figure 1). First, a random species invades the environment/
community. Second, the environment acts as a filter that selects 
those species that persist in the community. Third, the persisting 
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species may change the environment by excreting metabolic by-
products. We repeated these three assembly steps for thousands 
of species invasions in any one community, and simulated hundreds 
of community assemblies in environments with different amounts of 
resources and varying strengths of competition.

During community assembly, we found that many persisting spe-
cies excrete metabolic by-products, which can sustain species that 
invade later through cross-feeding interactions in which one organism 
consumes the excretion of another. In other words, species create op-
portunities for cross-feeding, which begets further diversity. Further, 
we find that communities grow more diverse when competition among 

species is stronger. Together, these two observations show that biotic 
interactions between species are critical to establishing diverse com-
munities. At the same time, communities show limits in the number 
of species they accommodate. As community richness increases, the 
probability that a new species successfully invades a community de-
creases. The reason is that by-product excretion cannot create new 
niches ad infinitum. Eventually all new niches have been created, and 
subsequent invasions mostly fill the existing niches. At this late stage, 
the assembly dynamics enters an “ecological limits” regime.

2  |  METHODS

2.1  |  Flux balance analysis

FBA is a computational method to predict metabolic flux—the rate at 
which chemical reactions convert substrates into products—through 
all biochemical reactions that make up the organism's metabolic 

F I G U R E  1  Modelling community assembly. (a) The three steps 
we used to model community assembly. (I) Species (modelled as 
random viable metabolisms) are added at random to a standing 
community. (II) The environment acts as a filter, selecting successful 
species, that is those best at growing on at least one of the carbon 
sources available in the environment. Successful species persist 
in the community. (III) The species that comprise the community 
modify the environment through the excretion of metabolites that 
can serve as carbon sources for other species. (b) Example assembly 
trajectory of one community up to the invasion of the fourth 
species. Simulations begin by initializing the composition of the 
environment, shown as a purple rectangle at the top. The presence 
of each of the 223 potential carbon sources is represented as a 
purple vertical bar, such that each location on the horizontal x-axis 
corresponds to one carbon source. In this example and in most of 
our simulations (unless otherwise stated), the initial environment 
contains glucose as the sole carbon source, which is indicated in the 
top rectangle by the single vertical purple line. After establishing 
the initial environment, we perform the first invasion with “species 
1” chosen at random from our MCMC-derived sample of random 
viable networks. The species’ ability to grow on each potential 
carbon source (whether or not the carbon source is present in the 
environment) is shown in the green rectangle by a green line in the 
x-position that corresponds to the specific carbon source. Darker 
green lines indicate higher growth. Species 1 can grow on the only 
available carbon source (glucose), and because no other species is 
yet present, we consider species 1 successful. Species 1 modifies 
the environment with the excretion of by-products of its growth 
on glucose, as shown in the second purple rectangle from the 
top. These by-products are available as potential nutrients for the 
second round of assembly. In this round, a randomly chosen species 
2 invades the community. Its growth rate on each carbon source 
is shown below that of species 1. Species 2 cannot grow faster 
than species 1 on any of the available carbon sources. It therefore 
goes extinct and only species 1 persists in the community. The 
carbon sources it excretes are available for the third assembly step. 
Each such step consists of a new round of (I) species invasion, (II) 
environmental filtering and (III) niche construction
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network (Orth et al., 2010). FBA requires information about the stoi-
chiometry of all chemical reactions in the metabolic network, which 
is mathematically represented in the stoichiometric matrix S of size 
m × r. The integer m denotes the number of metabolites, and the in-
teger r denotes the number of reactions in the network. Each entry 
Sij of the stoichiometric matrix contains the stoichiometric coeffi-
cient with which metabolite i participates in reaction j. FBA makes 
two central assumptions. The first is that cells effectively optimize 
some metabolic property such as growth rate (vgrowth). The second 
is that cells (metabolisms) are in a metabolic steady state. Additional 
constraints can be incorporated into the optimization problem that 
FBA solves by setting lower bounds li and upper bounds ui to individ-
ual reaction fluxes vi, in order to account for the thermodynamic and 
enzymatic properties of a biochemical reaction (Orth et al., 2010). 
The optimization problem that FBA solves can be formalized as a lin-
ear programming problem (Orth et al., 2010; Varma & Palsson, 1994) 
in the following way:

We performed FBA with cobrapy (Ebrahim et al., 2013).

2.2  |  Modelling species with random 
viable networks

We sampled random viable networks with a computational variant 
of MCMC sampling, which permits efficient sampling of the large 
space containing all possible metabolic reaction, that is, the pan-
metabolism. For our work, we used a pan-metabolic network com-
prising 5625 metabolites and 7222 biochemical reactions (Barve & 
Wagner, 2013; San Roman & Wagner, 2018). To sample random vi-
able networks, we began with a specification of desired metabolic 
characteristics. For example, for many of our analyses, we wanted to 
create networks that are at least viable on glucose as a sole carbon 
source, and that comprise as many reactions as Escherichia coli (i.e., 
2583 reactions in the widely used E. coli metabolic model iJO1366). 
To identify a single initial network fulfilling these requirements, 
we first performed FBA on the pan-metabolic network (Barve & 
Wagner, 2013; San Roman & Wagner, 2018) in a chemically mini-
mal environment with glucose as the only source of carbon. Of all 
reactions in this pan-metabolic network, 1263 reactions showed 
nonzero metabolic flux. We included all these reactions in the initial 
network, which ensured the network's viability on glucose. We then 
chose the remaining (1320) reactions needed to arrive at an equal 
number of reactions as the E. coli metabolism at random (with a uni-
form distribution) from the pan-metabolic network.

This initial network was the starting point of MCMC sampling 
from the space of all possible metabolic networks. The MCMC pro-
cedure performs a long random walk through this space. Each step 
in this walk consists of a reaction swap, in which a reaction from the 

current network is randomly chosen for deletion, while a randomly 
chosen reaction from the pan-metabolism but absent in the current 
network is added to the current network (without changing reaction 
reversibility or stoichiometry). If the modified network remains via-
ble after this reaction swap, the swap is accepted, and the network 
is modified with a further reaction swap. In contrast, if the reaction 
swap disrupts viability on the desired carbon source(s), such as glu-
cose, the swap is rejected and a new swap is tried. Modifying meta-
bolic networks through reaction swaps ensures that the number of 
reactions in the network remains constant and equal to the number 
of reactions in the initial network.

This MCMC procedure creates a long sequence of metabolic 
networks, all of them viable on the desired carbon sources. As the 
number of reaction swaps increases, the number of reactions that 
the altered network shares with the initial network becomes smaller 
and smaller, until its complement of reactions becomes effectively 
randomized, which occurs after ~5000  successful swaps (Samal 
et al., 2010). We stored such a randomized network for further 
analysis after 5000 successful swaps, and repeated this procedure 
from the initial network to create 1000 random networks viable on 
specific carbon sources, such as glucose. During this process we 
did not alter the exchange reactions of the starting network, which 
ensures that in the randomized networks the same metabolites can 
be exchanged with the environment as in E. coli. Furthermore, we 
used the biomass reaction from E. coli iJO1366 to assess the viability 
of networks during MCMC sampling. The random viable networks 
used in this study are available in GitHub at https://doi.org/10.5281/
zenodo.5206841.

2.3  |  Potential carbon sources

We performed FBA to examine all metabolites that the pan-metabolic 
network could use as a sole carbon source (San Roman & Wagner, 
2018). To this end, we considered those carbon-containing metabo-
lites which have an exchange reaction in the E. coli model iJO1366, 
and we used the biomass reaction of the same E. coli model in the 
pan-metabolic network. We performed FBA with the pan-metabolism 
in a simulated environment in which one candidate carbon source was 
available at a time and assumed that ammonium, calcium, chloride, co-
balt, copper, iron, magnesium, manganese, molybdate, nickel, oxygen, 
phosphate, potassium, protons, sodium, sulphate and zinc were avail-
able in the environment in nonlimiting amounts. We considered a me-
tabolite a “potential” carbon source if it allowed biomass production of 
the pan-metabolism. We identified 223 potential carbon sources. Any 
metabolism sampled from the pan-metabolic network will be viable on 
a subset of these carbon sources.

2.4  |  Identifying species traits with FBA

For every random viable metabolic network (“species”) we consid-
ered, we used FBA to determine its viability on all 223 potential 

Maximizevgrowth

s.t. Sv=0

li ≤vi ≤ui

https://doi.org/10.5281/zenodo.5206841
https://doi.org/10.5281/zenodo.5206841
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carbon sources. To this end, we performed FBA in a minimal envi-
ronment where only one potential carbon source was available at a 
time, as explained in the previous section. The result was a predicted 
biomass growth flux for each species on each of the 223 potential 
carbon sources. We used these predicted growth rates in the second 
step of our simulation of community assembly (i.e., in the environ-
mental filtering step).

We also used FBA to analyse the niche construction potential 
of every species. We were interested in those metabolites that 
could be excreted by one species, and thus potentially serve as car-
bon sources for some other species. Therefore, we identified those 
metabolites from the list of potential carbon sources that could be 
produced as a by-product of growth when a species consumes a 
given carbon source. To this end, we allowed consumption of this 
carbon source (with a maximal uptake rate of 10 mmol gDW−1 h−1) 
in an otherwise minimal environment, and maximized the produc-
tion of each potential carbon source, while constraining the species’ 
biomass production to be greater than zero. If a potential carbon 
source could be produced at a rate greater than zero under this con-
straint, we considered that the carbon source was excreted into the 
environment.

This modelling decision is motivated by two kinds of experi-
mental observations. First, microbes modify their environment by 
secreting multiple metabolites. For instance, targeted metabolomics 
experiments show that Saccharomyces cerevisiae, E. coli, Bacillus li-
cheniformis and Corynebacterium glutamicum excrete 30–40 metab-
olites due to overflow metabolism (Paczia et al., 2012). (Untargeted 
metabolomics might reveal an even greater diversity of secreted 
metabolites.) Second, metabolic modelling tends to underestimate 
secretions found experimentally, regardless of whether it maximizes 
microbial growth rate (Pinu et al., 2018).

3  |  RESULTS

3.1  |  Modelling community assembly

We first created a pool of 1000 species, from which we sample indi-
vidual species for community assembly. Each species is represented 
by a metabolic network that we require to be viable—it can synthe-
size all essential biomass molecules such as amino acids, lipids and 
nucleotides (see Section 2)—on a specific carbon source, but that 
contains an otherwise random complement of biochemical reactions 
from a much larger universe (“pan-metabolism”) of biochemical re-
actions known to take place in the biosphere. To create this species 
pool, we used an MCMC sampling procedure, which allows us to cre-
ate random viable metabolic networks with specific characteristics 
(see Section 2). For most of our analysis these characteristics are 
that, first, all species (metabolic networks) contain the same num-
ber of 2583 metabolic reactions as the well-established and widely 
used metabolic model iJO1366 of Escherichia coli (Orth et al., 2011). 
Second, all species are permeable to the same 330 metabolites that 

E. coli cells can import or export (Orth et al., 2011). Third, we require 
all species to be viable on the same carbon source, glucose. We note 
that as a result of metabolism's complex and reticulate structure, 
species required to be viable on one carbon source are usually also 
viable on multiple others (Barve & Wagner, 2013). (We relax these 
constraints in later analyses (Figures S4 and S6)

We used FBA (see Methods) to determine viability for each of 
our 1000 species on 223 potential carbon sources (see Section 2), 
and found that one species is viable on an average of 32 ± 10 differ-
ent carbon sources (Figure S1). We consider the carbon sources on 
which any one species is viable as the species’ fundamental ecologi-
cal niche. Together, all 1000 species are viable on 220 different car-
bon sources. On average, 15 ± 13% of the species are viable on each 
carbon source. In addition to viability, we also determined the met-
abolic by-products of growth that any one species excretes when 
growing on any one carbon source. We found that on average each 
of our species excretes 23 ± 4 metabolic by-products when growing 
on glucose, which is comparable to the number of secretions found 
in microbes such as E. coli or Saccharomyces cerevisiae (Methods; 
Paczia et al., 2012).

We began our community assembly process with a deliber-
ately simple chemical environment, which supplies only one carbon 
source—glucose—at a constant rate. In other words, in this initial 
environment only one metabolic niche exists. Community assembly 
then consisted of multiple iterations of the following three steps 
(Figure 1):

1.	 Species invasion: a species is introduced into the environment/
community. This step simulates the invasion of the community 
by a species, or the evolutionary origin of a new species within 
a community. Each such species is selected at random from 
our species pool with equal probability. The same species can 
be selected multiple times in the course of assembling one 
community.

2.	 Environmental filtering: the environment serves as a filter select-
ing those species from the community that can persist in the en-
vironment. Specifically, we assume that those species that persist 
achieve the highest biomass growth among all present species, 
when consuming at least one of the available carbon sources in 
the environment. All other species go extinct. This modelling 
decision is based on the competitive exclusion principle (Hardin, 
1960), which states that species cannot coexist if they compete 
for the same limiting resources. This second step embodies com-
petition between species in the community (Levy & Borenstein, 
2013). We apply this filtering method because simulating the 
population dynamics of all species in each community is compu-
tationally infeasible, given that we simulate thousands of invasion 
steps in each of the hundreds of communities we assemble for 
each analysis.

3.	 Niche construction: all species that make up the community at a 
given time modify the environment by excreting by-products of 
metabolizing the carbon sources they use for growth.
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We repeated this three-step process for 5000 invasions, at 
which point the number of species in the communities no longer in-
creases. In addition, we repeated the entire process of community 
assembly 500 times.

Figure 2a shows the assembly dynamics for 50 randomly chosen 
communities out of a total of 500 assembled communities, where 
each community had experienced up to 5000 individual species in-
vasion events. Figure 2a shows that the number of persisting species 
(community richness, akin to alpha-diversity; Krebs, 2014) increases 
rapidly until it plateaus before 5000  species invasions. A final as-
sembled community harbours on average 35.9 ± 0.4 species (based 
on 500 assembled communities). Final species richness varies some-
what, and ranges from 33 to 38 species. Collectively, the final 500 
communities harbour 64 different species, which implies extensive 
overlap in the species making up different communities. This sug-
gests that the order in which species invade the community has little 
effect on the community composition.

Figure 2b shows that the number of available metabolic niches 
(i.e., the number of carbon sources present in the environment) also 
increases rapidly. This increase results from the excretion of an in-
creasing number of metabolic by-products as a community comes to 
host more and more species. At the same time, an increasing number 
of species also consume an increasing number of carbon sources. 
This is why the number of free niches (i.e., the number of carbon 
sources that are not consumed by any species in the community) 
only rises early during community assembly (Figure 2c). It reaches 

a peak after approximately six species invasions, and then declines 
slowly to zero. In other words, late in the assembly process, newly 
invading species are more likely to consume existing carbon sources 
(which are excreted by resident species) than they are to lead to the 
excretion of new carbon sources.

We determined the probability that a new species invasion is 
successful (i.e., that the invading species persists) as the number of 
invasion events that take place before a successful event occurs. 
Figure 2d shows that this probability declines monotonically with 
the number of species in a community. Figure 2e,f show the number 
of available and free niches as a function of community richness, av-
eraged over 500 communities. The underlying data show that merely 
12 ± 2 species are needed to construct 90% of the maximal number 
of available niches (Figure 2e). When a community hosts more than 
6 ± 2 species, a successful species invasion begins to create fewer 
niches than it fills (i.e., the number of newly excreted carbon sources 
becomes smaller than the additional number of carbon sources con-
sumed). As a consequence, the number of free niches stops increas-
ing and starts decreasing (see peak in Figure 2f).

Together, the data in Figure 2 demonstrate how important bi-
otic interactions and in particular the construction of new meta-
bolic niches is to the assembly process we studied. In the absence 
of niche construction, our environment could have only accom-
modated the single species that is best suited for growth on the 
only carbon source initially available in the environment (Hardin, 
1960). However, the construction of new niches does not continue 

F I G U R E  2  Species and niche dynamics 
during community assembly. (a–c) The 
horizontal axis shows time (number 
of species invasion events) during 
community assembly. The vertical axes 
show (a) community richness (number of 
species), (b) number of available niches 
(carbon sources in the environment) 
and (c) number of free niches (carbon 
sources present in the environment 
and not consumed by any species in the 
community). The insets show the same 
data but for up to 100 invasions. (d–f) The 
horizontal axis shows community richness. 
The vertical axes show (d) invasion 
probability (number of trials before a 
successful invasion), (e) the number of 
available niches (carbon sources) and (f) 
the number of free niches as a function 
of community richness. The plots show 
data from 50 (a–c) or 500 (d–f) assembled 
communities. During assembly, each 
community was subject to 5000 species 
invasion events. Error bars in (d)–(f) 
indicate one standard deviation
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throughout the assembly process. Towards the end of this process, 
newly invading species are more likely to fill existing niches than to 
help create new ones.

3.2  |  More complex environments lead to more 
diverse communities

Thus far, we had assembled communities starting from the simplest 
possible environment, which contains only a single carbon and en-
ergy source. We next wanted to find out how abiotic environmental 
complexity (i.e., the number of resources in the environment) affects 
community assembly. We hypothesized that more complex envi-
ronments sustain richer communities, because they harbour more 
niches that are independent of any one species’ metabolic excre-
tions. To validate this hypothesis, we assembled communities in en-
vironments that contained one, five, 10, 15 or 20 carbon sources. All 
these environments contained glucose, and we selected the remain-
ing carbon sources at random from the list of 223 potential carbon 
sources (see Section 2).

Indeed, environments offering more resources lead to more di-
verse final communities (Figure 3). However, the complexity of the 
environment does not translate one-to-one into final community 
richness. For example, an environment that offers 20 times more 
resources than the simplest environment results in communities that 
sustain only 4.0 ± 0.1 additional species (Figure 3). We also found 
that the invasion probability as a function of community richness is 
modestly but consistently higher for the most complex environment 
(Figure S3a). We also observed more available and free niches in the 
initially complex environment than in the simple one (Figure S3b,c).

3.3  |  Competition narrows the realized 
niche of species

Classical competition theory (Hutchinson, 1959) argues that com-
petition is the major biological process controlling the structure of 
natural communities. Quantifying competition is generally difficult 
(Krebs, 2014) but our method allows us to quantify and manipulate 
competition strength in two ways. In this section, we explore how 
competition affects community richness. Specifically, we model ex-
ploitative competition (Tilman, 1982) for limiting carbon sources, 
and do so in two complementary ways. First, we change the num-
ber of species that compete for the available resources. Second, 
we change the species’ fundamental niche width. We next describe 
both approaches in more detail.

We first varied the strength of competition by changing the 
number of species that can invade a community (i.e., by changing 
the size of the species pool). In the previous section, we had assem-
bled communities through iterative species invasions, where we had 
chosen invading species from a pool of 1000 species. To strengthen 
competition, we now changed the pool size to 250, 500 or 750 spe-
cies, sampled at random from the original set of 1000 species.

As the size of a species pool becomes larger, the likelihood that 
any one species is the fastest-growing among all species on any one 
carbon source is lower, which means that competition for resources 
gets stronger. In Figure 4a we show how increasing the species pool 
size does indeed decrease the likelihood that any one species from 
the pool is the fastest-growing. To calculate this likelihood we first 
computed the average number of resources on which a species 
showed the highest growth. This quantity varies between zero (if the 
species grows worse than any other species from the pool on all car-
bon sources) and one (if the species grows better than all other spe-
cies on all carbon sources). We repeated this calculation for every 
species in a pool, and calculated the average for all species in the 
pool. We then repeated this analysis 500 times, each time for a dif-
ferent random pool of species (that comprised 250, 500 or 750 spe-
cies). Figure 4a reports the average over these 500 replicates.

The stronger competition embodied in larger species pools re-
sults in more diverse communities (Figure 4b). This higher commu-
nity richness is explained by two factors. First, as competition gets 
stronger, we observe a modest increase in the total number of niches 
available after 5000  species invasions (86.9  ±  1.6 and 88.9  ±  0.2 
available niches for species pools of 250 and 1000 species, respec-
tively, Figure S4b) while the number of free niches after 5000 in-
vasions is not affected (all available niches are filled, Figure S4c). In 
other words, more niches are filled when competition is stronger. 
Second, we observe that stronger competition causes a reduction 
of the realized niche (Figure 4c). That is, individual persisting species 

F I G U R E  3  Richer initial environments lead to richer final 
communities. We simulated the assembly of communities in 
environments that offered between one and 20 carbon sources 
(horizontal axis) at the beginning of community assembly. The 
vertical axis shows the number of species (community richness) 
at the end of a community assembly process consisting of 
5000 species invasions. Circles show means obtained from the 
assembly of 500 communities. Bars indicate one standard deviation
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consume, on average, fewer carbon sources. (To determine the aver-
age realized niche we divided the number of filled niches by commu-
nity richness.) Altogether, the larger community richness observed 
when competition is stronger results from more niches being avail-
able and filled, and from the fact that each species occupies fewer 
niches (consumes fewer resources).

A second way to vary competition strength is to alter the de-
gree of overlap in the fundamental niches that two species occupy 

(i.e., the number of carbon sources that they can thrive on). Species 
with more similar fundamental niches show more intense competi-
tion (Bailey et al., 2013). We can manipulate this niche overlap by 
altering the metabolic complexity of the species that we assemble 
into communities, that is by altering the number of biochemical reac-
tions in each metabolic network, which is possible with our sampling 
approach (see Section 2). To this end, we created pools of meta-
bolic networks that had 500 or 1000 more reactions than the E. coli 

F I G U R E  4  Competition causes a narrower division of available niches. (a–c) The horizontal axis shows the number of species in the 
species pool from which communities are assembled. Larger species pools imply higher competition among species. Vertical axes show (a) 
the probability of a species to be the fastest growing on a carbon source, averaged across carbon sources and across the whole pool, (b) 
community richness (number of species) and (c) average number of niches filled by each species (average realized niche, quantified as the 
number of available niches minus the number of free niches and divided by the total number of species in a community). (d–f) The horizontal 
axis shows the metabolic complexity of the species used for community assembly, that is their total number of biochemical reactions relative 
to the reference r = 2583 of Escherichia coli model iJO1366. (d) The vertical axis shows the average overlap in fundamental niche between 
two species pairs, quantified as the number of carbon sources on which both species can grow, divided by the union of carbon sources on 
which either species can grow. Higher metabolic complexity resulted in higher niche overlap between species, which increases the potential 
for competitive interactions between species. (e) Community richness and (f) average realized niche breadth (quantified as in c). Arrows in (a) 
and (d) indicate the direction in which competition gets stronger. Circles in (b), (c), (e) and (f) show averages over 500 assembled communities 
after simulating 5000 invasion events per community. Circle colours indicate the size of the species pool used to assemble the communities 
(a colour change from blue to green corresponds to an increase in the pool size from 250 to 1000 species). Bars show one standard deviation

co
m

m
un

ity
 ri

ch
ne

ss
af

te
r 5

00
0 

in
va

si
on

s

species’ pool
250 500 750 1000

28

32

36

2.5

2.6

2.7

2.8

av
er

ag
e 

ni
ch

es
 fi

lle
d 

by
 s

pe
ci

es
(a

ve
ra

ge
 re

al
iz

ed
 n

ic
he

)

fu
nd

am
en

ta
l n

ic
he

 o
ve

rla
p

0.2

0.6

10

30

50

70

90

metabolic complexity
r r+500 r+1000

0.4

co
m

m
un

ity
 ri

ch
ne

ss
af

te
r 5

00
0 

in
va

si
on

s
av

er
ag

e 
ni

ch
es

 fi
lle

d 
by

 s
pe

ci
es

(a
ve

ra
ge

 re
al

iz
ed

 n
ic

he
)

0.00

0.01

0.02

0.03

lik
el

ih
oo

d 
of

 a
 s

pe
ci

es
 b

ei
ng

th
e 

fa
st

es
t-g

ro
w

in
g 

in
 th

e 
po

ol

1.00

1.50

2.00

2.50

stronger 
competition

stronger 
competition

(a)

(b)

(c)

(d)

(e)

(f)



5882  |    SAN ROMAN and WAGNER

model we used as a reference (“r”, iJO1366; Orth et al., 2011). We 
designated members of these pools as having metabolic complexity 
“r+500” and “r+1000,” respectively. We used species of equal met-
abolic complexity to assemble communities, selecting species from 
a pool of 1000 species. (Figure S4 shows analogous results for pool 
sizes of 250, 500 and 750 species.)

Species in these pools are on average viable on more carbon 
sources—they have a broader fundamental niche—than species with 
lower complexity (Figure S1). In addition, species pairs in these pools 
also overlap to a greater extent in their fundamental niches. We 
quantified this niche overlap by enumerating the number of carbon 
sources on which both species can grow, and divided this number 
by the total number of carbon sources on which at least one of the 
species can grow (Figure 4d). In sum, increased metabolic complex-
ity increases competition among species by increasing their niche 
overlap.

We found that communities assembled from species with high 
metabolic complexity are more species-rich (Figure 4e). However, 
the number of available or free niches does not change when in-
creasing metabolic complexity above that of r (“r+500” and “r+1000” 
in Figure S4b,c). Instead, the larger community diversity observed at 
high metabolic complexity results from a narrower partition of niche 
space among the species (Figure 4f).

We also explored the consequences of reducing metabolic com-
plexity below that of r. We assembled communities with species 
that contain 500 or 1000 fewer reactions than the reference model 
(pools designated “r+500” and “r+1000”). The results are more dif-
ficult to interpret than those for metabolic complexity higher than r 
(see Figure S4 and Text S2). However, just as in the analysis where 
we changed the species’ pool, a combination of two factors ex-
plains community richness. These are the total number of niches 
filled and the average realized niche (see Text S2 for a more detailed 
explanation).

In sum, we observe that strong competition results in a division 
of niche space into more and narrower niches that are occupied by 
the resident species. Everything else being equal, this results in more 
diverse communities.

4  |  DISCUSSION

The “ecological limits” and “diversity begets diversity” hypotheses 
were proposed to explain the forces that shape biodiversity on Earth. 
Several analyses aiming to validate these hypotheses have examined 
the rate of evolutionary diversification to provide support for one or 
other hypothesis (Brockhurst et al., 2007; Gómez & Buckling, 2013; 
Jousset et al., 2016). However, evolution is not the only means by 
which community diversity can increase, because new species can 
also increase diversity by invading a community. We therefore feel 
that the hypotheses should be distinguished by considering a sce-
nario that considers the contributions of both ecological and evolu-
tionary processes to community diversity. A modelling approach like 
ours is well suited for this, because the species we simulate could be 

thought as being new evolved species or species that invade a com-
munity as they disperse from elsewhere. With these considerations 
in mind, we here simulate the assembly of thousands of communi-
ties in which we can control the number of new species allowed to 
invade a community and monitor the community's response to each 
invasion.

Our results suggest that the dichotomy between the diversity-
begets-diversity and the ecological limits hypothesis is a false one. 
Both hypotheses capture important aspects of diversification. At 
initial stages of community assembly, species–species interactions 
in the form of cross-feeding and competition facilitate diversifica-
tion. Species “construct” new niches through their metabolic excre-
tions, which creates opportunities for the invasion of new species 
that thrive on these excretions (Figure 2). Competition helps parti-
tion niche space into more and narrower niches, which can result in 
larger diversity (Figure 4). At later stages in the assembly process, no 
new niches can be created, niche space cannot be partitioned fur-
ther, successful species invasions become rare and diversity reaches 
a ceiling. In sum, the diversity-begets-diversity and the ecological 
limits scenarios best capture different stages—early vs. late—of com-
munity assembly. Community diversity has limits, but these limits 
are not just externally imposed. They can be modified by the species 
themselves.

Two other conclusions emerge from our results. First, even when 
all niches have become filled during community assembly, diversity 
may not have reached its ceiling. Competition can further increase 
community richness even in this case, because it can help narrow 
the realized niche of individual species (Figure S2). Second, our con-
clusions reinforce the argument that it is best to consider ecological 
processes separately from evolutionary processes when studying 
diversification. The reason is that the probability of successful in-
vasions decreases even early during community assembly, while 
species are still creating new niches during the “diversity begets di-
versity” regime (Figure 2d; Figures S3, S5). This observation, which 
agrees with existing theory (Case, 1990; Tilman, 2004; Vila et al., 
2019), experimental observations (Fargione et al., 2003; Stachowicz 
et al., 1999) and the empirical observation that diversification also 
slows down on evolutionary timescales (Condamine et al., 2019), im-
plies that a slowdown in diversification (or speciation) is by itself not 
sufficient proof for the ecological limits hypothesis.

Competition is commonly thought to stimulate the diversifi-
cation of species (Abrams, 2006; Bailey et al., 2013; Dieckmann & 
Doebeli, 1999; Meyer et al., 2016; Meyer & Kassen, 2007; Yoder 
et al., 2010), although it can also prevent such diversification (Bailey 
et al., 2013; Brockhurst et al., 2007; Gómez & Buckling, 2013). In our 
work, a successful invasion increases competition, because available 
resources have to be shared between more species. After such an 
invasion, communities may show an increase, no change or a net de-
crease in diversity if multiple species go extinct as a result of the 
invasion (Figure 2a), in agreement with empirical observations from 
the literature (Abrams, 2006; Bailey et al., 2013; Brockhurst et al., 
2007; Dieckmann & Doebeli, 1999; Gómez & Buckling, 2013; Meyer 
et al., 2016; Meyer & Kassen, 2007; Yoder et al., 2010). However, 
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such varying short-term consequences of competition for individual 
invasions need to be distinguished from the long-term consequences 
for an entire assembly process. At the end of this process (once com-
munity richness no longer increases), we find that communities with 
stronger competition have become more diverse (Figure 4). In other 
words, our work predicts that increased competition results in a net 
increase of diversity.

In an organism, many traits are interconnected. Traits that are 
advantageous for one aspect of fitness may trade-off with traits that 
affect other aspects. Such trade-offs are thought to be important 
for determining community structure (Begon et al., 2006; Johnson 
et al., 2012; Litchman & Klausmeier, 2008; Tilman, 1982). Our re-
sults also suggest—albeit indirectly—that trade-offs in resource use 
are important for the communities we assemble. If there were no 
such trade-offs, we would expect that one or a few species consume 
all available resources. Instead, we find a great diversity of species, 
which suggests the presence of trade-offs in resource use. It is im-
portant to point out that our modelling framework does not assume 
such trade-offs to exist. They arise from elementary biochemical 
principles embodied in the set of biochemical reactions that consti-
tute a metabolic reaction network.

Our work has several limitations. Addressing them offers op-
portunities for future research. First, we study a very constrained 
subspace of Hutchinsonian niche space, the multidimensional space 
comprising all environmental factors required for the survival of 
a species (Hutchinson, 1957). Specifically, we only consider the 
sources of carbon and energy that sustain heterotrophic organisms, 
because they are frequently cross-fed between bacteria (D’Souza 
et al., 2018; McNally & Borenstein, 2018). Our modelling framework 
does not account for other abiotic factors, such as temperature and 
pH, nor does it account for non-nutrient-mediated species interac-
tions, such as those that arise from cell-to-cell communication, or 
the secretion of toxic molecules. Community richness could increase 
above the limit we observe if such interactions help create even 
more niches. In addition, our knowledge about pan-metabolism is in-
creasing, and newly characterized metabolic reactions could further 
increase a community's predicted potential to create more niches 
and diverse communities.

Second, we observe that different species grow on similar sets 
of carbon sources–their fundamental niches are similar—which may 
result from the method we used to create metabolic networks for 
community assembly. Specifically, we constrained these networks 
to be viable on glucose, which may have increased their niche sim-
ilarity, because these networks must share subsets of biochemical 
reactions required for growth on glucose (Barve et al., 2012). To ex-
plore how this choice may have affected our analysis, we performed 
two complementary analyses. In a first analysis, we compared how 
the fundamental niche overlap of random viable networks compares 
to that in real organisms. For that, we used bacteria from the human 
gut (Magnúsdóttir et al., 2017). Specifically, we identified in the met-
abolic networks of 818 species those metabolites that could serve 
as sources of carbon, and quantified fundamental niche overlap 
based on the results. We found that the fundamental niche overlap 

between these species can range from zero (no overlap) and up to 
one (full overlap), like the range of overlap explored with random 
viable networks (see Text S1, Figures S7, S8). In a second analysis, we 
created random metabolic networks required to be viable on carbon 
sources other than glucose (acetate, pyruvate, serine, alanine and 
lactose) (Figure S6). Communities assembled using these networks 
differed little in community diversity, even when we assembled 
communities from species required to be viable on different carbon 
sources. Therefore, this limitation is not likely to affect our observa-
tions dramatically.

Third, we observed that communities can be composed of up to 
80  species whose persistence depended, directly or indirectly, on 
the species consuming the initial resource, glucose. Unfortunately, 
our current modelling approach cannot answer how abundant these 
species are, and how much glucose would be required to sustain a 
highly diverse community. To answer these questions remains an im-
portant task for future work.

Fourth, we use the growth rate of species on single carbon 
sources to predict growth in a complex environment with multiple 
carbon sources. In such an environment, a microbial species growing 
in isolation may either consume a single (preferred) carbon source, 
several carbon sources, or all available carbon sources. Which of 
these strategies it pursues depends on multiple factors, including 
the species, the cultivation method (batch or chemostat) and the 
similarity between the carbon sources (Aidelberg et al., 2014; Egli 
et al., 1993; Kovárová-Kovar & Egli, 1998). The picture is even more 
complex in cocultures, where species interactions may affect con-
sumption patterns. Our decision to use maximal growth on a single 
carbon source to model a species’ persistence is motivated by recent 
experiments which show that the assembly of communities in mix-
tures of nutrients can be predicted from assembly in single-nutrient 
environments (Estrela, Sanchez-Gorostiaga et al., 2020; Fu et al., 
2020). For example, the taxonomic structure of a community assem-
bled in glucose medium (Goldford et al., 2018) can be explained by 
the growth of its constituent species in isolation, either on the ex-
ternally provided glucose, or on the cross-fed metabolites acetate, 
succinate and lactate (Estrela, Vila, et al., 2020).

Metabolic modelling is a powerful modelling framework. It has 
been successfully used to study microbial physiology (Notebaart 
et al., 2008; Segrè et al., 2002; Shlomi et al., 2005; Varma & Palsson, 
1994), to design strains for industrial and medical applications (Gu 
et al., 2019b; Lun et al., 2009; Mishra et al., 2018), and to explore 
questions in the field of evolution (Bajić et al., 2018; Barve & Wagner, 
2013; William Harcombe et al., 2013; Ibarra et al., 2002; Notebaart 
et al., 2014; San Roman & Wagner, 2018, 2020; Sandberg et al., 2017) 
and ecology (Estrela, Sanchez-Gorostiaga et al., 2020; Harcombe 
et al., 2014; Levy & Borenstein, 2013; Machado et al., 2021; McNally 
& Borenstein, 2018; Zelezniak et al., 2015), as reviewed previously 
(García-Jiménez et al., 2021; Gu et al., 2019b; Mardinoglu & Nielsen, 
2012). Though outside the scope of our work, the modelling frame-
work used here can in principle also be used to study other ecological 
phenomena, such as successional dynamics (Bell & Pascual, 2020; 
Chase, 2003; Dini-Andreote et al., 2014; Lockwood et al., 1997; 
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Nemergut et al., 2007), and the role of historical contingency (or pri-
ority effects) in the assembly process (Chase, 2003; Fukami, 2015). 
What is more, whole-community genome sequencing, together with 
semi-automatic methods for metabolic reconstruction, facilitate the 
creation of genome-scale metabolic models for not just one organ-
ism, but for multiple organisms in a community (DeJongh et al., 2007; 
Dias et al., 2015; Mendoza et al., 2019; Wang et al., 2018). Thus, it 
may soon be possible to conduct an analysis like ours with metabolic 
networks characterized in a community from the wild. While such an 
analysis cannot control all the variables that our computational work 
can control, it can go beyond a proof of principle, explain actual lim-
its on community diversity and identify rules of community assem-
bly important in nature. It will be especially suited for the analysis 
of those complex communities where cross-feeding interactions are 
important, such as that of the human gut (Magnúsdóttir et al., 2017), 
the soil (Baran et al., 2015) or planktonic organisms (Enke et al., 2019).
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