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A B S T R A C T

This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via
Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19
confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between
July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the
time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021.
The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study
demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques
for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases
and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in
highly populated states.
. Introduction

World Health Organization (WHO) reported that 44 cases of un-
nown pneumonia aetiology were detected in Wuhan City, Hubei
rovince of China, between 31st December 2019 to 3rd January 2020
1]. The Chinese authorities identified a new type of coronavirus known
s coronavirus disease 2019 (COVID-19) on 12th January 2020 [2–4].
he WHO declared this communicable disease a global pandemic on
1th March 2020 due to its rapid worldwide [2–6].

The Ministry of Health Malaysia (MHM) confirmed the first COVID-
9 case in local spreading on 25th January 2020 [7], where they
uccessfully flattened the infection curve with less than 100 daily
ases with a strict Movement Control Order (MCO) between July to
eptember 2020 [8]. Nonetheless, a third outbreak hit Malaysia in late
eptember 2020 [1], which caused a significant loss of human life and
mposed an unprecedented threat to the economy, food systems, and
ublic health. The supply chain manufacturing of essential products
nd services had slowed down [9] due to strict MCO, including the
ravel ban, stay-at-home and social distancing policies [10]. National
usinesses faced a deceleration of economic revenue growth and caused
he retrenchment of millions of workers [11]. The MCO affected the
ood supply chains and led to food loss. Malaysian farmers had to
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destroy food such as marine and vegetable products that reached expiry
to ensure food safety for the consumers [12]. The COVID-19 inevitably
impacted the health deterioration of more than 4.75 million communi-
ties in Malaysia and the death of more than 37000 patients to date. To
prevent this sporadic and communicable disease from worsening, the
MHM and enforcement authorities have established standard operating
procedures (SOP) and guidelines [13]. Due to the rapid changes in the
COVID-19 infection, academicians and statisticians have assisted the
MHM by providing reliable insights on the infection via data analytics
of the recorded COVID-19 cases. This study provided insights from the
data analytics that may support the establishment of the SOP.

Data analytics on the recorded COVID-19 cases plays an essential
role in response to the global COVID-19 pandemic. It offers a rich
data source of COVID-19 for statisticians, physicists, and engineers
from data-driven and computational perspectives. While some of these
data were inaccessible before the epidemics, others were available
but underutilised [14]. With the emerging programming languages
using Python and R in data visualisation and prediction, public knowl-
edge is expanding rapidly, rendering a greater understanding of the
spreading of COVID-19. Data analysts employed various techniques of
artificial intelligence (AI) to visualise and predict the dissemination
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of COVID-19 worldwide. Among the AI techniques, network analysis
(NA) and support vector regression (SVR) are among the visualisation
and prediction techniques used in science, finance, economy, tourism
and social sectors [7]. Despite that, negligible reports of these AI
techniques are available for the health sector, especially for visualising
and predicting COVID-19 cases. The NA is a simple yet powerful
method to evaluate the pandemic risk by visualising the correlation
among various regions based on real-time and historical data [15]. Data
analysts in China employed the NA to investigate COVID-19 transmis-
sion among China’s population in the major cities [16]. Another study
has identified super spreaders among South Korean COVID-19 patients
after removing top nodes with a higher degree of connectedness or
key infection in NA, indicating that the NA is a potential AI to study
COVID-19 transmission [17]. The relationship among states in Malaysia
associated with COVID-19 cases is still unknown. Hence, this study
extracted one-year recorded COVID-19 cases between July 2020 to
June 2021 via https://github.com/MoH-Malaysia/covid19-public and
investigated the connectivity of COVID-19 infection and transmission
among the states in Malaysia using the NA followed by the SVR to
predict the COVID-19 transmission.

The SVR is a well-known and influential supervised machine learn-
ing technique from a support vector machine (SVM) that finds the best-
fitted line for linear and non-linear regressions in predicting COVID-
19-related cases [18]. A study of COVID-19 in Bangladesh showed
an excellent regression value of 0.8230 and 0.8322 for infected and
death cases, respectively, using the radial basis function (RBF) kernel of
SVR [19]. Also, a study of COVID-19 on the Turkish population showed
that the SVR performed an excellent regression value at 94% with a low
root mean square error (RMSE = 0.034) and mean absolute error (MAE
= 0.036) compared to linear regression (LR), bagged tree (BT) and fine
tree (FT) algorithms [20]. Besides transmission among the population,
the SVR has successfully investigated COVID-19 transmission via food
access in Guilford County, North Carolina [21]. While SVR is applied to
predict COVID-19 transmission globally, a negligible report is available
on its application in Malaysia. Hence, this study predicted COVID-19
cases using the SVR. Although this study provided a prediction of a
future number of daily infection and mortality rates from July 2021
until December 2021, it indicated that the SVR was applicable for this
purpose by providing insights on transmittable disease and assisting
the government in preparing the mitigating measures against COVID-19
spread, especially in highly populated states.

Considering the increment of daily COVID-19 cases and fatalities
in Malaysia, this study incorporated NA to understand the degree of
connectedness among the Malaysian states and the SVR to forecast
future COVID-19 cases. These statistical techniques are essential com-
plementary tools for reliable visualisation and prediction of Malaysia’s
forthcoming confirmed cases and deaths. These techniques can also
give an early insight and understanding into preventing and curbing
this COVID-19 disease from rampantly spreading in Malaysia.

2. Methodology

2.1. Data source

In this study, three .csv files (cases_states, cases_malaysia and
deaths_malaysia) were retrieved from an open-source website provided
by the MHH via https://github.com/MoH-Malaysia/covid19-public.
These three .csv files entailed COVID-19-related information from July
2020 to June 2021 (365 days).

2.2. Bar plot and Spearman’s analysis

Before building the bar plot and Spearman’s analysis using
Python 3.3, cumulative confirmed cases (cases_malaysia) and deaths
(deaths_malaysia) in Malaysia were combined into a .csv file dataset.

In this analysis, a total number of 365 days was observed (3rd quarter

2

of the year 2020, 4th quarter of the year 2020, 1st quarter of the year
2021 and 2nd quarter of the year 2021; 𝑛 = 365). A new column named
‘days’ was created in the same combined dataset to represent the date
into particular days in 2020 and 2021 (365 rows × 4 columns). A
bar plot was built to observe Malaysia’s general COVID-19 cumulative
confirmed cases and deaths from July 2020 to June 2021. Based on the
skewness (confirmed cases = 1.14, deaths = 2.31), kurtosis (confirmed
cases = 0.57, deaths = 4.52) and Shapiro–Wilk test at 𝑝-value < 0.05
for confirmed cases = 3.34 × 10−17 and deaths = 5.57 × 10−28, the data
was assumed as non-parametric (not normally distributed). Therefore,
Spearman’s analysis at 𝑝-value < 0.05 was conducted to determine
the correlation strength and significant difference between cumulative
confirmed cases and deaths in Malaysia.

2.3. Network analysis

A dataset of daily confirmed cases of states in Malaysia (cases
states) was employed in this analysis consisting of 5840 observations
(16 states × 3rd quarter of the year 2020 × 4th quarter of the year
2020 × 1st quarter of the year 2021 × 2nd quarter of the year 2021,
𝑁 = 5840). A new column named ‘quarter’ is created in the dataset
to classify the months into the respective quarter of 2020 and 2021,
while the original columns remained (5840 rows × 4 columns). From a
holistic approach, network analysis (NA) investigates the co-occurrence
of features and reveals potential associations between features or func-
tional pathways [22]. The cor.test() function in R or more robust
tools for compositional data, such as the SparCC (sparse correlations
for compositional data) package, can be used to calculate correlation
coefficients (Spearman rank coefficient) and significant 𝑝-value [23].
Once calculated, the network can be analysed and visualised using
Gephi [24], R library igraph [22], or Cytoscape [25].

The NA was conducted to study the connections between states in
Malaysia in response to the COVID-19 spread. Basic network properties
such as Spearman rank correlation and degree of interaction were
computed using the iGraph R package (V 3.5.1) [22] before being fed
into Cytoscape (V 3.8.2) for visualisation. The degree of interaction
was determined based on the correlation (edge) between the states. By
default, the states’ correlation was considered a strong co-occurrence
if the Spearman correlation coefficient is > 0.5 [23] and statistically
significant if the computed 𝑝-value is < 0.05. Additionally, the Net-
workAnalyzer Cytoscape plugin was applied to calculate the number
of significant nodes and edges that denoted the networks’ topological
properties. In this study, nodes represented the states, whereas edges
represented the correlations (nodes). Additionally, connected compo-
nents are the maximum group of nodes connected by edges in a path,
while network density is the ratio of observed edges over possible edges
in a given network.

2.4. Support vector regression (SVR)

The support vector regression (SVR) relies on support vector ma-
chine (SVM) elements, where support vectors are generally closer
points toward the generated hyperplane in an n-dimensional feature
space that distinctly segregates the data points around the hyperplane.
The SVR model performs the fitting. The generalised equation for
hyperplane is represented as 𝑦 = wX + b, where w is the weight and b
is the intercept at X = 0. Meanwhile, the margin of tolerance is denoted
by epsilon 𝜀.

In this prediction modelling, COVID-19 cases in Malaysia in the
2nd quarter of 2021 showed a high correlation among all states based
on the NA. Therefore, the same dataset in Section 2.2 was used to
forecast cases for the Malaysian country. The steps of building the SVR
model were adapted from Parbat & Chakraborty (2020) work [6]. This
study developed the SVR model using a 70% training dataset via the
Radial Basis Function (RBF) kernel with epsilon = 0.1. The developed
SVR model was validated with a 30% testing dataset. Based on the
SVR model, predictive values of future confirmed cases and deaths in

Malaysia were computed by employing the Python 3.3 command:

https://github.com/MoH-Malaysia/covid19-public
https://github.com/MoH-Malaysia/covid19-public.T
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Fig. 1. The trend of COVID-19 (a) confirmed cases and (b) confirmed deaths from July 2020 until June 2021 (365 days).
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y_pred = scy.inverse_transform(regressor.predict(scx.
transform([[100]]))).

These values were manually inputted in Microsoft Excel to construct
the SVR forecast. The performance of the SVR model was evaluated
based on statistical goodness-of-fit criteria, e.g., regression score (R2),
mean squared error (MSE), and root mean square error (RMSE).

3. Results

3.1. General insight of COVID-19 confirmed cases and deaths in Malaysia

Using a bar plot, this study visualised the trend of COVID-19 cu-
mulative confirmed cases and deaths in Malaysia from July 2020 to
 (

3

June 2021 (Fig. 1). A trend was observed in cumulative confirmed
cases in Malaysia starting from Day 70 (8th September 2020), with
a triple-digit number of 100 cases (Fig. 1(a)). A similar pattern was
observed on accumulated confirmed deaths on day 84 (22nd September
2020) with 3 cases (Fig. 1(b)). There were significant increments (𝑝-
alue < 0.05) in daily confirmed cases and deaths in Malaysia from
uly 2020 to June 2021 (Table 1). The confirmed cases had a strong
orrelation with deaths (𝑟 = 0.907, 𝑝-value < 0.05), in which high
ases influenced a high mortality rate (Table 1). Based on Fig. 1(a), the
ncrement of confirmed cases for Day 280–Day 340 (6th April 2021–5th
une 2021) was higher than the confirmed cases for Day 70–Day 215
8th September 2020–31st January 2021).
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Fig. 2. Co-occurrence networks based on daily confirmed state cases for (a) Q3 of 2020, (b) Q4 of 2020, (c) Q1 of 2021, and (d) Q2 of 2021. The node size is proportional to
the number of connections (i.e., degree), and the edge width (i.e., weight) is proportional to the r value. The edge is coloured blue and red for positive and negative correlation,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Spearman correlation coefficient of confirmed cases vs days confirmed deaths vs days
and confirmed cases vs confirmed deaths in Malaysia from July 2020 until June 2021
(365 days).

Correlation type Data r-value 𝑝-value

Spearman’s correlation
Confirmed cases vs days 0.902 1.868e−134
Confirmed deaths vs days 0.863 1.862e−109
Confirmed cases vs confirmed deaths 0.907 1.260e−138

3.2. Correlation among states using network analysis

In the current study, the NA was constructed to determine the
relationship of states in Malaysia associated with confirmed COVID-
19 cases. States that were densely connected with others exhibited
higher complexity of edges in the network graph, suggesting a critical
centre of virus transmission throughout the networks [15]. This study
used Spearman’s rank coefficient to measure the polarity (−1 to 1)
f correlation between states based on daily confirmed cases. A pos-
tive value of the Spearman rank correlation represents co-existence,
hereas a negative value indicates opposition between two states. This

tudy divided the COVID-19 dataset into four timeframes; Quarter 3
Q3) of 2020 (July 2020–September 2020), Quarter 4 (Q4) of 2020
October 2020–December 2020), Quarter 1 (Q1) of 2021 (January
021–March 2021), and Quarter 2 (Q2) of 2021 (April 2021– June
021) and investigated the correlation between states that led to the
piked number of cases.

Table 2 summarises the number of nodes, edges and analysis time of
hese quarters. The significantly different correlations (𝑝-value < 0.05)
ere discussed in this section. In Q3 of 2020, Sabah and Kedah were
ighly correlated (𝑟 = 0.329) despite having a weak positive correlation
ompared to Perak with Perlis (𝑟 = 0.322) and Melaka with Selangor
𝑟 = 0.326) (Fig. 2(a)). The NA revealed a total of nine states, including
T Kuala Lumpur, Johor, Perak, Selangor, Kelantan, Pahang, Negeri
embilan, Pulau Pinang and Sabah that were significantly correlated in
hich Johor and FT Kuala Lumpur had the highest degree of interaction
mong others based on the visualisation (Fig. 2(b)). Of the nine states,
T Kuala Lumpur and Selangor had a strong positive correlation (𝑟 =
.765), followed by Johor and Selangor (𝑟 = 0.756). Other correlations

mong the states are summarised in Table 3. a

4

In Q1 of 2021 (January 2021 to March 2021), Fig. 2(c) showed
ore complex networks in which 11 states formed 42 significantly

trong positive correlations. Based on the visualisation, Johor, Kedah,
abah, Selangor, Terengganu, and FT Putrajaya exhibited a similar and
ighest degree of interaction associated with COVID-19 transmission.
ut of these states, Sabah and FT Putrajaya had the strongest positive
orrelation (𝑟 = 0.834), followed by Johor and FT Kuala Lumpur (𝑟 =
.754). Additionally, Johor also exhibited positive correlations with
elangor (𝑟 = 0.715), Sabah (𝑟 = 0.646), Terengganu (𝑟 = 0.637), FT
utrajaya (𝑟 = 0.574), Melaka (𝑟 = 0.566), Kedah (𝑟 = 0.552), Pahang
𝑟 = 0.536), and Negeri Sembilan (𝑟 = 0.535). Table 4 summaries other
orrelations among the states.

The second quarter (Q2) of 2021 revealed the most complex net-
ork in the current finding (Fig. 2(d)). All 16 states significantly

orrelated in COVID-19 transmission nationwide and exponentially
ncreased the number of confirmed and death cases. All four states,
ncluding Selangor, Pahang, Melaka, and Kedah, had the highest degree
f interaction (12 edges), among others. Kedah and Selangor remained
he states with the highest degree of interaction from 9 to 12 cor-
elations (edges) from Q1 to Q2 of 2021, respectively. Selangor and
T Kuala Lumpur also had a strong positive correlation (𝑟 = 0.886).
ubsequently, Melaka exhibited the highest positive correlations with
elangor (𝑟 = 0.883), Negeri Sembilan (𝑟 = 0.860), and Pahang (𝑟 =
.854). Table 5 summarises other correlations among the states.

.3. Prediction of confirmed cases and deaths in Malaysia using support
ector regression model

This study employed SVR to observe the reliability of this model
n predicting the future number of confirmed cases and deaths in
alaysia. The construction of the SVR model entailed a 70% training

et of confirmed cases vs days, confirmed deaths vs days, and confirmed
ases vs confirmed deaths. The model yielded a high R2 value (∼1) of
.846, 0.859 and 0.829, respectively (Table 6), and low MSE and RMSE
∼0) indicated that the SVR model was considered a reliable predictive
odel [26]. Moreover, the low MSE and RMSE values also indicated

he high accuracy of the SVR model. Meanwhile, the R2 values of 30%
esting set for confirmed cases vs days, confirmed deaths vs days and
onfirmed deaths vs confirmed cases were 0.855, 0.909 and 0.836,

s shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c), respectively. Based on
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Table 2
Summary statistics for each network analysed using the NetworkAnalyzer Cytoscape plugin.

Summary
Statistics

Quarter 3 2020
(July–September
2020)

Quarter 4 2020
(October–December
2020)

Quarter 1 2021
(January–March
2021)

Quarter 2 2021
(April–June
2021)

Number of nodes
(states)a

6 9 11 16

Number of edges
(correlation)

3 16 42 67

Analysis time (s) 0.106 0.008 0.014 0.029

aThe node represents states in Malaysia, whereas the edge represents a correlation between the states.
Table 3
Spearman correlation coefficient (r-value) between the states in Q4 of 2020
(October–December 2020).

State 1a State 2a r value (𝑝-value < 0.05)

Johor (6)

Kelantan (4) 0.595
Pahang (2) 0.674
Perak (5) 0.607
Sabah (1) −0.530
Selangor (5) 0.756
FT Kuala Lumpur (6) 0.756

Kelantan (4)
Perak (5) 0.592
Selangor (5) 0.608
FT Kuala Lumpur (6) 0.640

Negeri Sembilan (2) Perak (5) 0.539
Selangor (5) 0.532

Pahang (2) FT Kuala Lumpur (6) 0.542

Perak (5) Selangor (5) 0.676
FT Kuala Lumpur (6) 0.675

Pulau Pinang (1) FT Kuala Lumpur (6) 0.523
Selangor (5) FT Kuala Lumpur (6) 0.766

aValue in parenthesis indicates the degree of interaction of the state.

Fig. 3(a) and Fig. 3(b), the predicted values of daily confirmed cases
and deaths from Day 1 until Day 365 (July 2020 to June 2021) were
lower but almost similar to the actual reported cases. Fig. 4 forecasts
the future number of daily infection and mortality rates from July 2021
until December 2021. It was observed that the number of confirmed
cases and deaths in Malaysia may spike between July and August 2021,
and may show a downward trend starting in September 2021, provided
that the Malaysian authorities continue the same interventions to curb
the COVID-19 transmission.

4. Discussion

4.1. Spike of COVID-19 cases in Malaysia

Generally, the signs of COVID-19 usually appear after 1 – 14 days
of the incubation period but commonly occur after five days [24].
Based on the estimation of serial interval and incubation period, it
was estimated that 44% of transmission probably had occurred before
symptoms appeared [25]. The previous study reported a significant
relationship between viral load and incubation period, in which the
initial viral load began to increase within 5 to 6 days before the first
symptoms appeared [25]. The incubation period becomes shorter when
the viral loads are high, corresponding to low cycle threshold (CT)
values. Since viral loads evolve, high viral loads are probably the
primary cause of transmission [27].

Previously, Malaysia had successfully curbed the first and second
waves of the outbreak by lowering the confirmed cases in July until
early September 2020 (Day 1 – Day 69), with less than 100 cases
per day (Fig. 1(a). However, the fourth week of September 2020 (Day
85–Day 92) showed an increment of confirmed cases (Fig. 1(a)) and
deaths (Fig. 1(b)), commencing the third epidemic wave in Malaysia.
The increase of confirmed cases occurred right after the state election in
Sabah on 26th September 2020 (Day 88) [2]. Many cases are associated
5

Table 4
Spearman correlation coefficient (r-value) between the states in Q1 2021
(January–March 2021).

State 1a State 2a r-value (𝑝-value < 0.05)

Johor (9)

Kedah (9) 0.552
Melaka (8) 0.566
Negeri Sembilan (5) 0.535
Pahang (8) 0.536
Sabah (9) 0.646
Selangor (9) 0.715
Terengganu (9) 0.637
FT Kuala Lumpur (8) 0.754
FT Putrajaya (9) 0.574

Kedah (9)

Kelantan (1) 0.507
Melaka (8) 0.666
Pahang (8) 0.702
Sabah (9) 0.667
Selangor (9) 0.550
Terengganu (9) 0.627
FT Kuala Lumpur (8) 0.559
FT Putrajaya (9) 0.682

Melaka (8)

Pahang (8) 0.645
Sabah (9) 0.576
Selangor (9) 0.609
Terengganu (9) 0.514
FT Kuala Lumpur (8) 0.615
FT Putrajaya (9) 0.599

Negeri. Sembilan (5)

Sabah (9) 0.597
Selangor (9) 0.514
Terengganu (9) 0.516
FT Putrajaya (9) 0.584

Pahang (8)

Sabah (9) 0.645
Selangor (9) 0.508
Terengganu (9) 0.504
FT Kuala Lumpur (8) 0.557
FT Putrajaya (9) 0.677

Sabah (9)

Selangor (9) 0.584
Terengganu (9) 0.551
FT Kuala Lumpur (8) 0.701
FT Putrajaya (9) 0.834

Selangor (9)
Terengganu (9) 0.656
FT Kuala Lumpur (8) 0.703
FT Putrajaya (9) 0.518

Terengganu (9) FT Kuala Lumpur (8) 0.643
FT Putrajaya (9) 0.537

FT Kuala Lumpur (8) FT Putrajaya (9) 0.618

aValue in parenthesis indicates the degree of interaction of the state.

with high-risk areas in Sabah, which led to 29 clusters located in Sabah,
where 26 clusters had an index case with travel history to Sabah mainly
from the east of Sabah, including Lahad Datu, Semporna, Tawau, Kunak
and Sandakan areas [28]. Despite the increment of confirmed cases in
Sabah, the people’s movements within Malaysia were not restricted.
Also, COVID-19 tests were not mandatory before travelling among the
states, resulting in the escalation of confirmed cases from single digit
to thousands per day [29].

The condition in Sabah has become worse due to a lack of awareness
about COVID-19 transmission and its symptoms, especially among peo-
ple who live in rural areas, failure to compliance with the instructions
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Fig. 3. SVR models of (a) confirmed cases vs days, (b) confirmed deaths vs days, and (c) confirmed deaths vs confirmed cases from July 2020 until June 2021 (365 days).
by health officers, as well as the paucity of healthcare workers in
Sabah’s hospitals which had caused 10400 backlogged of COVID-19
test samples [30]. The Sabah was one of the top three states with the
highest population composition at 11.7%, preceded by the Selangor at
20.1% and followed by Johor at 11.6% [31]. However, the population
density per one square kilometre in Sabah (52/km2) is not relatively
high as in Federal Territory (FT) Kuala Lumpur (7188/km2), FT Pu-
trajaya (2354/km2), Selangor (674/km2), and Johor (174/km2) [29].
Although the population density in Sabah is not as highly dense as in
Peninsular Malaysia, the majority of 3.83 million people in Sabah are
settling along the Sabah’s coastline instead of the interior mountainous
parts, which has caused the spike of COVID-19 cases in those areas after
the state election of Sabah [32]. Besides, irregular and undocumented
6

migrants in Sabah refused to go for COVID-19 screening tests and
contact tracing since they were at risk of detention or deportation,
resulting in difficulty in getting robust and reliable data [33].

Other than that, the commencing of triple-digit COVID-19 cases
was observed on Day 70 (8th September 2021) during the recovery
movement control order (RMCO) and later exponentially increased dur-
ing the conditional movement control order 2.0 (CMCO 2.0) between
Day 106–Day 196 (14th October 2020– 12th January 2021) [34]. The
exponential increment in COVID-19 cases during CMCO 2.0 was due
to the emergence of new clusters post the Sabah state election held
on 26th September 2020. The Malaysian government then decided
to implement the MCO 2.0 again on 13th January 2021 (Day 197)
after observing COVID-19 cases that reached thousands per day [35].
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Fig. 4. Forecast of COVID-19 cumulative confirmed cases and deaths for the next 184 days (starting from July 2021 until December 2021).
etween Day 197– Day 247 (13th January 2021–4th March 2021),
CO 2.0 successfully showed a decreasing trend in COVID-19 cases per

ay. However, the implementation of MCO 2.0 did not last long. Once
gain, the government announced the third CMCO (CMCO 3.0) on 5th
arch 2021 for the safety of Malaysia’s economy [36]. Although the
CO 2.0 execution was not stricter than MCO 1.0 and most businesses
ere allowed to operate, Malaysia still recorded a RM 600 million loss
er day since most businesses struggled in the recovery phase, and
nvestors remained pessimistic [37].

During the CMCO 3.0 (Day 280–Day 340), the spike in COVID-
9 cases was observed to be higher than CMCO 2.0 and MCO 2.0
Day 70–Day 215) due to the failure of mass COVID-19 testing and
ompliance with the standard operating procedures (SOPs) in Selangor
nd Penang, as well as the emergence of new coronavirus variants
ith higher infection rates comprising of United Kingdom variant

Alpha Variant B.1.1.7), South African variant (Beta Variant B.1.351),
nd Indian variant (Delta Variant B.1.617.2) [38]. Social gathering
ctivities and the people’s concentration in crowded spaces were the
rimary causes of spreading due to societies’ difficulty in complying
ith the SOPs. In Selangor, the government state decided to fully
tilise the antigen rapid test kit (RTK-Antigen) method during the mass
OVID-19 testing since the testing results can be obtained on the same
ay compared to the reverse transcription-polymerase chain reaction
RT-PCR) method, which the testing results takes up to three days
nd caused backlog [39]. Mass COVID-19 testing using RTK-Antigen
ims to detect and isolate the silent carriers and better understand
he positivity rate and hotspots. Therefore, the increment of COVID-
9 cases was anticipated. The increasing number of COVID-19 cases
as also caused an overburden on the healthcare system, particularly in
ighly affected states such as Selangor, Sarawak, Penang, Kelantan and
T Kuala Lumpur, leading to the escalating of COVID-19 deaths [28].

.2. Transmission complexity in second quarter (Q2) of 2021

Despite having a slight positive correlation, Sabah and Kedah were
ignificantly connected (𝑟 = 0.329, p < 0.05) in Q3 2020 (Fig. 2

(a)). Sabah and Kedah had individual 1505 and 270 confirmed cases
throughout the quarter, yet no reports linking the COVID-19 transmis-
sion between these two states. Sabah, which had reported the first
cluster on 1st September 2020 at Lahad Datu District Police Head-
quarters lock-up, this state had accounted for 74.7% of the total new
cases between 7th to 13th September 2020 [33]. Kedah had the earliest
positive COVID-19 cases where the Sivagangga cluster emerged and
spread to Perlis and Penang. Several factors were linked to COVID-
19 transmission in Kedah, including the lack of physical distancing,
7

family gatherings that flouted standard operating procedures (SOP),
and hospital visits [28]. Generally, the MHH expressed alarming con-
cern about COVID-19 spreading in Q3 2020 since most respiratory
viral tract infections were reported during rainy seasons in tropical
regions [40], where Malaysia undergoes two monsoon seasons with
rapid wind speed faced from late May to September and November to
March in Southwest and Northeast Malaysia, respectively. These rainy
seasons might contribute to the transmission of COVID-19 within this
time frame [41].

Surprisingly, the confirmed COVID-19 cases increased from 2594 to
101786 from Q3 (Fig. 2(a)) to Q4 2020 ((Fig. 2(b)). Based on the NA,
nine states were highly associated, including FT Kuala Lumpur, Johor,
Perak, Selangor, Kelantan, Pahang, Negeri Sembilan, Pulau Pinang, and
Sabah, with Johor and FT Kuala Lumpur had the highest degree of
interaction among others (Fig. 2 (b)). The increasing number of COVID-
19 cases might have been contributed by geographical factors such
as high population density and population movement, especially in
urban centres [42]. Manufacturing industries also contributed to the
confirmed COVID-19 cases in FT Kuala Lumpur and Selangor [43].
Johor was also positively correlated with FT Kuala Lumpur (𝑟 = 0.756),
Pahang (𝑟 = 0.674), Perak (𝑟 = 0.607), and Kelantan (𝑟 = 0.595). Other
correlations (r values and degree of interaction) are summarised in
Table 3.

However, Johor and Sabah showed a negative correlation (r =
- 0.530) in Table 3, suggesting strategic implementation in Sabah
that might reduce the spread of COVID-19 in Johor (Fig. 2(b)). Sev-
eral comprehensive implementations in Sabah included limited non-
essential services, implementation of Targeted Enhanced Movement
Control Order (TEMCO), increasing of healthcare equipment capacity
(beds, ventilators, etc.), medical personnel mobilisation, point-of-entry
testing, maximum daily RT-PCR testing capacity, mandatory 14-day
quarantine at designated centres, quarantine centres for undocumented
migrants and stringent border control. Apart from that, placing Jo-
hor under Conditional Movement Control Order (CMCO) and MCO,
closing worship places, opening COVID-19 for quarantine and low-risk-
treatment centres, and enforcing SOPs reduced the COVID-19 spreading
from this state [44].

A more complex network consisting of 11 states and 42 significant
positive correlations was identified in Q1 2021 (January to March
2021) in Fig. 2 (c). This finding was in accordance with the shifting
of the National Transmission State Assessment stage from Stage 2 (Lo-
calised Community Transmission) to Stage 3 (Large-scale Community
Transmission – Low Confidence), signifying that the COVID-19 spread
was high among the communities. During this Q1 2021, the increase
in COVID-19 spread was potentially due to inter-state travel during
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Table 5
Spearman correlation coefficient (r-value) between the states in Q2 2021 (April–June
2021).

State 1a State 2a r-value (𝑝-value < 0.05)

Johor (11)

Kedah (12) 0.783
Melaka (12) 0.776
Negeri Sembilan (9) 0.727
Pahang (12) 0.712
Perak (10) 0.750
Pulau Pinang (8) 0.607
Sabah (7) 0.545
Selangor (12) 0.799
Terengganu (11) 0.764
FT Kuala Lumpur (11) 0.761
FT Labuan (9) 0.615

Kedah (12)

Melaka (12) 0.799
Negeri Sembilan (9) 0.702
Pahang (12) 0.808
Perak (10) 0.736
Perlis (4) 0.585
Pulau Pinang (8) 0.635
Selangor (12) 0.832
Terengganu (11) 0.770
FT Kuala Lumpur (11) 0.771
FT Labuan (9) 0.539
FT Putrajaya (4) 0.506

Kelantan (1) Terengganu (11) 0.605

Melaka (12)

Negeri Sembilan (9) 0.860
Pahang (12) 0.854
Perak (10) 0.760
Pulau Pinang (8) 0.524
Sabah (7) 0.674
Selangor (12) 0.883
Terengganu (11) 0.619
FT Kuala Lumpur (11) 0.824
FT Labuan (9) 0.745
FT Putrajaya (4) 0.536

Negeri Sembilan (9)

Pahang (12) 0.725
Perak (10) 0.654
Sabah (7) 0.670
Selangor (12) 0.843
FT Kuala Lumpur (11) 0.824
FT Labuan (9) 0.757

Pahang (12)

Perak (10) 0.722
Perlis (4) 0.549
Pulau Pinang (8) 0.642
Selangor (12) 0.821
Terengganu (11) 0.683
FT Kuala Lumpur (11) 0.739
FT Labuan (9) 0.579
FT Putrajaya (4) 0.574

Perak (10)

Pulau Pinang (8) 0.552
Selangor (12) 0.752
Terengganu (11) 0.652
FT Kuala Lumpur (11) 0.672
FT Labuan (9) 0.585

Perlis (4) Selangor (12) 0.511
Terengganu (11) 0.530

Pulau Pinang (8)
Selangor (12) 0.576
Terengganu (11) 0.762
FT Kuala Lumpur (11) 0.528

Sabah (7)

Sarawak (1) 0.510
Selangor (12) 0.609
FT Kuala Lumpur (11) 0.622
FT Labuan (9) 0.726

Selangor (12)
Terengganu (11) 0.680
FT Kuala Lumpur (11) 0.886
FT Labuan (9) 0.684

Terengganu (11) FT Kuala Lumpur (11) 0.607
FT Putrajaya (4) 0.544

FT Kuala Lumpur (11) FT Labuan (9) 0.622

aValue in parenthesis indicates the degree of interaction of the state
8

holiday celebrations, mainly in FT Kuala Lumpur, Selangor, Johor,
Penang, Sabah, Kedah, Perak, Negeri Sembilan, and Melaka [28]. A
few festive seasons (Q1 2021) that applied to these states, including
New Year’s Day (1st January 2021), Thaipusam (28th January 2021),
and Chinese New Year (12th–13th February 2021), hence might lead
to an increase in population movement within the time frame. Data
from Google Mobility Report also indicated a surge of cumulative
population movement (workplace, retail and recreations, parks, grocery
and pharmacy, and transit stations) in Johor, Kedah, Sabah, Selangor,
Terengganu, and FT Putrajaya within the quarter (Fig. 5) [45], suggest-
ing that festive season may be one of the potential factors of COVID-19
spread [46]. Hence, the MHM shall take the necessary actions prior
to the event. The snow-ball effect on the infection from these festive
seasons could be seen in the following second quarter (Q2) of 2021.

The second quarter (Q2) of 2021 was the most complicated net-
work in the present study, where the highest degree of interaction
in Selangor, Pahang, Melaka, and Kedah occurred (Fig. 2(d)). The
Malaysian authorities changed the stage of the National Transmission
Stage Assessment from Stage 3 (Large-Scale Community Transmission
– Low Confidence) to Stage 3 (Large-Scale Community Transmission –
Moderate Confidence) effective on 26th April 2021 and further shifted
to Stage 3 (Large-Scale Community Transmission – High Confidence) on
10th May 2021. From Q1 to Q2 of 2021, Kedah and Selangor remained
the states with the highest degree of interaction, ranging from 9 to 12
correlations (edges). During the time frame, the surge cases in Kedah
and Selangor were linked to densely populated areas and those who
contracted the virus at factories [47].

Selangor and FT Kuala Lumpur had a strong positive correlation
(𝑟 = 0.886) and consistently reported a high proportion of confirmed
cases compared to Sarawak, Penang, Johor, and Kelantan due to the
burden of the healthcare system. Moreover, multiple hospitals across
FT Kuala Lumpur and Selangor struggled with the surged admission of
critically ill COVID-19 patients requiring oxygen support [48], leaving
more contracted patients to stay at home and leading to more infection.
Additionally, 132673 and 11873 confirmed COVID-19 cases in Selangor
and Melaka had been reported in the same quarter. However, no reports
between Melaka and Selangor were found despite having a strong
positive correlation (𝑟 = 0.883). Thus, this study inferred that the
transmission might be due to inter-state travel and the rapid spread
of COVID-19 within the local community, educational institutions,
and places of worship. Considering the rise of population movement
(residential, grocery and pharmacy) (Fig. 6), the asymptomatic carriers
and the emergence of new COVID-19 variants in Q1 of 2021 could
potentially cause the virus to be more transmissible among all states,
including the Melaka and Selangor [49]. In addition, several national
festive seasons in Q2 of 2021 (April–July 2021), including Labour
Day (1st May 2021), Eid Fitr (13th–14th May 2021) and Wesak Day
(26th May 2021), might link to the increase of population movements
and contribute to the increment of COVID-19 infection. Likewise, the
Malaysian authorities shall take precautions by inculcating the com-
munities to comply with SOPs and imposing a targeted movement
restriction in the states with high populations.

4.3. Potential of support vector regression (SVR) model in predicting con-
firmed and death cases associated with COVID-19 in Malaysia

Although SVR is one of the standard predictive tools in predicting
COVID-19-related cases, our findings revealed higher R2 and lowered
MSE and RMSE values than in a previous study [50]. It was observed
that the predicted values of daily confirmed cases and deaths from Day
1 until Day 365 (July 2020 to June 2021) were lower but almost similar
to the actual reported cases in Fig. 3(a) and Fig. 3(b). This finding
indicated that the SVR was a reliable and robust method to briefly
predict the impending number of daily infections and mortality rates.
Nevertheless, in this study, the prediction of the SVR model was solely
based on historical data and did not consider the reproduction number
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Table 6
Model performance of support vector regression for confirmed cases, confirmed deaths and days.

Prediction model Data 70% training datasetb 30% testing datasetb

MSE RMSE R2 MSE RMSE R2

Support vector regressiona
Confirmed cases vs days 0.154 0.393 0.846 0.151 0.388 0.855
Confirmed deaths vs days 0.141 0.376 0.859 0.108 0.329 0.909
Confirmed cases vs confirmed deaths 0.171 0.413 0.829 0.196 0.443 0.836

aExecution of support vector regression was based on radial basis function (RBF) kernel with epsilon value 0.1.
bMSE = Mean squared error; RMSE = Root mean square error; and R2 = Regression score.
Fig. 5. Cumulative mobility data (%) over time for Johor, Kedah, Sabah, Selangor, Terengganu, and F.T. Putrajaya in Q1 of 2021 (Google LLC, 2021).
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(𝑅0). The 𝑅0 is the estimated number of cases an infected individual
auses in spreading the disease to other individuals who are not yet
nfected. The 𝑅0 was utilised to determine the potential for a disease

to spread in that population [7]. Recently, the determination of the 𝑅0
alue has been vital since this value is able to indicate the severity rate
f the outbreak to spread among individuals [50]. Since our current aim
nly focuses on observing the SVR model’s reliability in predicting the
orthcoming COVID-19 cases, the 𝑅0 value may be proposed together
ith the SVR model for future study. The forecast for the future number
f daily infection and mortality rates predicted from July 2021 until
ecember 2021 (Fig. 4) indicated that the number of confirmed cases
nd deaths in Malaysia spiked between July and August 2021, and a
ownward trend to start in September 2021, provided that the MHH
nd Malaysia government remain the similar interventions to curb the
OVID-19 transmission. However, this study emphasised that this fore-
ast was merely based on daily confirmed cases and deaths variables,
nd the prediction via SVR needs more variables to investigate the
nfluence of other variables on the COVID-19 trend in Malaysia.

.4. Linkage between the results of network analysis and support vector
egression

Based on the NA of Q2 2022 in Fig. 2(d) and the decrease of
redicted confirmed death cases in August 2021 (Fig. 4), the Malaysian
overnment should implement stringent preventive measures mainly in
tates that have a high degree of interactions, such as Melaka, Selan-
or, Kedah and Pahang. Following New Zealand’s COVID-19 elimina-
ion strategies, preventive measures, including extensive border man-
gement, public communication on physical distancing, hand wash-
ng, mask-wearing, cough etiquette, and hospital capacity, may reduce
9

OVID-19 transmission. Moreover, the public should be advocating
or the awareness of common COVID-19 symptoms such as fever,
ry cough, sore throat and the urge to quarantine themselves based
n self-test results. It is also advisable for the public to take vac-
ine shots to reduce the risk of getting and spreading the COVID-
9 virus. All measures mentioned earlier shall be stringently imple-
ented starting from the highly interacted states to contain the virus

ransmission.

. Conclusion

Despite relying solely on the confirmed COVID-19 dataset, our
pproach visualised COVID-19 pandemic risk through NA intercon-
ections between the Malaysian states. During the study period, state
onnectivity grew, identifying a higher degree of interaction among
few states, which may become the probable transmission keys. The

VR model could predict the number of COVID-19 cases and deaths
n the future. With low MSE and RMSE values and reliable regressor
cores, the SVR model’s reliability was comparable to other predictive
odels; consequently, it can be advocated in future prediction studies.
onetheless, our findings were confined to verified daily cases and

atalities only. To investigate the effect of other factors on the COVID-
9 trend in Malaysia, this study via SVR needs more variables. Also,
he SVR’s prediction ability shall be compared with other prediction
odels, such as logistic regression, autoregressive integrated moving

verage (ARIMA), and long short-term memory (LSTM) in predicting
OVID-19 cases. From this study, the NA and SVR model aided in
nderstanding the spread of the virus among communities and provided
arly warning to the Malaysian authorities in preparing preventive
easures based on the daily confirmed cases and fatalities.
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Fig. 6. Cumulative mobility data (%) over time for (a) Selangor and (b) Melaka in Q2 of 2021 (Google LLC, 2021).
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