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Abstract
Ultrasound images are widespread in medical diagnosis for muscle-skeletal, cardiac, and obstetrical diseases, due to the 
efficiency and non-invasiveness of the acquisition methodology. However, ultrasound acquisition introduces noise in the 
signal, which corrupts the resulting image and affects further processing steps, e.g. segmentation and quantitative analysis. 
We define a novel deep learning framework for the real-time denoising of ultrasound images. Firstly, we compare state-of-
the-art methods for denoising (e.g. spectral, low-rank methods) and select WNNM (Weighted Nuclear Norm Minimisation) 
as the best denoising in terms of accuracy, preservation of anatomical features, and edge enhancement. Then, we propose a 
tuned version of WNNM (tuned-WNNM) that improves the quality of the denoised images and extends its applicability to 
ultrasound images. Through a deep learning framework, the tuned-WNNM qualitatively and quantitatively replicates WNNM 
results in real-time. Finally, our approach is general in terms of its building blocks and parameters of the deep learning and 
high-performance computing framework; in fact, we can select different denoising algorithms and deep learning architectures.
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1  Introduction

Ultrasound imaging uses high-frequency sound waves to 
visualise soft tissues, such as internal organs, and support 
medical diagnosis for muscle-skeletal, cardiac, and obstetri-
cal diseases, due to the efficiency and non-invasiveness of 
the acquisition methodology. Ultrasonic sound waves are 
reflected off from different layers of body tissues. The main 
issues of the ultrasound techniques are a significant loss 
of information during the reconstruction of the signal, the 
dependency of the signal from the direction of acquisition, 
an underlying noise that corrupts the image and significantly 
affects the evaluation of the morphology of the anatomical 
district. In this context, the denoising of ultrasound images 
is relevant both for post-processing and visual evaluation 
by the physician.

Our main goal is the definition of a novel deep learning 
framework for the real-time denoising of ultrasound images 
(Fig. 1). After the design of a training data set, composed of 
raw images and the corresponding denoised images, we train 
a neural network that replicates the denoising results. Then, 
the real-time denoising is achieved through the prediction 
of the trained network. The proposed framework combines 
three elements: low-rank denoising, deep learning, and high-
performance computing (HPC, for short).

We select WNNM-Weighted Nuclear Norm Minimisation 
[27] as the best denoising method, which is then specialised 
to ultrasound images as a “new” tuned-WNNM denoising, 
by tuning its parameters. The choice of WNNM is based on 
a qualitative and quantitative comparison of five denoising 
methods, i.e. WNNM, SAR-BM3D - SAR Block-Matching 
3D [48], BM-CNN - Block Matching Convolutional Neural 
Network [5], NCSR - Non-Locally Centralised Sparse Rep-
resentation method [19], PCA-BM3D Principal Component 
Analysis Block Matching 3D [16]) belonging to the spectral, 
low-rank, and deep learning classes (Section 2).

To achieve a real-time denoising of ultrasound images, 
we propose a deep learning framework that is based on 
the learning of the tuned-WNNM and HPC tools (Sec-
tion 3). The training is performed offline and can be fur-
ther improved with new data, a priori information on the 
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input images or the anatomical district, and denoised images 
selected after experts’ validation. Through our framework, 
the execution time of the denoising only depends on the net-
work prediction, which is achieved in real-time on standard 
medical hardware.

As the main contribution, the proposed denoising of ultra-
sound images runs in real-time and is general in terms of the 
input data, in terms of resolution of the input images (e.g. 
isotropic, anisotropic images), acquisition methodology, 
anatomical district, noise (e.g. speckle or Gaussian noise), 
and the dimension of the images (i.e. 2D, 3D images). Our 
approach is also general in terms of the building blocks 
and parameters of the deep learning framework; in fact, 
we can select different denoising algorithms (e.g. WNNM, 
SARBM3D) and deep learning architectures (e.g. Pix2Pix, 
VGG19).

As experimental validation (Section 4), we perform a 
quantitative (e.g. PSNR, SSIM) and qualitative evaluation 
of the selected denoising methods on ultrasound images 
acquired from different anatomical (e.g. muscle-skeletal, 
obstetric, and abdominal) districts. Then, the results of the 
deep learning and HPC frameworks are quantitatively and 
qualitatively analysed on a large collection of ultrasound 
images. The industrial requirement of real-time denoising 

is verified in terms of the execution time of the network 
prediction on GPU-based hardware installed in commercial 
ultrasound machines. Finally, we discuss main results (Sec-
tion 5), conclusions, and future work (Section 6).

2 � Related work

We review previous work on image denoising (Section 2.1) 
and deep learning methods for denoising and regression 
(Section 2.2).

2.1 � Image denoising

Non‑local methods  The Non-Local Means (NLM) denois-
ing [11] uses the patterns’ redundancy of the input image, 
and each patch is restored with a weighted average of all the 
other patches, where each weight is proportional to the simi-
larity among the patches. The Bayesian non-local mean filter 
[30] improves the NLM with the introduction of a Bayes-
ian estimator as distance measure among the patches, which 
allows the user to better determine the amount of denoising 
by the noise variance of the patch. The anisotropic neigh-
bourhood in NLM [44] uses image gradient to estimate the 

Fig. 1   Pipeline of the proposed framework, with a magnification of 
prediction (red) and target (blue) images (right side). Our framework 
applies deep learning and HPC to learn and replicate the denoising 

results of state-of-the-art low-rank method (i.e. tuned-WNNM), in 
real-time and with a specialisation to anatomic districts

2230 Medical & Biological Engineering & Computing (2022) 60:2229–2244



1 3

edge orientation and then adapts the patches to match the 
local edges. The characterisation of the patches through a 
redundancy index [45] improves the self-similarity compu-
tation among patches. The improvement on the structure of 
the search window is achieved through the computation of 
an optimal search window for each pixel [63], according to 
the denoising degree of the related patch.

Anisotropic methods  The denoised image is computed as 
the solution to an anisotropic diffusion equation [49, 50], 
where the gradient of the image guides the diffusion process. 
The variant [72] exploits the Lee [35] and Forst [24] filters, 
which are edge-sensitive to speckle noise. An improvement 
of the previous results [6] is achieved by applying the Kuan 
filter [34] in the diffusion equation and revising the selection 
of the neighbourhood used for the estimation of the statisti-
cal parameters. The anisotropic method introduces a class 
of fractional-order anisotropic diffusion equations [7], using 
the Fourier transform to compute the fractional derivatives, 
and the discrete Fourier transform to compute the fractional-
order differences.

Spectral denoising  Denoising based on spectral decom-
position transforms a signal into its spectral domain and 
exploits the sparsity of the transformed signal to remove 
noise, through a threshold operation. Several transforma-
tions have been applied to image denoising, such as Wavelets 
[13, 39, 46, 51], Curvelets [61], Contourlets [14], and Shear-
lets [71]. To reconstruct the denoised image, the 3D block-
matching [15] computes and stacks similar patches through 
NLM; each stack is transformed into its spectral domain 
with wavelet decomposition, denoised through a hard/
soft threshold, and reconstructed in the space domain. The 
denoised patches are aggregated by a collaborative filter. The 
synthetic aperture radar block matching 3D (SAR-BM3D) 
[48] introduces a speckle-based variant of 3D block match-
ing; the similarity among the patches is computed by con-
sidering the probability distribution of the speckle noise as a 
distance metric. Furthermore, the hard/soft threshold of the 
wavelet transformed signal is substituted by a Local Linear 
Minimum Mean Square Error (LLMMSE) filter. The prin-
cipal component analysis block matching 3D (PCA-BM3D) 
[16] improves the stacking operation of 3D block-matching 
by using shape-adaptive neighbourhoods, which enable its 
local adaptability to image features. The 3D transformation 
of each stack to the spectral domain is performed through 
the PCA [66] and an orthogonal 1D transformation in the 
third dimension.

Low‑rank methods  Low-rank approximation computes the 
denoised image as the solution to a weighted minimisation 
problem, whose cost function is the Frobenius norm [12, 
49, 60] or the ℓ1 norm [20], between the input and the target 

images. The relation between local and non-local informa-
tion [18] allows us to estimate signal variances, by inter-
preting the Singular Value Decomposition (SVD, for short) 
through a bilateral variance estimation. In [54], a high-order 
SVD is applied to 3D blocks, and the denoised image is 
achieved with hard thresholding of the decomposed signal. 
The Weighted Nuclear Norm Minimisation (WNNM) [27] 
computes the stacks as in the 3D block-matching method, 
performs the SVD on the stacks and applies a weighted 
threshold to the singular values, where higher weights cor-
respond to lower singular values, which capture the noisy 
component of the image. The collaborative filtering of 
WNNM for the aggregation of the denoised patches is per-
formed as in the 3D block-matching method. The weighted 
nuclear norm and the histogram preservation [74] are com-
bined in a single constrained optimisation problem, which is 
solved through the alternating direction method of multipli-
ers [10]. The WNNM is extended to image deblurring with 
several types of noise [40].

External learning  The K-SVD algorithm [4] represents the 
signal as a linear combination of an over-complete diction-
ary of atoms, which are iteratively updated through the SVD 
of the representation error to better fit the data. A learned 
simultaneous sparse coding method [43] integrates sparse 
dictionary learning with non-local self-similarities of natural 
images. The non-locally centralised sparse representation 
(NCSR) [19] exploits the non-local redundancies, combined 
with local sparsity properties, to estimate the coefficients of 
the sparse representation of the input image. The diction-
ary is learned by clustering the patches of the image into K 
clusters through the K-means [42] method and then learn-
ing a PCA sub-dictionary for each cluster. This method has 
been further improved in [69] with a fast version based on 
a pre-learned dictionary and achieving an improvement of 
the computational efficiency. The structured sparse model 
selection over a family of learned orthogonal bases [41] is 
applied to the deblurring of images with Gaussian noise.

2.2 � Deep learning for denoising and regression

Deep learning methods for denoising  In the Noise2No-
ise algorithm [36], the network learns to denoise images 
only considering the noisy data, without any knowledge of 
the ground truth. The Noise2Void algorithm [33] further 
expands this idea, and it does not require couples of noisy 
images for the training. This approach is relevant in bio-
medical fields, where there are no ground truth images. The 
Noise2Self method [8] proposes a self-supervised algorithm 
that does not require any prior information on the input 
image, estimation on the noise, or ground truth data. The 
denoising of images [21] is achieved through the extraction 
of features from the noisy image through a convolutional 
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neural network (CNN), and combining the edge regularisa-
tion with the total variation regularisation. The combina-
tion of CNN and low-rank representation [25] is applied to 
detect anomalous pixels in hyperspectral images. The mul-
tilevel wavelet convolutional neural network [67] is applied 
for restoring blurred images affected by Cauchy noise. The 
block matching Convolutional Neural Network (BM-CNN) 
[5] integrates a deep learning approach with the 3D block-
matching method; the denoising of the stacks is predicted 
through a DnCNN [73], which is trained with a data set of 
400 images corresponding to more than 250K training sam-
ples. A feed-forward Convolutional Neural Network smooths 
images, independently from the noise level, by exploiting 
residual learning and batch normalisation. Then, the blocks 
are aggregated and the image is reconstructed, as in the 3D 
block-matching algorithm.

Deep learning methods for image‑to‑image regression  The 
VGG19 [56] introduces Convolutional Neural Networks 
(CNN) pushing the depth to 16–19 weight layers, using 
small convolution filters of 3 × 3 size, with an application 
to large scale images classification. The Pix2Pix [29] method 
is a Generative Adversarial Network (GAN), where the 
generator is a U-net [55], the discriminator is an encoding 
network [32], and the loss function is based on the binary 
cross-entropy. The deep convolutional generative adversar-
ial network [53] applies unsupervised learning for image 
classification and the generation of natural images, exploit-
ing batch normalisation, rectified linear unit activations, and 
removing fully connected hidden layers.

3 � Method

We propose a novel deep learning framework for the real-
time denoising of ultrasound images. Firstly, we introduce 
the data sets and metrics for the selection of the denois-
ing method that best fits our requirements for ultrasound 
images (Section 3.1). Then, we optimise the parameters of 
the selected method to the denoising of ultrasound images 
(Section 3.2). Finally, we introduce a deep learning (Sec-
tion 3.3) and HPC (Section 3.4) framework, which achieves 
real-time denoising. For a detailed discussion on the results, 
we refer the reader to Section 4.

3.1 � Data sets and metrics for denoising evaluation

We compare five denoising state-of-the-art methods, which 
are either specific for speckle noise (e.g. SAR-BM3D) or 
independent of the type of noise (e.g. WNNM). We consider 
the Esaote private data set, which contains more than 10K 
ultrasound images at different resolutions, and is acquired 
from different (e.g. muscle-skeletal, obstetric, abdominal) 

anatomical districts. On this data set, we compare the perfor-
mance of different denoising methods applied to ultrasound 
images, and analyse the performance of the proposed frame-
work, through the training and the prediction of the learning-
based network, with a specialisation to anatomic districts.

As quantitative metrics, we consider the peak-signal-to-
noise ratio (PSNR) and the structural similarity index meas-
ure (SSIM) for the comparison of the raw input with the 
target denoised image provided by the proposed framework. 
Furthermore, we integrate the quantitative metrics with a 
qualitative discussion on the quality of the denoised images, 
in terms of blurring and edge preservation.

3.2 � Tuned‑WNNM

According to the results in Section 4, WNNM has been 
selected as the best denoising method among five state-of-
the-art methods belonging to the spectral, low-rank, and 
deep learning classes. To improve the quality of the denoised 
image, we propose a novel approach to the tuning of WNNM 
parameters, and we refer to this method as tuned-WNNM.

Given a pixel x, the patch Px is the set of pixels in the 
neighbourhood of x; each pixel of the image has a related 
patch. The search window is the set of patches selected for 
searching the closest ones to a reference patch, under a cer-
tain metric. The stack, or 3D block, is the set of patches that 
are similar to a reference patch; these patches are stored in 
a 3D structure, and the redundancy of the stack is exploited 
to remove the noise. Within this setting, the tuning of these 
parameters (i.e. search window, stack, patch size) improves 
the results of tuned-WNNM with respect to WNNM. Our 
framework maximises the performance of the denoising 
method; in fact, the real-time requirement is achieved by 
the network prediction, while the denoising is applied offline 
for the generation of the training data set.

3.3 � Real‑time denoising with deep learning

The main requirements of a denoising algorithm for ultra-
sound images are the magnitude of the removed noise, edge 
preservation, and real-time computation. The tuned-WNNM 
satisfies these requirements, except for the execution time, 
which does not satisfy the real-time need of ultrasound 
applications. To achieve a real-time computation and to 
maintain the good results of the tuned-WNNM method in 
terms of denoising and edges preservation, we identify two 
strategies. We develop (i) a computationally optimised ver-
sion of the tuned-WNNM method, exploiting HPC tools, 
CPUs and GPUs, and low-level programming languages. We 
design and implement (ii) a deep learning framework that 
uses the tuned-WNNM as an instance of denoising methods.

The implementation of a computationally optimised, 
and potentially real-time, version of the tuned-WNNM 
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is a very tough requirement; the main iterative cycle of 
the algorithm is not parallelisable, due to the dependency 
of the data among the iterations. Furthermore, the cubic 
computational cost for the evaluation of the SVD of each 
block is no further optimisable. The real-time requirement 
needs a specific hardware-based implementation, and any 
modification to the method requires a new implementation 
of the parallel algorithm. This approach needs dedicated 
and more expensive hardware, which is in contrast with 
the cheapness of the ultrasound acquisition.

Proposed approach and contributions  The proposed real-
time denoising is based on the training of a neural net-
work to learn and replicate the tuned-WNNM behaviour. 
In the first phase, the network is trained on a data set of 
ultrasound images of the same district. The data set for 
the training of the learning method is composed of a set 
of couples of ultrasound images: the input (i.e. the raw 
image) and the target (i.e. the image denoised with the 
tuned-WNNM filter). The ground truth is not available in 
ultrasound applications; for this reason, the target of the 
learning method is the output of the tuned-WNNM filter. 
Then, the trained network provides the denoised output 
through a real-time prediction of the test images. As the 
main contribution, the proposed deep learning framework 
is general in terms of the input data, i.e. type of noise 
(e.g. speckle, Gaussian noise), resolution (e.g. isotropic, 
anisotropic) of the input images, acquisition methodology, 
and the anatomical district. Our deep learning framework 
is also general in terms of building blocks and param-
eters: since different methods (e.g. NCSR, SAR-BM3D, 
custom methods) have good performances, the general-
ity of our framework allows us to use a different denois-
ing algorithm and to exploit its different characteristics 
in terms of denoising and edge preservation. Alternative 
denoising methods can be used for different types of noise 
(e.g. speckle, Gaussian noise) and signals (e.g. 3D images, 
time-dependent ultrasound videos).

In our approach, we specialise the training phase to spe-
cific anatomical districts or types of noise. For instance, we 
train a specific network for each district, thus obtaining a 
more precise result when predicting the denoised image, as 
each network is specialised to the input anatomical features. 
We also improve the WNNM denoising in terms of real-time 
computation based on offline training. The real-time com-
putation depends only on the execution time of the network 
prediction. Furthermore, the offline training can be improved 
with new data, a priori and/or additional information on the 
data (e.g. input anatomical district, noisy type/intensity, 
image resolution, acquisition methodology/protocol). The 
update of the existing training data set is always performed 
offline, through the addition of new images after expert vali-
dation of the denoising results.

Deep learning architecture  To evaluate the proposed frame-
work, we analyse several networks and perform an image-
to-image regression; among them (Section 2), we select Pix-
2Pix, which guarantees good results in terms of learning. We 
specialise Pix2Pix to ultrasound images, with two updates: 
(i) the introduction of a validation data set of the same dis-
trict of the training data set, which forces the exit condition 
when the validation error increases, and (ii) the introduction 
of padding and masking pre-processing operations, which 
allow us to deal with images of different resolution, without 
an image resize that would imply a distortion artefact. A 
comparison between Pix2Pix and Matlab CNN is discussed 
in Section 4.5.

Training data sets  We generate and test different data sets, 
by varying the number of images for the training phase, and 
the anatomical district for the prediction phase. The cus-
tom Pix2Pix network is trained on four data sets of obstetric 
images, with respectively: (a) 500, (b) 1500, (c) 3500, and 
(d) 5000 images. Each data set is composed of the input 
images (i.e. the raw Esaote data set) and the target images 
(i.e. the corresponding images denoised with the tuned-
WNNM). The validation data set is composed of an addi-
tional set of different images (i.e. about 10% of the training 
data set) of the same district. Then, we evaluate each of the 
four networks (i.e. the networks trained with a different num-
ber of images) with two different test data sets of 50 images 
each, respectively from the (i) obstetric and (ii) muscular 
anatomical districts. For each test data set, we compute the 
quantitative PSNR and SSIM metrics between the predic-
tion of the network and the expected target; furthermore, the 
experts visually evaluate the prediction results.

3.4 � HPC framework for learning

We define an HPC implementation of the proposed deep 
learning framework, taking advantage of a large ultrasound 
data set with 5K ultrasound images, and of the CINECA-
Marconi100 cluster, exploiting both CPUs (IBM POWER9 
AC922) and GPUs (NVIDIA Volta V100). Given a training 
data set, composed of raw images and the corresponding 
denoised images, we implement a parallel and distributed 
deep learning framework in TensorFlow2. Then, we define 
a batch file for the execution of the deep learning framework 
on the cluster, which specifies the number of nodes, CPUs, 
GPUs, and memory of the cluster. Through the proposed 
HPC framework, we train multiple networks with large data 
sets in a reasonable time for the target medical application, 
thus increasing the specialisation to anatomical districts, 
and consequently the accuracy of the deep learning frame-
work. The HPC framework generates a network model that 
is stored and used for predicting the output results. Further-
more, we can improve the offline training with new data, a 
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priori and/or additional information on the input data (e.g. 
input anatomical district, noisy type/intensity, image resolu-
tion, acquisition methodology/protocol). The training data 
set can be periodically updated with the denoised images 
after the expert validation of the denoising results.

4 � Results

We present the results of denoising methods with a spe-
cialisation to ultrasound images (Section 4.1), a compari-
son between baseline and tuned-WNNM (Section 4.2), deep 
learning (Section 4.3) and HPC (Section 4.4) framework. 
Finally, we compare the real-time denoising with different 
neural network architectures (Section 4.5).

4.1 � Comparison of denoising methods

We evaluate the denoising results on different anatomi-
cal districts of the Esaote data set (Figs., 2, 3, 4): WNNM, 
NCSR, and PCA-BM3D have been judged as the best meth-
ods in terms of denoising, and WNNM outperforms all the 
other methods in terms of edge preservation and enhance-
ment. In particular, WNNM well preserves the edges of the 
muscular fibres (Fig. 2) and the internal organs (Figs. 3, 4). 
The output of SAR-BM3D shows a granular effect, which 
negatively affects the preservation of the anatomical fea-
tures, and BM-CNN generates artefacts, which are typical 
of a deep learning approach. According to these results, 
we select WNNM as the best method for the denoising of 

ultrasound images. However, we underline that the other 
methods have their characteristics in terms of denoising 
and edge preservation, and they could be included in the 
framework as alternative denoising algorithms.

Execution time  Our tests (Table  1) are executed with 
Matlab R2020a, on a workstation with 2 Intel i9-9900KF 
CPUs (3.60GHz), 32 GB RAM, and none of these methods 
achieves real-time computation. In particular, WNNM takes 
more than three minutes to process a 600 × 485 image, and 
the fastest method (i.e. SAR-BM3D) takes about one minute; 
however, real-time computation in an ultrasound environ-
ment requires a processing time in the order of a few mil-
liseconds. This result motivates the proposed development 
of a deep learning framework for the real-time denoising of 
ultrasound images, further optimised with a HPC framework 
(Section 3.4).

4.2 � Tuned‑WNNM for US images

We implement the tuned-WNNM through the optimisation 
of the following parameters. The number of patches is no 

Fig. 2   Raw images of a muscle-skeletal district and denoised images, visualised in a scan-converted format

Table 1   Execution time computed as an average value of a set of 
Esaote images at 600 × 485 resolution

Method WNNM SAR-
BM3D

BM-CNN NCSR PCA-BM3D

Execution 
time [s]

215 55 356 380 95
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more limited by the step value (e.g. 1 patch every 2 or 3 
pixels) and we assign a patch for each pixel; this parameter 
allows us to increase the number of processed patches, thus 
improving the data redundancy. The block-matching algo-
rithm is now performed every iteration, instead of one every 
two iterations; the selection of the searching window and the 
size of the stack are now larger than previous work. These 
parameters allow us to improve the measure of the similarity 
among 3D blocks and the accuracy of the denoising method.

Furthermore, we specialise the tuned-WNNM method 
to ultrasound images, by varying the denoising intensity 
through a parameter that affects the threshold of the singu-
lar values of the SVD. Increasing this parameter, the method 
improves in terms of removed noise, though introducing a 
low blurring effect. To select the best tuning for denoising 
intensity, we select the output image that best fits the medi-
cal requirements, among three different levels of denoising 

intensity (Fig. 5). In particular, Fig. 5b shows the best result 
as a compromise between noise removal, edges preservation, 
and blurring effect; in fact, it preserves the geometry of the 
internal tissues, while enhancing the edges of the anatomi-
cal structures.

4.3 � Learning‑based denoising

Qualitative results  Regarding the deep learning framework, 
and the large ultrasound data set (Section 3.3), Fig. 6 shows 
the prediction results of the four networks, when tested with 
obstetric images (i). The predicted images are very close to 
the target image in all four cases; the edges and the grey-
scale values are well reproduced by the network. Further-
more, the predictions do not generate artefacts or spurious 
patterns. Varying the number of images of the training data 
set from 500 to 5K (Fig. 6a–d), the predicted images are 

Fig. 3   Raw data set of an abdominal district and denoised images, visualised in a scan-converted format

Fig. 4   Raw data set of an obstetric district and denoised images, visualised in a scan-converted format
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slightly better than the target denoised images. Neverthe-
less, the results are good even with a small training data 
set of 500 images. Figure 7 shows the prediction results of 
the four networks when tested with muscle-skeletal images 
(ii). Predicting the output images with the networks trained 
with obstetric images (Fig. 7a–d), the results are slightly 
worse than the corresponding case in Fig. 6, even if the pre-
dicted images do not show any artefact of pattern repetition. 
These networks are trained with images from a different (i.e. 
obstetric) district, with different anatomical features. This 
result confirms that each district requires a specific network 
and that a single network for all the districts gives lower 
quality results.

Quantitative results  Table 2 reports the quantitative metrics 
(Section 3.2) computed between the target and the predicted 
images. The network trained with 5K images (d) tested with 

obstetric images (i) has a median PSNR and SSIM value 
of 36.13 and 0.964, respectively, while the same network 
tested with muscle-skeletal images (ii) has a median PSNR 
and SSIM value of 26.58 and 0.881. Both the metrics have a 
very slight improvement when passing from a training set of 
500 to a training set of 3500 images, confirming the results 
of the qualitative analysis. An additional increase of the size 
of the training data set to 5K images further improves the 
quantitative results for both the test data sets. Figure 8 shows 
the box plot of the PSNR and SSIM metrics for four training 
data sets and two test data sets. Increasing the number of 
images of the training data set, the range of the metrics tends 
to decrease; this behaviour has a lower variability on the 
prediction of the output image. These results confirm that a 
network specialised in a single anatomical district reaches 
the best denoising quality. The prediction of muscle-skeletal 
images from a network trained with obstetric images highly 

Fig. 5   Ultrasound image of an abdominal district and denoised images achieved by applying the tuned-WNNM and varying the denoising inten-
sity from low (a) to high (c)

Fig. 6   Raw, target, and prediction images, related to the obstetric data set (i). Training set: (a) 500 images, (b) 1500 images, (c) 3500 images, (d) 
5000 images (Section 3.3)

2236 Medical & Biological Engineering & Computing (2022) 60:2229–2244



1 3

reduces the performance of our framework; in fact, the net-
work learns that replicates not only the denoising algorithm 
itself but also its adaptation to the anatomic structures and 
features of each district.

Single versus multiple districts  We compare the predic-
tion results of our framework with three different training 
data sets. The first two data sets have 500 and 1500 ultra-
sound images of the same district (i.e. the obstetric one), 

Fig. 7   Raw, target, and predic-
tion images, related to the 
muscle-skeletal data set (ii). 
Training set (Section 3.3) with 
(a) 500, (b) 1500, (c) 3500, and 
(d) 5000 images

Fig. 8   PSNR and SSIM boxplot for each of the four training data set 
(i.e. (a–d)) and the two test data sets (Section 3.3): (top-left) PSNR, 
obstetric test data set; (top-right) SSIM, obstetric test data set; (bot-

tom-left) PSNR, muscle-skeletal test data set; (bottom-right) SSIM, 
muscle-skeletal test data set
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respectively. The third one is composed of 1500 images of 
different districts; in particular, we select 500 images from 
the cardiac, obstetric, and muscle-skeletal districts. Due to 
the different resolutions of the images, the padding has been 
applied to obtain the same input resolution for each network. 
We evaluate the prediction results on four test data sets: the 
first three are composed of 50 images from the cardiac, 
obstetric, and muscle-skeletal districts, respectively. The 
fourth is composed of 50 images randomly selected from 
the aforementioned three districts. The prediction results 
(Fig. 9 and Table 3) show that the networks trained with 
obstetric images (i.e. the single district networks) give the 
best results with the obstetric test data set: the predicted 
image of the single district network shows fewer scattering 
artefacts than the multiple districts network. Also, the single 
district networks have better results in terms of quantitative 
metrics: adding further images from different districts to the 
training data set worsens the results; in fact, the single dis-
trict network with 500 obstetric images has a PSNR value 

of 35.93, while the multiple districts network has a PSNR 
value of 33.70.

Comparing the results on the other test data sets (e.g. car-
diac Fig. 10 and Table 3), the network trained with images of 
multiple districts has better results than the networks trained 
with obstetric images only. The multiple district network 
better generalises on the denoising algorithm, more than 
on the anatomic features, thus generating fewer artefacts on 
the prediction. Furthermore, the multiple district network 
includes 500 cardiac images in its training data set, thus 
improving the prediction results on this district. As the main 
conclusion, a dedicated network for each anatomic district 
is the best solution for the prediction of the denoised ultra-
sound images of each specific district, if a sufficiently large 
data set is available for the training.

4.4 � Execution time and computational cost

To test the training phase of the deep learning frame-
work (Section 3.3) on the HPC framework (Section 3.4), 
we exploit 8 nodes, each one composed of 32 cores and 4 
accelerators, for a theoretical computational performance of 
260 TFLOPS, and 220 GB of memory per node. The paral-
lel implementation of the deep learning framework and the 
high hardware performance reduce the computation time of 
the training phase by at least 100 orders less than a serial 
implementation on a standard workstation.

The execution time of the prediction is crucial for the 
real-time implementation of our framework. We test the 
denoising prediction on GPU-based hardware, which rep-
licates the hardware of an ultrasound scanner currently in 
use. Given a set of ultrasound input images from different 
districts, the average execution time is 25 milliseconds; this 

Table 2   With reference to the four training data sets and the two test 
data sets (i.e. obstetric: Ob., and muscle-skeletal: Msk.) described 
in Section  3.3, we report the PSNR and SSIM metrics computed 
between the target and the prediction images, as median value among 
the 50 test images

Metrics PSNR SSIM

Test data set Ob. Msk. Ob. Msk.

Training with
(a) 500 images 35.93 25.88 0.973 0.886
(b) 1500 images 34.52 26.33 0.957 0.854
(c) 3500 images 36.07 26.31 0.962 0.878
(d) 5000 images 36.13 26.58 0.964 0.881

Fig. 9   Prediction results of 
the obstetric district, with the 
networks trained with 500 (a) 
and 1500 (b) images from the 
obstetric district, and 1500 
images from multiple districts 
(500 obstetric, 500 cardiac, 500 
muscle-skeletal images)
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result confirms that we achieve the real-time computation 
target, required by the industrial constraint.

We underline that the input resolution of the network is 
600 × 600, which is reached through the zero-padding of 
each input image. The computational cost of the prediction 
depends on the resolution of the input image and on the 
architecture of the network: in particular, the computational 
cost of a convolution operation is O(r∕sr ⋅ c∕sc) ⋅ (fr ⋅ fc) ⋅ f  ; 
in our application, the input image has a resolution of r = c 
= 600, the kernel-filter size on rows and columns is fr = fc 
= 4, the stride on rows and columns is sr = sc = 2, we use 10 
convolution and 10 deconvolution operators, and a number 
of kernel-filters from 32 to 512.

4.5 � Denoising on different learning architectures

We compare the prediction results of two different networks: 
Pix2Pix and the (Matlab) CNN, as part of our deep learning 
framework. Figure 11 shows that Pix2Pix has better results 
than the CNN, in terms of blurring reduction, noise removal, 
and edge preservation. We also compare the quantitative 

metrics between the target images and the predicted images, 
on the test data set of 50 ultrasound images of the obstetric 
anatomic district (Section 3.3). Pix2Pix has a PSNR average 
value of 36.07, and an SSIM average value of 0.878, while 
the CNN has a PSNR average value of 25.69, and an SSIM 
average value of 0.651. This result underlines that Pix2Pix 
outperforms the CNN as network architecture for our deep 
learning framework.

5 � Discussion

Several ultrasound machines manufactured by main com-
petitors (e.g. Esaote, Philips) are equipped with GPU cards 
[1, 2] Furthermore, some recent denoising methods for ultra-
sound images are developed on GPUs [9, 22], which are also 
used for denoising. Furthermore, the application of GPUs 
to image processing for future medical ultrasound imaging 
systems [59] presents the advantages of GPUs over CPUs in 
terms of performance, power consumption, and cost.

Denoising of ultrasound images is relevant both for post-
processing and visual evaluation by medical experts. Despite 
some relevant works consider raw ultrasound images and 
videos for cardiac segmentation [38, 47], several works show 
the benefits of denoising for segmentation [62, 70, 75], fea-
ture extraction [28], classification [57, 65], super-resolution 
[31], registration [17], and texture analysis [52]. Further-
more, main ultrasound machine manufacturers include a 
denoising filter in their scanners [1, 3]. In ultrasound denois-
ing, the main goal is to achieve the best compromise between 
noise removal, features preservation, and real-time execu-
tion. The use of deep learning allows us to reach real-time 
performance, which is required by the clinical practice while 
preserving the denoising results of state-of-the-art methods, 
which are time-consuming. In our framework, deep learning 

Fig. 10   Prediction results of 
the cardiac district, with the 
networks trained with 500 (a) 
and 1500 (b) images from the 
obstetric district, and 1500 
images from multiple districts

Table 3   With reference to the results in Figs. 9 and 10, we report the 
PSNR metric computed between the target and the prediction images, 
as average value among the 50 images of each test data set: obstetric 
(Ob.), muscle-skeletal (Msk.), cardiac (Card.), and multiple districts 
(Multi.). The network are trained with: single district (a, 500 obstetric 
images), single district (b, 1500 obstetric images) and multiple dis-
trict images

Test data set Ob. Msk. Card. Multi.

Training with
Single district (a) 35.93 25.88 28.46 29.47
Single district (b) 34.52 26.33 28.63 29.51
Multiple district 33.70 28.41 33.82 30.33
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preserves the quality of WNNM and reaches its results in 
real-time. Furthermore, the deep learning for the real-time 
processing of ultrasound images has been applied in several 
works [37, 58].

Our method reaches real-time performance and high-
quality denoising results, through a learning-based approach. 
In contrast, fast handcrafted methods [26] have lower results 
in terms of noise removal and edges enhancement; GPU-
based methods [23] have higher hardware requirements 
than our method; other denoising methods [68] have good 
results in terms of noise removal, but they cannot reach a 
real-time implementation, due to high computational cost. 
Our framework also allows us to tune the denoising algo-
rithm to obtain the best denoising results, as this tuning only 
affects the training phase, while the real-time computation 
of the denoised image is performed through the prediction 
of the network.

6 � Conclusions and future work

We have presented a novel deep learning framework for 
real-time denoising of ultrasound images, which is general 
enough to be applied to different anatomical districts and 
noise levels. As the main contribution, the proposed real-
time denoising of ultrasound images is general in terms 
of the input data, i.e. type of noise (e.g. speckle, Gauss-
ian noise), the resolution and the dimensionality of the 
input images (e.g. isotropic/anisotropic, 2D/3D images), 
the acquisition methodology, and the anatomical district. 
We also mention its generality in terms of building blocks 
and parameters of the deep learning framework, i.e. the 

denoising algorithms (e.g. WNNM, SAR-BM3D) and the 
deep learning architecture (e.g. Pix2Pix, VGG19).

As future work, we plan to apply our framework to data 
acquired with different methodologies (e.g. 3D ultrasound, 
MRI), also taking into account time-dependent data (e.g. 
ultrasound videos). Finally, the industrial and clinical valida-
tions of the proposed framework are under development, by 
comparing our results with tools currently used in medical 
clinics.

Appendix: . Additional material

A.1 Quantitative comparison

We compare the five selected denoising methods (Section 4) 
on synthetic images, by adding speckle noise with different 
levels of noise intensity: given a noisy image Y = X + NX, 
where X is the normalised ground truth image, we define 
the artificial multiplicative noise N(x) =

√

12�u , where 
u ∼ U(−0.5, 0.5) , U is a uniform distribution, σ is the noise 
intensity, and x is a pixel of the image.

The SIPI data set [64] is composed of 44 ground truth 
images of different sizes, organised in different classes (e.g. 
humans, landscapes). We evaluate the efficiency of the 
denoising methods: WNNM has very good results in terms 
of noise removal, edge preservation (e.g. vehicles shape 
(Fig. 12), and hat feathers (Fig. 13). SAR-BM3D has the 
best results in terms of noise removal; however, it does not 
correctly preserve the grey-scale values (e.g. boy’s sleeve 
in Fig. 13) and it generates a blurred effect (e.g. grass and 
bushes in Fig. 12). PCA-BM3D and NCSR show minor 

Fig. 11   (a) Input, (b) target, (c) 
our prediction based on Pix-
2Pix, and (d) CNN prediction 
for the obstetric district
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preservation of edges and details than WNNM (e.g. boy’s 
face in Fig. 13). Finally, BM-CNN is not able to correctly 
remove the noise; this result underlines the importance of 
the training data set (e.g. the type and the intensity of the 
applied noise) when using a deep learning approach, and 
the necessity of using datsa-specific networks, instead of a 
generic-purpose one.

Concerning the metrics introduced in Section 3.1, Table 4 
summarises the results of the five denoising methods on the 

SIPI data set; we compute the average value of each metric 
(i.e. PSNR and SSIM) among 44 images of the data set, 
and report the average values when varying the intensity 
of the speckle noise. SAR-BM3D has the best results under 
these metrics, outperforming all the other methods. The 
NCSR, WNNM, and PCA-BM3D methods have good and 
similar results in terms of PSNR and SSIM indices. These 
four methods show a small degradation of the metrics values 
when increasing the noise intensity; this result is significant 

Fig. 12   Input (SIPI data set, 
van image), noisy (speckle 
noise intensity σ = 0.10), and 
denoised images. For error 
metrics, we refer the reader to 
Table 4

Fig. 13   Input (SIPI data set, 
man image), noisy (speckle 
noise intensity σ = 0.20), and 
denoised images. For error 
metrics, we refer the reader to 
Table 4

Table 4   PSNR and SSIM 
metrics of the denoising 
methods tested on the SIPI data 
set. For each σ value (i.e. the 
intensity of the speckle noise), 
we report the average metric 
computed on the 44 images of 
the data set

Metric PSNR SSIM

Method ∣ σ 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

WNNM 25.57 24.68 23.35 22.32 0.681 0.659 0.630 0.602
SAR-BM3D 27.36 26.01 24.71 23.65 0.730 0.699 0.673 0.651 
PCA-BM3D 25.09 24.36 23.05 22.10 0.652 0.640 0.614 0.585
NCSR 26.60 25.36 23.61 22.36 0.665 0.669 0.619 0.588
BM3D-CNN 26.85 24.20 20.21 17.26 0.733 0.569 0.31 0.215
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for ultrasound images, which generally have a different noise 
intensity, according to the anatomical district, the type of 
probe, and the data acquisition modality. Finally, BM-CNN 
shows a higher degradation of the PSNR and SSIM values, 
when increasing the noise intensity. The quantitative analy-
sis is useful to compare methods with numerical measures, 
instead of performing only a visual evaluation. However, the 
main comparison among methods is the qualitative evalua-
tion performed by the medical experts on ultrasound images, 
through the evaluation of the speckle noise removal and the 
preservation of anatomical features. We underline that, even 
if SAR-BM3D has better results than WNNM on synthetic 
images, WNNM has better performance on ultrasound 
images. Furthermore, our framework is general enough to 
use different denoising methods; two different learning net-
works can be trained, with WNNM and SAR-BM3D, to offer 
the physician the comparison between two denoising results.

A.2 Tuned‑WNNM

Comparing the baseline WNNM with the tuned-WNNM 
on synthetic images, we improve the denoising quality 
(Fig. 14) in terms of quantitative metrics; in fact, the output 
of WNNM has a PSNR value of 26.67, while the output of 
tuned-WNNM has a PSNR value of 26.74. Nevertheless, the 
execution time of WNNM is 94 seconds, while the execu-
tion time of tuned-WNNM is 260 seconds. We also compare 
tuned-WNNM and WNNM on the SIPI data set (Table 5). 
The aggregated results show that tuned-WNNM has slightly 
better performance with low noise intensity, while the results 
improve when the speckle noise is higher. For example, 
WNNM has an average PSNR value of 22.32 with a speckle 

noise of intensity σ = 0.3, while tuned-WNNM has a PSNR 
value of 22.61.
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