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Abstract

There has been considerable recent progress in protein structure prediction using deep neural 

networks to predict inter-residue distances from amino acid sequences1–3. We investigated whether 

the information captured by such networks is sufficiently rich to generate new folded proteins 

with sequences unrelated to those of the naturally occurring proteins used in training the models. 

We generate random amino acid sequences, and input them into the trRosetta structure prediction 

network to predict starting residue-residue distance maps, which as expected are quite featureless. 

We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast 

(KL-divergence) between the distance distributions predicted by the network and the background 

distribution. Optimization from different random starting points results in novel proteins spanning 

a very wide range of sequences and predicted structures. We obtained synthetic genes encoding 

129 network hallucinated sequences, expressed and purified the proteins in E. coli, and found that 
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27 folded to monodisperse species with circular dichroism spectra consistent with the hallucinated 

structures. We determined the structures of three of the hallucinated proteins, two by x-ray 

crystallography and one by NMR, and these closely matched the hallucinated models. Thus 

deep networks trained to predict native protein structures from their sequences can be inverted 

to design new proteins, and such networks and methods should contribute, alongside traditional 

physically-based models, to the de novo design of proteins with new functions.

Introduction

Deep learning methods have shown considerable promise in protein engineering. Networks 

with architectures borrowed from language models have been trained on amino acid 

sequences, and used to generate new sequences without considering protein structure 

explicitly4,5. Other methods have been developed to generate protein backbones without 

consideration of sequence6, and to identify amino acid sequences which either fit 

well onto specified backbone structures7–10 or are conditioned on low-dimensional fold 

representations11; models tailored to generate sequences and/or structures for specific 

protein families have also been developed12–16. However, none of these methods described 

to date address the classical de novo protein design problem of simultaneously generating 

both a new backbone structure and an amino acid sequence which encodes it.

Deep neural networks trained to predict distances between amino acid residues in protein 

3D structures from amino acid sequence information have increased the accuracy of protein 

structure prediction1–3. These models take as input large sets of aligned sequences, and 

a major contributor to distance prediction accuracy is the extent of co-evolution between 

the amino acid identities at pairs of positions. Following up on an initial observation 

by AlphaFold in the 13th Community Wide Experiment on the Critical Assessment of 

Techniques for Protein Structure Prediction17, we found that the trRosetta deep neural 

network trained using multiple sequence information could consistently predict structure 

quite accurately for de novo designed proteins from just a single sequence -- i.e., in the 

complete absence of co-evolution information3. The trRosetta model also predicted effects 

of amino acid substitutions on folding consistent with biophysical expectation3. These 

results suggested that during training the trRosetta network was going beyond exploiting 

co-evolution information and learning fundamental relationships between protein sequence 

and structure.

We wondered if the information stored in the many parameters of the trRosetta network 

could be used to generate physically plausible backbones and amino acid sequences which 

encode them. Methods such as Google’s DeepDream18 take networks trained to recognize 

faces and other patterns in images, and invert these by starting from arbitrary input images 

and adjusting them to be more strongly recognized as faces (or other patterns) by the 

network -- the resulting images are often referred to as hallucinations because they do not 

represent any actual face, but what the neural network views as an ideal face. We decided 

to take a similar approach to explore whether networks trained to predict structures from 

sequences could be inverted to generate brand new “ideal” protein sequences and structures.
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The trRosetta network predicts distributions of distances and orientations between all pairs 

of residues in a set of aligned protein sequences for a protein family (Fig. 1a); in benchmark 

tests this network outperformed other methods3. Instead of inputting a naturally occurring 

sequence, we instead generated completely random 100 amino acid sequences, and fed these 

to the network (Fig. 1b). As expected for random sequences, which have a vanishingly 

small probability of folding to a defined structure, the distance distributions were diffuse and 

much less featured than those obtained with actual protein sequences. We then sought to 

optimize the sequences such that the network-predicted distance and orientation maps were 

as different as possible (had the highest Kullback-Leibler divergence) from residue-residue 

sequence separation and protein length dependent background distributions (Fig. 1b,c and 

Methods; the background distributions are obtained from a network trained on the entire 

PDB). For each sequence, we carried out a Monte Carlo simulated annealing trajectory 

in sequence space: each step consists of substituting a randomly selected amino acid at a 

randomly selected position in the sequence, predicting the distance and orientation maps 

of the mutated sequence using the network, and accepting the move based on the change 

in the KL-divergence to the background distribution according to the standard Metropolis 

criterion (Fig. 1c and methods). The increase in KL-divergence aggregated over all 2,000 

simulation trajectories is shown in Fig. 1d; in almost all cases after ~20,000 Monte Carlo 

steps the resulting distance maps were at least as featured (non-uniform) as those predicted 

for naturally occurring sequences and structurally confirmed de novo proteins designed 

using Rosetta. The predicted distance maps become progressively sharper during the course 

of the simulations, and trajectories started from different random sequences resulted in very 

different sequences and structures (Fig 1e). We converted the final sharpened distance and 

orientation maps into protein 3D structures by direct minimization with trRosetta3.

We used this approach to generate two thousand new proteins with sequences predicted by 

the trRosetta network to fold into well-defined structures, and compared their sequences 

and structures to native protein sequences and structures. The similarity of the hallucinated 

sequences to native protein sequences was very low, with best Blast19 E-values to the 

Uniprot database of ~0.1 (Fig. 1f). Just as simulated images of cats generated by deep 

network hallucination are clearly recognizable as cats, but differ in detail from the specific 

cat images the network was trained on, the predicted structures resemble but are not 

identical to native structures in the PDB, with TM-align scores of 0.6–0.9 (Fig. 1g). The 

overall distributions of hallucinated sequences and structures are very different from those 

of naturally occurring proteins of the same (100 residue) length which were used during 

trRosetta training (Extended Data Fig. 1a–e).

The hallucinated sequences and their associated structures are quite diverse -- different 

Monte Carlo trajectories starting from different random number seeds converge on different 

sequence-structure pairs (Fig. 2a and b). A 2D map of the space spanned by the structures 

(Fig. 2b) was generated by multidimensional scaling of their pairwise 3D structural 

similarity (TM-score, see Methods). The structures span all alpha, all beta and mixed 

alpha-beta fold classes, with 95 different sub-folds at a TM-score clustering threshold of 

0.75. Representative examples of structures from the 27 predominant clusters are shown 

in Fig. 2c. A striking feature of these structures is that their backbone structures resemble 

the “ideal” proteins generated by de novo protein design more than native proteins, despite 
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the fact that the network was trained on the latter. Both de novo designed proteins and the 

hallucinated proteins generated here have regular alpha helices and beta sheets, and lack the 

long loops and other idiosyncrasies of native protein structures (Extended Data Fig. 1f,g).

We used Rosetta in silico protein folding simulations20 to assess the extent to which 

the hallucinated sequences encode the hallucinated structures according to the Rosetta 

forcefield21. This is a completely orthogonal test as the network was trained exclusively 

on native protein structures, and has no access to the Rosetta energy function. We generated 

folding energy landscapes using large scale de novo folding simulations starting from an 

extended chain for 129 of the hallucinated proteins spanning a wide range of sequences and 

structures (Fig. 2c). For 82 out of 129, the lowest energy structures found in the simulations 

were close to the corresponding hallucinated structures with Cα-RMSDs <3.0 Å, and for all 

129 the lowest energy structure sampled starting from the design model was lower in energy 

than any other structure obtained starting from an extended chain. Thus according to the 

Rosetta physically-based energy model, the network generated sequences do indeed encode 

the corresponding structures.

We next sought to determine how the computer hallucinations behave in the real world by 

obtaining synthetic genes for the 129 proteins, and expressing and purifying them from 

E. coli (see Methods). Of these, 27 yielded size exclusion chromatography (SEC) peaks 

corresponding to monomeric or small oligomeric species (Figs. 3d, 4d, Extended Data 

Fig. 3d, and Suppl. Fig. 1) that were subsequently examined by circular dichroism (CD) 

spectroscopy. In all cases, the CD spectra were consistent with the target structures (Figs. 

3e, 4e and Extended Data Fig. 3e,k), with the characteristic profiles of all alpha helical 

proteins for the all alpha helical designs (Fig. 3e and Extended Data Fig. 3e), and of alpha-

beta proteins for the alpha-beta designs (representatives are shown Fig. 4e and Extended 

Data Fig. 3k). Twenty-one of the proteins were highly thermostable with apparent melting 

temperatures above 70 °C (Extended Data Figs. 2d,h and 3f,l); the alpha-beta designs in 

Fig. 4 are particularly stable as none undergo unfolding transitions up to 95 °C (Extended 

Data Fig. 2h). The experimentally validated proteins span a wide range of topologies, and all 

of the sequences are predicted by Rosetta large scale energy calculations to have funneled 

landscapes leading into the target structure (Figs. 3c and 4c). Taken together, these data 

indicate that the network hallucinated proteins can fold into a wide range of stable structures 

with the predicted secondary structures.

We next investigated the three dimensional structures of the hallucinated proteins. We 

determined the solution NMR structure for design 0515 to be a monomeric antiparallel 

four-helix bundle (1D estimated 15N T1 ~ 780 ms, 15N T2 ~ 77 ms, and τc ~ 9.6 ns at 25 

°C); the ensemble of 20 structures had a Cɑ root mean square deviation (RMSD) to the 

hallucinated model of ~1.84 Å (Extended Data Table 1, Fig. 5a, b, and Extended Data Fig. 

4). We also succeeded in determining a 2.9 Å resolution crystal structure of design 0217, 

which revealed a 3-helix bundle with an overall fold similar to the hallucinated model; the 

backbone RMSD between model and crystal structure is 2.53 Å over all 100 residues (Fig. 

5c, d, and Extended Data Fig. 5). The agreement observed between these two experimental 

and hallucinated structures suggests the network can accurately generate protein backbones 

and sequences that encode them.
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As noted above, many of the hallucinated proteins form oligomers in solution. For example, 

0217 forms a dimer in the crystal structure (Extended Data Fig. 5), consistent with SEC-

MALS analysis and NMR rotational correlation time measurements (15N T1 ~2.0 s, 15N T2 

~32 ms, and τc ~25 ns at 25 °C, Suppl. Fig. 2)22. Sequences generated by the network were 

modeled as monomers, but the 0217 model displays clear amphipathic sequence patterning 

across the 3-helix topology, with numerous solvent-exposed hydrophobic residues (Suppl. 

Fig. 2) that mediate the dimer contacts in the crystal structure. NMR data on design 0417 

are consistent with the alpha/beta fold of the hallucinated model, and both SEC and NMR 

relaxation measurements (15N T1 ~730 ms, 15N T2 ~77 ms, and τc ~10.4 ns at 25 °C, 

Extended Data Fig. 6) indicate that it is primarily monomeric but with some transient 

self-association in solution. The network appears to incorporate sequence features associated 

with the protein-protein interfaces of the native oligomeric proteins included in the PDB 

training set, likely explaining why many of the network hallucinated proteins self associate. 

Consistent with this, we found that substitution of surface hydrophobic residues with polar 

residues in a subset of the hallucinations that formed oligomers resulted in monomeric 

species by SEC (Suppl. Fig. 3; Supplementary discussion).

One of these surface-modified hallucinations, 0738_mod, yielded crystals and the 2.4 

Å resolution structure was determined. Structural superposition of the 0738 model and 

0738_mod crystal structure revealed a 3.68 Å Cɑ RMSD over 96 residues (Fig. 5f, g, and 

Extended Data Fig. 7). Despite register shifts upon superposition of the entire structure and 

model, the N- and C-terminal halves of the crystal structure align remarkably well to the 

corresponding regions in the hallucinated model with backbone RMSDs of 1.32 Å over 57 

residues, and 2.17 Å over 43 residues for the N-terminal and C-terminal half, respectively 

(Fig. 5h), with many of the sidechain rotamers recovered. This is a notable result given that 

the network operates on the backbone level only in the structure generation process. The 

accuracy does not reflect PDB memorization; the closest BLAST hits in the PDB for the N 

and C terminal halves have E-values of 0.29 and 0.63, respectively.

The high similarity of the NMR and crystal structures to the hallucinated structure models 

demonstrate that the hallucination process solves the classic de novo protein design problem, 

despite having no explicit knowledge of the physics of protein folding. The hallucinated 

sequences are unrelated to those of proteins of known structures; the sequences of the 

three hallucinated proteins whose structures we solved here all have E-values worse than 

0.021 (Suppl. Table 1). To determine if the lack of explicit treatment of side chains could 

lead to population of alternatively packed states, we investigated the dynamic properties 

in solution of design 0515 solved by NMR, as well as for 0217 and 0738_mod for which 

structures were determined by X-ray crystallography (Extended Data Fig. 8). The solution 

data for designs 0515 and 0217 (dimer) suggest well-ordered structures in solution, with 

internal dynamics typical of small natural proteins. For design 0738_mod the solution data 

indicate multiple monomeric conformations in solution in slow conformational exchange; 

incorporation of an explicit sidechain representation in the hallucination method could 

reduce such structural heterogeneity.
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Conclusion

Our results demonstrate that a deep neural network trained exclusively on native sequences 

and structures can generalize to create new proteins, with sequences unrelated to those 

of native proteins, that fold into stable structures. Many of the hallucinated proteins are 

monomeric, stable, have the expected secondary structure, and are strongly predicted to 

fold to the target structure by Rosetta in completely orthogonal calculations (we did 

not use Rosetta in any way for either sequence generation or selection for experimental 

characterization). The close agreement between experimental solution NMR and crystal 

structures with the corresponding hallucinated design models for the three proteins that 

we characterized in detail suggest that many of these proteins fold into the predicted 

hallucinated structures.

De novo protein design efforts over the past 10 years have sought to distill the key features 

of protein structures and protein sequence-structure relationships using physically-based 

models like Rosetta, and then have used these models to design idealized structures that 

embody these features based on the principle that proteins fold to their lowest free energy 

states23,24. The resemblance of the hallucinated structures to these idealized proteins -- 

in the regularity of the secondary structures, shortness of the loops, etc. -- is remarkable. 

Indeed, the most similar structure in the PDB to the 0738_mod structure is the de novo 

designed protein Top7 (Suppl. Fig. 4). During training on large numbers of (irregular) 

native protein structures, the deep neural network evidently learned to encode ideal protein 

structure properties very similar to expert protein designers using more traditional scientific 

approaches, albeit representing them in very different ways (in the millions of parameters 

in the network rather than the very much smaller number of parameters of the backbone 

generation methods and the force field in Rosetta and other approaches). Current efforts 

in applying deep learning to a wide range of scientific problems will reveal whether this 

distilling of essential features occurs more generally.

Our work opens up a large set of exciting avenues to explore. On the sampling side, 

the Monte Carlo approach could perhaps be made more efficient by direct gradient-based 

minimization by tracing the gradients back to the inputs25. The loss function can be 

generalized to include specific structural features, for example binding motifs26 or catalytic 

sites, around which the network can hallucinate new protein inhibitors or enzyme catalysts. 

Unlike traditional protein design calculations, where properties of the target scaffold such 

as the overall topology and/or the secondary structure element lengths and locations are 

specified in advance, through a structure “blueprint” or other approach, the ability of the 

network to hallucinate plausible protein structures from scratch makes building a supporting 

scaffold around a desired functional site much more straightforward since the structure need 

not be mapped out in advance: the network can come up with a wide range of different 

protein topology solutions for a given problem. In our hallucination approach, trRosetta can 

be replaced by recently developed higher accuracy protein structure prediction methods27,28, 

which should increase the precision with which new proteins can be hallucinated. More 

generally, our work demonstrates the power of generative deep learning approaches for 

molecular design, which will undoubtedly continue to grow over the coming years.
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Methods

Approach.

The general protein design problem can be formulated in probabilistic terms as the 

finding of mutually compatible sequence-structure pairs such that the joint probability 

P(sequence,structure) is maximized. Using the chain rule for probabilities:

P sequence,structure   =  P structure sequence × P sequence (1)

The first term on the right, P(structure|sequence), is related to the protein structure prediction 

problem where one seeks for the most probable structure for a given protein sequence, while 

the second term P(sequence) accounts for general constraints on amino acid sequences. As 

described in the following sections, we sought to develop a heuristic objective function that 

captures both terms that is a function purely of the amino acid sequence, that we could then 

optimize through simulated annealing in sequence space.

Networks and objective function.

The trRosetta protein structure prediction network, described in detail elsewhere3, is 

a 2D residual-convolutional neural network which takes 1- and 2-site features derived 

from a multiple sequence alignment or a single sequence as an input and produces a 

2D output describing distances and orientations for all residue pairs in a protein in a 

probabilistic manner: for every residue pair (i,j), these generated maps contain predicted 

probability distributions over the Cβ-Cβ distance and 5 inter-residue angles (comprising 

the full set of 6 rigid-body degrees of freedom). When accurate, such 2D predictions 

can be straightforwardly translated into a 3D structure by direct minimization2,3. Random 

sequences give diffuse predictions, while existing de novo designs produce peaked 

distributions with low variance3.

To quantify the sharpness of predicted structure distributions for a given sequence, we 

trained a background network similar in architecture to trRosetta and on the same training 

set3 but not providing amino acid sequence identity information (Suppl Fig. 7; this can 

loosely be viewed as representing a generic “molten globule” state). Predictions from 

trRosetta and the background network (px,ijk and qx,ijk respectively) have the same form: 

for every residue pair (i, j) the networks generate probability distributions over binned 

6D residue-residue distances and orientations x ∈ {d, ω, θ, φ} (see ref.3 for details) with 

∑k px, ijk = ∑kqx, ijk = 1. We can then quantify the extent of contrast between the structure 

predicted for a given sequence and the background distribution as the mean KL-divergence 

over all residue pairs (i, j) and distance and angle distributions

DKL PtrRosetta Qbackground = ∑x ∈ d, ω, θ, φ

1
L2 ∑i, j = 1

L ∑k = 1
Nx   px, ijk log px, ijk

qx, ijk

(4)

where L is the protein length, and Nx the number of bins which coordinate x is discretized 

into (Nd = 37, Nω,θ = 25, Nφ = 13).
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To capture general sequence constraints, we used the negative KL-divergence of the amino 

acid composition of a sequence from that of the PDB as a whole

−DKL fa fa
PDB = − ∑a = 1

20 falog fa
fa

PDB (5)

where fa is the frequency of the 20 amino acids in a given sequence and fa
PDB are the 

frequencies in the PDB; pseudocounts are added to avoid zeros in the numerator.

Protein hallucination.

We optimized the combined objective function

F = DKL PtrRosetta Qbackground − DKL fa fa
PDB (6)

using simulated annealing starting from a random amino acid sequence of length L (L = 100 

throughout this study). At each step i, a random single amino acid substitution is made at a 

randomly selected position, and the move is accepted based on the Metropolis criterion:

Ai = min 1, exp − Fi − Fi − 1 /T (7)

(i.e., if Ai is smaller than a uniform random number u ∈ [0, 1]). Each trajectory consisted 

of 40,000 attempted moves; the temperature T is 0.1 at the beginning of the trajectory and 

reduced by half every 5,000 steps. Cysteines were excluded to avoid complications from 

oxidation since we planned to produce the proteins in the reducing environment of the E coli 
cytoplasm.

Design selection.

Two thousand proteins were generated using the hallucination procedure described above, 

and structurally compared to each other using the template modeling score (TM-score)29. 

Average-linkage hierarchical clustering yielded 95 clusters with an average inter-cluster 

similarity of TM-score = 0.75. We scored each of the designs within the 30 most populous 

clusters (which had 7 or more members) based on the sum of the KL divergence with 

the background distribution (Eq. 4), and the cross entropy between the final hallucinated 

structure Y and the 6D coordinate distributions generated by trRosetta for the sequence:

score = DKL P Q + CE Q, Y − CE P, Y (8)

CE P, Y = ∑x ∈ d, ω, θ, φ
1

L2 ∑i, j = 1
L ∑k = 1

Nx yx, ijklog px, ijk (9)

where Y is the 3D structure as represented by all distances and orientations between all pairs 

of residues (yx,ijk = 1 for the bin k observed in the hallucinated structure, is zero otherwise); 

CE(Q, Y) is calculated similarly. The second term in Eq. 8 [CE(Q, Y) − CE(P, Y)] assesses 

how well the hallucinated structure fits the trRosetta predicted structure distributions. For 

each cluster, we picked the top 50% or top 20 (whichever was smaller) structures with the 
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highest scores (297 designs in total), and inspected these structures manually to filter out 

those with internal cavities or voids, extended surface hydrophobic patches, and misformed 

secondary structure elements; three clusters were completely eliminated due to poor model 

quality. One-hundred twenty-nine hallucinated sequences from the remaining 27 structural 

clusters (no more than 10 designs per cluster) were selected for experimental testing.

Protein expression and purification.

Genes coding for the selected 129 designs were synthesized and cloned into 

pET28b(+) expression vector with an additional 21-residue N-terminal sequence 

containing a His-tag and thrombin cleavage site to aid purification (full sequence: 

MGSSHHHHHHSSGLVPRGSHM). These plasmids were purchased from Genscript and 

expressed in E. coli BL21(DE3) cells. Starter cultures were grown overnight at 37 °C in 

lysogeny broth (LB) with added antibiotic (50 μg/ml kanamycin). These overnight cultures 

were used to inoculate either 50 mL (for screening) or 500 mL (for crystallography) of 

Studier autoinduction media30 supplemented with antibiotic, and grown overnight. Cells 

were harvested by centrifugation and resuspended in 25 mL lysis buffer (20 mM imidazole 

in PBS containing protease inhibitors), and lysed by microfluidizer. PBS buffer contained 

20 mM NaPO4, 150 mM NaCl, pH 7.4. After removal of insoluble pellets, the lysates were 

loaded onto nickel affinity gravity columns to purify the designed proteins by immobilized 

metal-affinity chromatography (IMAC).

Size-exclusion chromatography for screening.

Following IMAC purification, designs were further purified by size-exclusion 

chromatography on ÄKTAxpress (GE Healthcare) using a Superdex 75 10/300 GL column 

(GE Healthcare) in PBS buffer. The monomeric or smallest oligomeric fractions of each 

run (eluting at approximately 14 mL) were collected and immediately analyzed by circular 

dichroism (CD) or flash frozen in liquid nitrogen for later analysis. The resulting samples 

were generally >95% homogeneous on SDS-PAGE gels.

Circular dichroism experiments.

To determine secondary structure and thermostability of the designs far-ultraviolet CD 

measurements were carried out with an JASCO 1500. 260 to 195 nm wavelength scans 

were measured at every 10 °C interval from 25 to 95 °C. Temperature melts monitored 

dichroism signal at 220 nm in steps of 2 °C/min with 30 s of equilibration time. Wavelength 

scans and temperature melts were performed using 0.35 mg/ml protein in PBS buffer 

with a 1-mm path-length cuvette. Protein concentrations were determined by absorbance at 

280 nm measured using a NanoDrop spectrophotometer (ThermoScientific) using predicted 

extinction coefficients31.

NMR sample preparation.

Samples for NMR studies were prepared following standard protocols developed by the 

Northeast Structural Genomics Consortium32,33. Initial sample preparation was carried out 

on a fee-for-service basis by Nexomics Biosciences, Inc. Selected designs were expressed 

in E. coli BL21 (DE3) cells as U-15N-enriched proteins, using MJ9 minimal media34 with 
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antibiotic kanamycin (50 μg/ml), and (15NH4)2SO4 as the sole source of nitrogen. For 

midi-scale production33, 50-mL cultures were grown at 37 °C to OD600 0.6 to 0.8 units, 

and protein production was induced with 1 mM IPTG at 25 °C over several hr. Cells were 

then harvested by centrifugation at 5,000 × g. Cell pellets were resuspended in lysis buffer 

(50 mM Tris-HCl, 0.5 M NaCl, 20 mM imidazole, pH 8.0, with protease inhibitor cocktail), 

cells were disrupted by sonication, and the resulting suspension centrifuged at 13,000 × g 

for 45 min. The supernatants from each fermentation were then purified in parallel using a 

set 1-mL Ni-NTA HisTrap HP columns (GE Healthcare). For each column, the elution peak 

fraction was collected, and the purified protein was exchanged into NMR buffer 1 (20 mM 

Tris-HCl, pH 7.5, 100 mM NaCl). These samples were each >~98% homogeneous, based 

on SDS-PAGE. Samples were concentrated to ~0.5 mM protein concentration, and prepared 

in 3-mm Shigemi NMR tubes. Following initial screening, buffer conditions were further 

optimized by microscale NMR screening with various buffers and aggregation disrupting 

additives, using 1.7-mm NMR tubes, as described elsewhere22.

U-15N,13C-enriched design 0515 protein samples for structure determination were prepared 

using a similar protocol. In this case, 1 L cultures were prepared using MJ9 minimal 

media34 with 13C-glucose and (15NH4)2SO4 as the sole sources of carbon and nitrogen, 

respectively. Following initial growth at 37 °C, expression was induced with IPTG, and the 

cultures were shifted to 17 °C. Cells were harvested by centrifugation (2,270 × g for 1 

hr), cell pellets were resuspended in 25 ml lysis buffer (PBS with 40 mM imidazole and 

protease inhibitor cocktail), and cells were disrupted by sonication. The insoluble pellet was 

sedimented by centrifugation (32,000 × g for 45 min), and the supernatant was applied to 

a 2.5 ml Ni-NTA column (Hispur Ni-NTA superflow agarose, ThermoFisher) equilibrated 

with the same lysis buffer. The protein was eluted from the column with steps of 75, 

100, 150, 200, and 500 mM imidazole. The elution peak fraction was collected, dialyzed 

into NMR buffer 2 (25 mM HEPES, 50 mM NaCl, 0.02% NaN3, pH 7.4), concentrated 

to ~0.9 mM protein concentration, and prepared in a 5-mm Shigemi NMR tube for data 

collection with addition of 5% D2O (v/v). This sample was >98% homogeneous by SDS-

PAGE analysis, and >95% isotope enriched based on MALDI-TOF mass spectrometry. 

Samples were prepared for residual dipolar coupling (RDC) data collection by dilution of a 
15N-labeled 0515 NMR sample with Pf1 phage (25 mg/ml) alignment medium.

NMR data collection and structure determination.

NMR data for initial NMR screening was collected at 298 K on Bruker AVANCE III HD 

700 MHz spectrometer at The City University of New York. Additional NMR screening 

and structure analysis data were collected at the indicated temperatures on Bruker AVANCE 

II 600 MHZ and 800 MHz spectrometer systems in the Center for Biotechnology and 

Interdisciplinary Studies at Rensselaer Polytechnic Institute. NMR screening was done by 

recording 2D [1H-15N]-HSQC or [1H-15N]-SOFAST-HMQC spectra, and by measurements 

of 15N T1 and T2 relaxation times using 1D NMR spectra to provide estimated rotational 

correlation times, τc
22. RDC data collection on both isotropic and partially aligned samples 

was performed at 600 MHz using a 2D interleaved 15N-1H- HSQC IPAP experiment to 

measure couplings35. All NMR spectra were processed using NMRPipe and NMRDraw36 

and visualized in NMRFAM-SPARKY37. Backbone resonance assignments for 0515 
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were determined using a standard triple-resonance NMR strategy, with a suite of fast 

pulsing and BEST double and triple resonance experiments provided within NMRlib38, 

including 2D [1H-15N]-SOFAST-HMQC, 2D [1H-13C]-BEST-HSQC, and 3D BEST-HNCO, 

BEST-HNCA, BEST-HNCACB, and BEST-HNcoCACB. Additionally, standard CcoNH 

TOCSY, 15N TOCSY-HSQC, HBHAcoNH, and 3D NOESY (τmix = 100 ms) spectra 

implemented with nonuniform sampling (NUS) were collected to complete assignments. 

A 50% Poisson gap sampling schedule39 was used for NUS within TopSpin 3.2 (Bruker) and 

subsequently reconstructed using sparse multidimensional iterative lineshape-enhanced40 

(SMILE) reconstruction within NMRPipe36. Resonance assignments were determined by 

manual refinement of resonance assignments obtained from the I-PINE web server41. 

Assignment validation was done with cmap images generated using AutoAssign42. Peak 

intensities from 3D NOESY spectra, together with dihedral angle constraints determined 

from backbone chemical shift data using TALOS-N43, were used as input for structure 

determination. NOESY peak assignments were made automatically using Cyana44,45, 

together with the programs RPF and ASDP to guide manual correction of NOESY peak 

assignments46,47. The lowest energy 20, of 100 structures calculated, were then refined in 

explicit water using CNS48 with the addition of 70 backbone one-bond 1H-15N RDCs. 

Structure quality analyses were performed on the final ensemble of 20 models using 

RPF and PSVS software49 (Suppl. Table 1). Resonance assignments and NMR data were 

deposited in the BioMagResDataBase (ID 30890), and coordinates and restraints in the PDB 

(ID 7M5T).

Crystallography sample preparation, data collection, and analysis.

Protein was expressed and purified as described for initial screening. Crystal screening 

was performed using Mosquito LCP by STP Labtech. Crystals were grown in 800 mM 

succinic acid pH 7.0 for 0217. For 0738_mod, crystals were grown in 15% (v/v) ethanol 

and 40% (v/v) pentaerythritol propoxylate (5/4 PO/OH). Resultant crystals were looped and 

flash cooled in liquid nitrogen. Data was collected on 24-ID-C at NECAT, APS, at the 

wavelength of 0.97918 Å at 100K temperature. Both datasets were subsequently processed 

with HKL2000 and Scalepack suite50. For 0217, molecular replacement (MR) was carried 

out using predicted models from two sources: trRosetta predictions3, and classical Rosetta 

ab initio structure predictions20. While both sets of predictions yielded converged ensembles 

on a single topology, the classical ab initio models had significant diversity within that 

ensemble. Each of the 2000 models (1000 trRosetta and 1000 ab initio) had all side chains 

removed past the gamma carbon, and was run through Phaser51. A single solution was found 

in I 2 3 from one of the ab initio models with two copies in the asymmetric unit and a TFZ 

score of 13.3 (no other model yielded a TFZ score >8). Sidechains were rebuilt and the 

model was refined with Rosetta-Phenix52, yielding a map with readily interpretable density. 

For 0738_mod molecular replacement was carried out using the trRosetta model with 

deleted loops. Manual rebuilding in Coot53 and cycles of Phenix refinement54 were used 

to build the final model. For 0217 final Ramachandran favored and outliers were 99% and 

0%, respectively. For 0738_mod refinement, final Ramachandran favored and outliers were 

96% and 0%, respectively. Coordinates and structure factors were deposited to the PDB for 

0217 and 0738_mod with corresponding PDB IDs 7K3H and 7M0Q; crystallographic data 

collection and refinement statistics are provided in Extended Data Table 2.
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Structural alignment generation and analysis.

Structural alignments comparing NMR and crystal structures to hallucinated models were 

performed using the Theseus maximum likelihood superpositioning tool55. In cases where 

parts of the crystal structure were missing, corresponding regions in the hallucinated model 

were removed and subsequent superposition was performed. Alignments were performed in 

‘backbone’ alignment mode and resulting classical pairwise RMSDs are reported. Protein 

structure figures were made in PyMOL56.

Extended Data

Extended Data Figure 1. 
Comparison of the hallucinated designs to proteins with known structure and of similar 

length (100 ± 10 aa) from the trRosetta training set. a,b) Multidimensional scaling plots 

of the sequence (a) and structure (b) spaces covered by the 2,000 hallucinated proteins 

(blue dots) along with 1,110 proteins of similar length from the trRosetta training set 

(red dots). These scatter plots show that subspaces spanning by hallucinated proteins and 

natural proteins of similar size (100 ± 10 aa) are quite distinct; the network is not simply 

recapitulating native proteins of the same length. Soluble and structurally characterized 

hallucinations are marked by black and magenta dots respectively. c,d) Distributions of 

pairwise structure (c) and sequence (d) similarities for hallucinated and natural proteins. 

The hallucinated proteins are more similar to each other (blue lines) than they are to 

natural proteins (grey lines). e) Sequence comparisons (gappless threading) of fragments of 
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various size (15,20,…,60 aa) from the hallucinated designs (blue) and natural 100 (±10) 

aa-long proteins (red) to other proteins from the trRosetta training set. There is no apparent 

tendency for the trRosetta-based design procedure to “copy over” sequence fragments 

from the proteins in the training set into the hallucinated designs. f,g) Secondary structure 

content of the hallucinated designs and natural 100 aa-long proteins from the training set. 

Hallucinations are more ideal than natural proteins in having less loops but longer secondary 

structure elements.

Extended Data Figure 2. 
Structure similarity dendrograms (a,e), 3D structure models (b,f), predicted distance maps 

(c,g), and temperature dependence of circular dichroism signal at 220 nm in the 25–95 °C 

temperature range (d,h) for all-alpha and mixed alpha and beta hallucinations respectively.
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Extended Data Figure 3. 
Additional examples of thermostable hallucinations with CD spectra consistent with the 

target structure. a) 3D structure models of the hallucinated designs. b) Predicted distance 

maps at the end of the hallucination trajectory. c) ab initio folding funnels from Rosetta. d) 

Size-exclusion chromatography traces. e) Circular dichroism spectra at 25 °C (blue) and 95 

°C (red). f) Temperature dependence of circular dichroism signal at 220 nm in the 25 to 95 

°C temperature range.
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Extended Data Figure 4. 
a) Superposition of hallucinated model (blue) and NMR medoid structure (gray) of 0515 

reveal 1.85 Å backbone RMSD over 100 residues b) Hallucinated model of 0515 colored 

by distance between Cɑ-Cɑ pairs between model and NMR medoid structure after structural 

superposition and c) corresponding plot of per-residue Cɑ-Cɑ distance difference between 

model and NMR medoid structure.
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Extended Data Figure 5. 
a) Representative electron density (2Fo-Fc, 1σ) over entire asymmetric unit (left) and core 

packing regions (right) of hallucination 0217. b) Both chains of the crystal structure colored 

by B-factor. c) Structural superposition of chains observed in the asymmetric unit reveal 

a 2.8 Å backbone RMSD over 91 residues. d) Crystal lattice contacts for chain A (green) 

and chain B (yellow) may explain structural differences observed between chains. Circled 

regions highlight where chain A is an ordered helix-loop-helix and chain B is disordered. e) 

Hallucinated model of 0217 colored by distance between Cɑ-Cɑ pairs between model and 

crystal structure after structural superposition and corresponding plot of per-residue Cɑ-Cɑ 
distance difference between model and crystal structure. f) Structural superposition of the 

hallucinated model and chain B of the 0217 crystal structure (left), 0217 model colored by 
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Cɑ-Cɑ distance between hallucination and crystal structure (middle), and per residue Cɑ-Cɑ 
distance between hallucination and crystal structure per residue (right).

Extended Data Figure 6. 
a) Hallucinated model with surface hydrophobics shown as sticks and b) [1H-15N]-

SOFAST-HMQC spectra of hallucinated sequence 0417 before (red) and after (blue) buffer 

optimization. Spectrum before optimization (red) was obtained using a protein concentration 

of ~0.3 mM at 298K in 20 mM Tris-HCl, pH 7.2, 100 mM NaCl and spectrum acquired after 

optimization (blue) was obtained using a protein concentration of ~0.3 mM, at temperature 

of 323 K in a buffer of 20 mM sodium phosphate at pH 6.5, 50 mM NaCl, and 20% 

glycerol. The NMR data are consistent with a folded structure containing a mix of alpha 

and beta secondary structure. Even under optimized conditions, there is still evidence 

of exchange broadening (e.g. Trp side chain NεHs are weak), resonances that appear 

only at high temperature and high glycerol concentrations, and some resonances that are 

doubled; all indications of transient self-association. c) Size-exclusion chromatography trace 

of 0417 displays a small additional peak corresponding to a larger oligomeric species which 

corroborates the NMR analysis.
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Extended Data Figure 7. 
a) Representative electron density (2Fo-Fc, 1σ) over entire asymmetric unit (left) and 

core packing regions (right) of hallucination 0738_mod. b) Both chains of the crystal 

structure colored by B-factor. c) Structural superposition of the hallucinated model and 

chain A of the 0738_mod crystal structure (left), 0738_mod model colored by Cɑ-Cɑ 
distance between hallucination and crystal structure (middle), and per residue Cɑ-Cɑ 
distance between hallucination and crystal structure per residue (right). d) Hallucinated 

model of 0738_mod colored by distance between Cɑ-Cɑ pairs between model and crystal 

structure after structural superposition and corresponding plot of per-residue Cɑ-Cɑ distance 

difference between model and crystal structure.
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Extended Data Figure 8. 
a) 1H-15N heteronuclear NOE (hetNOE) histograms for 0515 (82 non-overlapped peaks), 

0738_mod (144 peaks), and 0217 (47 peaks), together with their average values. 1H-15N 

steady state heteronuclear NOEs were obtained from the ratio of cross peak intensities 

(Isaturated/Iequilibrium) with (Isaturated) and without (Iequilibrium) 3 sec of proton saturation 

during the presat delay and recorded in an interleaved manner, split in TopSpin, processed 

identically using NMRPipe, and peak picked in SPARKY to obtain peak intensities. b) 
1H-15N HSQC spectra of corresponding proteins collected at 800 MHz at 298 K in 25 

mM HEPES, pH 7.4, 50 mM NaCl buffer and prepared in a 5-mm Shigemi NMR tubes 

for data collection with addition of 5% D2O (v/v). These 15N-enriched protein samples 

were prepared at concentrations of 0.4 mM, 0.15 mM, and 0.2 mM, respectively. c) 

SEC data demonstrating monodispersity of these proteins in solution, with predominantly 

monomer for 0515 and 0738_mod and predominantly dimer for 0217. SDS-PAGE data 

(not shown) show that each is >95% homogeneous, which together with MALDI-TOF 

mass spectrometry indicate that the spectral heterogeneity observed is not due to chemical 

heterogeneity. d) Ribbon diagrams of the corresponding monomeric or dimeric protein 

structures. These results show that the three designs have characteristic dynamics in 

solution. The average hetNOE for the homodimer 0217 is lower than for 0515 and 

0738_mod, and it has fewer peaks than expected due to exchange broadening. Although 

0738_mod has a similar hetNOE distribution as monomeric 0515, it has more than double 

the expected number of peaks, indicating at least two folded conformations (for all or parts 

of the protein) in solution that are in slow conformational exchange on the NMR time-scale. 

This was further validated by the appearance of new peaks in spectra at lower temperature 

(288K), and different peaks at higher temperatures (308 and 318K), and confirmed by 
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detection of 15N ZZ-exchange cross peaks at 318K with 600 and 750 ms mixing times 

(Bruker pulse sequence hsqcetexf3gp, data not shown)58.

Extended Data Table 1.

NMR refinement statistics and quality scores for 0515.

Secondary Structure α−helices: 3–23, 27–48, 52–70, 79–99

NMR conformationally-restricting restraints

Distance restraints

 Total NOE 2092

 Intra-residue 470

 Inter-residue

  Sequential (|i – j| = 1) 505

  Medium-range (|i – j| < 4) 675

  Long-range (|i – j| > 5) 398

 Hydrogen bond 140

Total dihedral angle restraints 175

 φ 89

 ψ 86

No. of restraints per residue 24.1

No. of long-range restraints per residue 4.1

No. of HN RDC restraints 70

Violations (mean)

 Distance RMS violation/restraint (Å) 0.01

 Dihedral angle RMS violation/restraint (°) 0.12

 Max. dihedral angle violation (°) 3.50

 Max. distance restraint violation (Å) 0.32

Deviations from idealized geometry

 Bond lengths (Å) 0.018

 Bond angles (°) 1.1

Average pairwise r.m.s. deviation** (Å)

 Heavy (all / ordered
d
) 1.2 / 1.0

 Backbone (all / ordered
d
) 0.7 / 0.5

Model quality statistics 
b 

Molprobity Ramachandran statistics

 Most favored, allowed, disallowed regions (%) 99.6, 0.4, 0

Global quality scores (Raw / Z-score)
c

 Procheck (φ-ψ)
d

0.61 / 2.71

 Procheck (all)
d

0.31 / 1.89

 Molprobity Clashscore 7.99 / 0.15

 Verify3D 0.25 / −3.37

 Prosall 1.23 / 2.40

RDC Q RMSD scores
e

0.20 ± 0.01

RPF scores
f
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 Recall/Precision 0.97 / 0.95

 F-measure/DP-score 0.96 / 0.82

**
Pairwise r.m.s. deviation was calculated for the 20 lowest energy refined structures out of 100 calculated.

b
Calculated using PSVS1.546. Average distance violations were calculated using the sum over r6.

c
Structure-quality Z-scores are computed relative to mean and standard deviations for a set of 252 X-ray structures < 500 

residues, of resolution ≤ 1.80 Å, R-factor ≤ 0.25 and R-free ≤ 0.28; a positive value indicates a ‘better’ score.
d
Based on ordered residue ranges [S(phi) + S(psi) > 1.8], 3–72, 79–99.

e
Calculated with PALES55.

f
RPF scores reflect the goodness-of-fit of the final ensemble of structures (including disordered residues) to the NOESY 

data and resonance assignment43.

Extended Data Table 2.

Crystallographic data collection and refinement statistics.

0217 (7K3H) 0738_mod (7M0Q)

Data collection

Space group I23 P31

Cell dimensions

 a, b, c (Å) 135.1, 135.1, 135.1 46.3, 46.3, 82.5

 α, β, γ (°) 90, 90, 90 90, 90, 120

Resolution (Å) 47.8–3.0 (3.1–3.0)
b

50.0–2.4 (2.49–2.40)

R merge 0.09 (2.5) 0.08 (1.1)

I / σI 57.5 (3) 18.0 (2.6)

Wilson B-factor 45.0 29.0

Completeness (%) 100 (100) 99.8 (100)

Redundancy 39.6 (40.6) 10.7 (8.2)

Refinement

Resolution (Å)

No. reflections 8049 (509) 7132 (405)

Rwork / Rfree 0.24/0.27 (0.32/0.40) 0.21/0.25 (0.31/0.31)

No. atoms

 Protein 1530 1495

 Ligand/ion 0 0

 Water 19 20

B-factors

 Protein 36.6 41.3

 Water 26.9 35.1

R.m.s. deviations

 Bond lengths (Å) 0.001 0.002

 Bond angles (°) 0.38 0.43

a
Data were collected from a single crystal.

b
Values in parentheses are for the highest-resolution shell.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Overview of protein hallucination approach. a) In structure prediction using trRosetta and 

other recent methods, a deep neural network is used to predict inter-residue geometries 

(reliable predictions have sharp 2D distance and orientation maps) from a single sequence 

or a multiple sequence alignment, and then the 3D structure is reconstructed by constrained 

minimization. b) Network predictions for a random sequence are not confident (blurry 

2D maps); to transform a random sequence into one encoding a new folded protein, we 

introduce multiple single amino acid substitutions into the sequence using Markov chain 

Monte Carlo algorithm, optimizing the sharpness of the 2D maps. c) Schematic of the 

MCMC procedure. d) Annealing trajectories averaged over 2,000 runs show a monotonic 

increase in the KL-divergence (contrast of the distance maps) with increasing Monte Carlo 
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optimization. The mean and 0.01,0.99 quantiles are shown in blue; temperature profile is 

shown in grey. e) Distance maps become progressively sharper along the Monte Carlo 

trajectories as exemplified by five hallucinated sequences with different protein structure 

topologies. f) Hallucinated sequences are unrelated to the naturally occurring protein 

sequences in the UniRef90 database: median BLAST E-value of the closest hit is 0.17. g) 
Hallucinated structures range in similarity to the protein structures in the PDB with average 

TM-scores to the closest match of 0.78.
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Figure 2: 
Overview of computational results. a) Multidimensional scaling plot of the sequence space 

covered by the 2,000 hallucinated proteins; BLAST bit-score was used to measure the 

distance between proteins. Each grey dot represents one design color-coded by the score 

from the network (darker grey color corresponds to higher score). 129 experimentally tested 

designs belong to 27 structural clusters shown by colored numbers. b) Multidimensional 

scaling plot of the structural space covered by the 2,000 hallucinated proteins; (1 - TM-

score) was used to measure the distance between proteins. Each grey dot represents one 

design; the gray-scale indicates the score from the network (darker grey corresponds to 

higher score, Eq. 8). The 129 experimentally tested designs fall into 27 structural clusters 

shown by colored numbers. c) Examples of hallucinated designs of various topologies. 
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First column, ribbon depiction of protein backbone colored from blue (N-terminus) to 

red (C-terminus); second column, hydrophobic core; third column, distance maps at the 

beginning and end of hallucination trajectory, and fourth column, folding energy landscapes 

from large scale Rosetta ab initio structure prediction calculations; points represent lowest-

energy structures sampled starting from an extended chain (grey points) and starting from 

the hallucinated design model (green points). The energy landscapes funnel into the energy 

minimum corresponding to the designed structure, providing independent, albeit in silico, 

evidence that the hallucinated sequences encode the hallucinated structures.
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Figure 3. 
Experimental characterization of alpha-helical hallucinations. a) Dendrogram showing 42 

all-alpha designs clustered by structural similarity (TM-score); thermostable designs with 

CD spectra consistent with the target structure are labeled by their IDs. b) 3D structure 

models of the hallucinated designs. c) ab initio folding funnels from Rosetta. d) SEC-MALS 

traces of purified protein. e) Circular dichroism spectra at 25 (blue) and 95 (red) °C. Contact 

maps and full temperature melts are in Extended Data Fig. 2, and additional examples of 

stable alpha-helical designs marked in grey in panel a are shown in Extended Data Fig. 3, 

Size-exclusion and CD plots are representative plots of duplicate experiments.
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Figure 4. 
Experimental characterization of mixed alpha and beta hallucinations. Columns are as in 

Fig. 3. Additional examples are shown in Extended Data Fig. 3.
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Figure 5. 
Structural analysis of network hallucinated proteins. a) Hallucination model (left) and NMR 

ensemble structure of 0515 (right). b) Superposition of NMR ensemble (gray, transparent) 

and hallucinated model (blue, outlined) of 0515 and overlay of medoid NMR structure and 

model with side chains shown. c) Structures of the 0217 hallucination model (left) and 

crystal structure (right). d) Superposition of 0217 hallucination model (blue) and crystal 

structure (gray). e) Zoomed in overlay of 0217 crystal structure (gray) and hallucination 

model (blue) with side chains shown as sticks. f) Structures of 0738 model (left) and 

0738_mod crystal structure (right). g) Superposition of 0738 hallucination model and 

0738_mod crystal structure. h) Superposition of only the N-terminal section (left) and only 

the C-terminal section (right) of the 0738 hallucination model (blue) and 0738_mod crystal 
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structure (gray). Standalone structures are colored from N-terminus (blue) to C-terminus 

(red).
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