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A B S T R A C T   

We examine the impact of COVID-19 pandemic crisis on the pricing efficiency and asymmetric 
multifractality of major asset classes (S&P500, US Treasury bond, US dollar index, Bitcoin, Brent 
oil, and gold) within a dynamic framework. Applying permutation entropy on intraday data that 
covers between April 30, 2019 and May 13, 2020, we show that efficiency of all sample asset 
classes is deteriorated with the outbreak, and in most cases this deterioration is significant. Re-
sults are found to be robust under different analysis schemes. Brent oil is the highest efficient 
market before and during crisis. The degree of efficiency is heterogeneous among all markets. The 
analysis by an asymmetric multifractal detrended fluctuation analysis (A-MF-DFA) approach 
shows evidence of asymmetric multifractality in all markets which rise with the scales. The in-
efficiency is higher during downward trends before the pandemic crisis as well as during COVID- 
19 except for gold and Bitcoin. Moreover, the pandemic intensifies the inefficiency of all markets 
except Bitcoin. Findings reveal increased opportunities for price predictions and abnormal returns 
gains during the COVID-19 outbreak.   

1. Introduction 

The coronavirus (COVID-19) outbreak has caused severe damage not only on the human health causing more that 236 million 
affected cases and about 5 million deaths.1 The ongoing pandemic has damaged the performance of both financial and commodity 
markets at a global scale (Albulescu, 2021; Baker et al., 2020; Goodell, 2020; Zhang et al., 2021), increasing the uncertainty and 
amplifying the negative sentiment in the markets. The equity and commodity markets have seen huge falls in late December 2019 with 
intensified volatilities, followed by crashes in the first quarter of 2020 (Bakas and Triantafyllou, 2020). The oil price showed significant 
drops, and in April 2020, the US crude oil futures even fell to negative values, crashing from $18 a barrel to -$38, for the first time in 
history, as demand for crude oil has all but dried up and stockpiles overwhelmed storage facilities, which left oil investors reeling. To 
the contrary, the values of the US dollar index has raised due to the demand for the US dollar and the collapse of oil prices.2 This 
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1 https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?%22.  
2 The dollar has increased by 3.5% against the Europe in January 2020. 

Contents lists available at ScienceDirect 

North American Journal of Economics and Finance 

journal homepage: www.elsevier.com/locate/najef 

https://doi.org/10.1016/j.najef.2022.101773 
Received 10 November 2021; Received in revised form 31 May 2022; Accepted 15 July 2022   

mailto:ahmet.sensoy@bilkent.edu.tr
mailto:sanghoonkang@pusan.ac.kr
www.sciencedirect.com/science/journal/10629408
https://www.elsevier.com/locate/najef
https://doi.org/10.1016/j.najef.2022.101773
https://doi.org/10.1016/j.najef.2022.101773
http://crossmark.crossref.org/dialog/?doi=10.1016/j.najef.2022.101773&domain=pdf
https://doi.org/10.1016/j.najef.2022.101773


North American Journal of Economics and Finance 62 (2022) 101773

2

phenomenon is explained by the view that in the episodes of crisis or even during recessionary periods, investors shift to the safe haven 
investment opportunities. With a similar reason, the gold price has been at the top of the charts since the first days of COVID-19 
outbreak, and it still continues to increase especially after central banks’ lowering the interest rates. Like any other assets, crypto-
currency prices have also affected by the COVID-19. The Bitcoin price has crashed in March 2020 whereas interestingly, it crossed US$ 
10,000 as of May 2020.3 The linkages among these markets has been intensified, making the investment decision complex (Zhang 
et al., 2021; Mensi et al., 2021b; Wang et al., 2021). 

Multifractality and efficiency are two important topics for portfolio management theory. If an asset exhibits a fractal property, it 
indicates evidence of long-range memory and possibility of predictability of future prices. The multifractality evidence suggests a crash 
prediction and volatility predictability (Grech and Mazur, 2004; Wei and Wang, 2008). Cao et al. (2013) argue that long memory and 
fat tails are the source of multifractality. Specifically, the authors conclude that multifractality is associated to long-range correlations 
when the market is going up and to fat-tailed distribution when the market is going down. According to Fama (1970), a market is 
efficient in its weak form if past information related to asset prices is quickly and instantaneously embodied in the current prices. This 
indicates that market follows a random walk and impossibility to beat a market and reap abnormal profits. Besides, asymmetric in-
formation (good and bad shocks) have direct implications on the fluctuations of return volatility of commodity and financial markets. 
Therefore, an accurate pricing asset requires monitoring these crucial stylized facts. Besides, the effects of COVID-19 pandemic crisis 
have adversely affected the majority of financial and commodity prices. Therefore, the global health crisis affected the investor de-
mand, preferences and risk appetite for financial and commodity assets. This indicates that COVID-19 crisis may alter the degree of 
efficiency and multifractality patterns. Kakinaka and Umero (2021) argue that COVID-19 significantly increased herding in the short- 
run but not in the long-run. Lahmiri and Bekiros (2020) show that the pandemic lead to instability and irregularity in cryptocurrency 
market making investment riskier. In this climate, flued by the concerns of COVID-19 crisis, the uncertainty and the volatility of the 
prices of these assets have increased significantly, making the predictability of their prices a necessity for trading, investment, 
speculation and policymaking purposes. Motivated by this, we aim to examine the asymmetric multifractality, efficiency, and pre-
dictability dynamics of major asset classes, namely; the US stock market, the US dollar index, US Treasury bills, Bitcoin, crude oil, and 
gold, before and during the COVID-19 outbreak within a weak-form efficiency framework. 

Since the outbreak of the pandemic, the literature has addressed the effect of virus on the multifractality and efficiency of financial 
and commodity markets. Mensi et al. (2019b) analyze the multifractality and weak-form efficiency of global, regional and GIPSI 
(Greece, Ireland, Portugal, Spain, and Italy) stock markets using the symmetric Multifractal Detrended Fluctuation Analysis (MF-DFA) 
method by Kantelhardt et al. (2002). The authors find that Greece is the highest inefficient market irrespective of the time horizon. 
Furthermore, global developed and emerging world indexes and regional stock markets are less efficient than GIPSI. This result is in 
line with the findings of Mensi et al. (2018) where they conclude that Gulf Council Cooperation stock markets are more inefficient than 
the global and regional stock markets. 

Cao et al. (2013) developed the asymmetric MF-DFA approach to analyze the multifractality of Chinese stock market. The results 
show that Shanghai stock market is characterized by long-range correlations and Shenzhen stock market by fat-tailed distribution. 
These are the source of asymmetric multifractality. Using the same methodology, Mensi et al. (2021a) examine the multifractality in 
overall, uptrends and downtrends in the top oil producers (Canada, Russia, Saudi Arabia, and USA) and oil consumers (Brazil, China, 
India, and Japan). The authors find higher upward multifractality than downward one. In addition, the degree of efficiency decreases 
during the global financial crisis in 2008 and COVID-19 pandemic. The stock markets of oil producers have high inefficient degree than 
the stock markets of oil consumers. Applying the same methodology for high frequency data, Mensi et al. (2020) show gold is more 
inefficient than oil during only downtrends pre-COVID-19 crisis. In contrast, gold is more inefficient than oil during uptrends during 
the pandemic period. More interestingly, the degree of efficiency enhances during the pandemic period for both gold and oil markets. 

As for the literature on cryptocurrency, Naeem et al. (2021) use A-MF-DA for major cryptocurrency to examine the efficiency and 
asymmetric multifractality of Bitcoin, Ethereum, Litcoin, and Ripple. The authors report that COVID-19 negatively influences their 
degree of efficiency of cryptocurrency market. They conclude evidence of asymmetric multifractality and that Bitcoin and Ethereum 
are highly efficient. Using the same methodology, Kakinaka and Umero (2021) investigate the degree of efficiency of crypto markets 
during COVID-19 crisis and show that cryptocurrency assets become more inefficient in only the short-term. Other studies have 
focused on the efficiency of leading cryptocurrencies and found mixed results (Al-Yahyaee et al., 2018; Chu et al., 2019; Mensi et al., 
2019a; Vidal-Tomás and Ibañez, 2018; Urquhart, 2016). 

We contribute to the literature in four main ways. First, we use a high-frequency intraday data to examine the predictability and 
asymmetric multifractality of the prices of main asset classes namely S&P500 index, US Treasury bonds, US dollar index, Bitcoin, Brent 
crude oil, and gold. Various methods that test the weak-form efficiency require a significant amount of observations to apply properly. 
However, since COVID-19 outbreak is very recent, these methods would not allow for a robust analysis if they were applied on daily 
data. On the other hand, high-frequency dataset allows us to perform a robust statistical analysis since it produces enough number of 
observations. Second, due to the damage by COVID-19, we investigate the predictability before and during COVID-19 periods to get a 
complete picture on the dynamics of market prices. Moreover, we use a dynamic setup to see whether the change in efficiency has a 
trend or not. We follow the approach by Sensoy et al. (2017) and Sensoy (2019) to account for the dynamic level of efficiency along the 
time period. Third, we use a relatively new methodology, permutation entropy (PE), proposed by Bandt and Pompe (2002) which is 
least affected by the non-linearity and the outliers in the data compared to similar methodologies. Therefore, our results are 

3 https://news.bitcoin.com/bitcoin-price-touches-10k-amid-2020s-macroeconomic-storm-and-covid-19-fears/. 
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statistically robust. Finally, we apply the A-MF-DFA method to test the upward and downward multifractality of the considered 
markets. We notice that the MF-DFA approach is based on detrended fluctuation analysis (DFA). The latter is applied to identify long- 
range autocorrelations and multifractality in financial and commodity markets for nonstationary time series. The A-MF-DFA is a 
generalization to the MF-DFA as it assumes that multifractality property behave the same under down and uptrends. However, cor-
relation asymmetry alters the financial risk market and portfolio structure (Cao et al., 2013). Thus, price dynamics are strongly 
dependent to information transmitted to the markets (e.g., leverage effects). 

Using permutation entropy method, we find that for all asset classes, weak-form pricing efficiency is disrupted with the COVID-19 
outbreak, and this deterioration is significant. Dynamic framework further shows that this situation is not a temporary-one-off effect 
but has turned into a trend in worsening efficiency. For robustness, we examine not only the raw log-returns but also the conditional 
ones obtained via GARCH (1,1) process and reveal that results still hold. Evidently, there has been an increase in the predictability 
degree of all major asset classes, and the market participants should take positions accordingly. Using the A-MF-DFA approach, the 
results show significant upward and downward multifractality which rises with scale increases. More precisely, the size of downtrend 
multifractality is higher than the uptrend multifractality for S&P500 index, DYX, Brent oil and US Treasury Bond. The inverse is valid 
for both BTC and gold. The downward trend Hurst is higher than the upward trend Hurst for all markets except DYX as well as BTC for 
positive scales. Overall, we report evidence against informational efficiency of the considered markets which varies according to 
downward and upward movements. The COVID-19 pandemic crisis intensifies the degree of inefficiency for all markets except Bitcoin. 

The remainder of this paper is organized as follows. Sections 2 presents the data and summary statistics. Section 3 outlines the 
methodology. Section 4 discusses the results and Section 5 concludes. 

2. Data and summary statistics 

We use log-returns obtained from the contract-for-difference (CFD) prices for six major asset classes, namely US stock market 
measured by S&P500 index (S&P500), US Treasury bonds (USTBOND), US dollar index (DXY), Bitcoin (BTC), Brent crude oil (Brent), 
and gold. The source of our data is Dukascopy Bank SA, a Swiss forex bank and an ECN broker with its headquarters in Geneva. We use 
the closing prices of 30-minute interval intraday data that covers slightly more than a year period from April 30, 2019 to May 13, 2020. 
The sample is divided further into two periods: (i) before COVID-19 and (ii) during COVID-19 where the cutoff date for the COVID-19 is 
December 1, 2019. Our breakpoint is the initial day when COVID-19 spread in Hubei Province and then spread to more than 200 
countries where the United States and the European Union are the most affected. 

Table 1 shows that the descriptive statistics of 30-minutes price return series before and during COVID-19. The average returns 
have decreased significantly for all markets during COVID-19 period. Moreover, we observe that all the markets become more volatile 
at the same time. Brent oil is the highest volatile market, followed by Bitcoin, whereas the US dollar index is the least volatile one. The 
skewness values indicate evidence of asymmetric distributions of returns. The kurtosis values are different to the value of normal 
distribution, indicating leptokurtic behavior. The normal distribution hypothesis is rejected for all return series as showed by Jarque- 
Bera test. The Augmented Dickey-Fuller test (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests show that all return series 
follow a stationary process. The results of ARCH-LM test exhibit significant heteroscedasticity in the residuals. 

Table 1 
Descriptive statistics of the intraday returns.   

GOLD S&P500 DXY BRENT USTBOND BTC 

Panel A: Pre-COVID-19 
Mean  0.000019  0.00001  0.000001  − 0.000025  0.000013  0.00005 
Maximum  0.01362  0.01804  0.00525  0.12095  0.01269  0.12696 
Minimum  − 0.01167  − 0.01788  − 0.0058  − 0.04785  − 0.01263  − 0.11864 
Std Dev  0.00124  0.00125  0.00044  0.0034  0.00101  0.00743 
Kurtosis  15.851  27.976  21.415  266.167  25.482  67.853 
Skewness  0.116  − 0.909  − 0.797  6.265  0.098  0.83 
Jarque-Bera  48881.5***  174308.1***  86482.5***  18417794.0***  136770.1***  1273103.8*** 

ADF  − 84.06***  − 80.98***  − 79.56***  − 79.74***  − 89.05***  − 85.41*** 

KPSS  0.043  0.04  0.042  0.021  0.034  0.05 
ARCH-LM (10) test  140.01***  121.73***  53.71***  1.33  605.94***  38.64*** 

Panel B: During-COVID-19 
Mean  0.00003  − 0.000021  0.000005  − 0.000152  0.000025  0.000043 
Max  0.02608  0.04156  0.0066  0.15761  0.02886  0.12042 
Min  − 0.02089  − 0.05093  − 0.01014  − 0.24113  − 0.01723  − 0.15583 
Std Dev  0.00204  0.00411  0.00078  0.00951  0.0018  0.00818 
Kurtosis  22.872  32.061  17.593  120.678  39.516  92.755 
Skewness  0.424  − 0.733  − 0.544  − 2.072  0.967  − 2.927 
Jarque-Bera  87793.8***  177069.8***  41266.7***  2762066.8***  287605.1***  1846256.0*** 

ADF  − 77.25***  − 76.01***  − 67.15***  − 70.19***  − 72.93***  − 72.36*** 

KPSS  0.031  0.088  0.059  0.115  0.051  0.093 
ARCH-LM (10) test  659.2***  695.6***  411.5***  18.07  518.6***  448.3*** 

Note: This table presents the descriptive statistics of the 30 min returns before and during COVID-19 periods. *** indicates the rejection of null at the 
1% significance level. 
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3. Methodology 

3.1. Permutation entropy 

To measure the pricing efficiency of the main asset classes, we follow Matilla-Garcia and Marin (2008). We assume that {Xt}t∈I is a 
real-valued time series. For a positive integer m ≥ 2, Sm stands for the symmetric group of order m! and πi, called a symbol is given by 
πi = (i1, i2,⋯, im) ∈ Sm where m stands for the embedding dimension. 

To define an ordinal pattern for a symbol πi, we consider that the time series is embedded in an m-dimensional space as Xm(t) =
(Xt+1,Xt+2,⋯,Xt+m) for t ∈ I. Then, it is said that t is of πi type if an only if πi = (i1, i2,⋯, im) is the sole symbol in the group Sm verifying 
two conditions: 

Xt+i1 ≤ Xt+i2 ≤ ⋯ ≤ Xt+im , (1)  

is− 1 ≤ isif Xt+is− 1 = Xt+is , (2)  

where the second condition guarantees the uniqueness of the symbol πi. πi describes how the ordering of the dates 
t+0 < t+1 < ⋯ < t+(m − 1) is converted into the ordering of the values in the time series under scrutiny. 

Given a time series {Xt}t∈I and an embedding dimension m, one could calculate the relative frequency of a symbol π ∈ Sm as follows: 

p(π) : pπ =
#{t ∈ I | t of π − type}

|I| − m + 1
, (3)  

where |I| stands for the cardinality of set I. Under this setting, the permutation entropy (PE) of a time series {Xt}t∈I for an embedding 
dimension m is defined as the Shannon’s entropy of m! distinct symbols as follows: 

h(m) = −
∑

π∈Sm

pπ ln(pπ), (4) 

Permutation entropy h(m), is the information embodied in comparing m consecutive values of {Xt}t∈I. By definition, 0 ≤ h(m) ≤

ln(m!) where the lower bound is achieved for an increasing or decreasing sequence of values, and the upper bound for a completely 
random system where all m! possible permutations appear with the same probability. More simply, higher permutation entropy means 
that the data-generating process is more complex and unpredictable. If a time series has a PE that is significantly low, it exhibits 
evidence against efficiency because the weak-form market efficiency suggests the unpredictability of future price movements. To 
achieve a maximum level of 1, we normalize the PEs by dividing them by ln(m!). 

An independence test by using PE is proposed by Matilla-Garcia and Marin (2008). If the real-valued time series {Xt}t∈I is with |I| =
T and h(m) refers to the permutation entropy of {Xt}t∈I for a fixed integer embedding dimension m > 2. If {Xt}t∈I is .i.d., then the affine 
transformation G(m) of the PE, G(m) = 2(T − m+ 1)(ln(m!) − h(m)), is asymptotically χ2

m!− 1 distributed. To test the null hypothesis 
that {Xt}t∈I is .i.d., the decision rule at 100(1 − α)% confidence level is to accept the null hypothesis if 0 ≤ G(m) ≤ χ2

m!− 1,α , otherwise 
reject the null hypothesis. Lopez et al. (2010) document that the identicalness property in the null hypothesis can be eliminated. 

To select the embedding dimension, we follow Matilla-Garcia and Marin (2008) who state that, for a given data set of T obser-
vations, the embedding dimension m should be selected as the largest m that satisfies 5m! ≤ T. 

3.2. A-MF-DFA method 

We explore the asymmetric multifractal scaling behavior sing the A-MF-DFA method of Cao et al. (2013). Let the time series 
X = {x(t)}N

t=1, where N is the length of the series. The A-MF-DFA method is summarized with the following steps. 
Step 1: We define the profile as follows: 

y(t) =
∑t

j=1
(x(j) − x), j = 1, 2,⋯,N, (5)  

x =
1
N
∑N

t=1
x(t)

Step 2: We divide the time series {x(t) } and its profile {y(t) } into Ns = int(N/s) non-overlapping sub-time series of length s. As N 
may not be a multiple of time series n, the length of the last segment may be shorter than s. This procedure is repeated starting from the 

other end of the record; thus, 2Ns segments are obtained. Let Sj =
{
sj,k
}n

k=1 be the jth sub-time series of length n and Yj =
{

yi,k

}n

k=1 
be the 

integrated time series in the jth time interval, j = 1,2,⋯, 2Ns. We define the jth sub-time series as follows: 

sj,k = x((j − 1)n+ k ), yj,k = y((j − 1)n+ k ), (6) 

for j = 1, 2,⋯, Nn and 

sj,k = x(N − (j − Ns)n+ k ), yj,k = y(N − (j − Ns)n+ k ), (7) 
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for j = Ns + 1,⋯,2Nn, where 5 ≤ n ≤ N/4 is selected as recommended by Peng et al. (1994). 

Step 3: For each sub-time series Sj =
{
sj,k, k = 1,⋯, n

}
and its profile time series Yj =

{
yj,k, k = 1,⋯, n

}
, the least squares line fits 

are defined as LSj (k) = aSj +bSj k and LYj (k) = aYj + bYj k, with k = 1,⋯,n, respectively. The estimated fit LSj (k) is used to identify the 
direction of the slope bSj where the trend of the sub time series Sj is positive or negative. The linear fit LYj (k) fits to detrend the in-
tegrated time series Yj. Therefore, we define the fluctuation functions Fj(n) as follows: 

Fj(n) =
1
n
∑n

k=1
(yj,k − LYj (k))

2
. (8) 

For each sub-time series, j = 1,2,⋯,2Nn. 
Step 4: To assess the asymmetric cross-correlation scaling properties, the average fluctuation functions are considered in cases in 

which x(t) exhibits piece-wise positive and negative linear trends. This trend discrimination is made by using the sign of the slope bSj ; 
that is, bSj > 0 

(
bSj

)
indicates that the time series x(t) has a positive (negative) trend in the subtime series Sj. We compute the 

directional q-order average fluctuation functions, which are defined as follows: 

F+
q (n) =

(
1

M+

∑2Nn

j=1

sign
(
bSj

)
+ 1

2
[
Fj(n)

]q/2

)1/q

, M+ =
∑2Nn

j=1

sign(bSj ) + 1
2

, (9)  

F−
q (n) =

(
1

M−

∑2Nn

j=1

− [sign
(
bSj

)
− 1]

2
[
Fj(n)

]q/2

)1/q

, M− =
∑2Nn

j=1

− [sign
(
bSj

)
− 1]

2
, (10)  

where F+
q (n) and F−

q (n) denote the upward and downward q-order average fluctuation functions, respectively. Assuming that bxj ∕= 0 for 
all j = 1, ⋯, 2Nn, then M+ + M− = 2Nn. 

Step 5: To calculate the generalized Hurst exponent, the traditional MF-DFA is performed by computing the average fluctuation 
function. 

Fq(n) =

(
1

2Nn

∑2Nn

j=1

[
Fj(n)

]q/2

)1/q

. (11) 

The scaling or power–law relationship is defined as. 

Fq(n) nH(q); F+
q (n) nH+(q); F−

q (n) nH− (q), (12) 

where H(q), H+(q), and H− (q) are the overall, upward, and downward scaling exponents, respectively. The scaling behavior of the 
fluctuations in Eq. (12) is determined by analyzing the log–log plots of Fq(n), F+

q (n), and F−
q (n) versus n for each value q. H(q), H+(q), 

and H− (q) can be estimated using the ordinary least square method based on the logarithmic form. Furthermore, the correlation in the 
time series is persistent or long memory when H(2)〉0.5, whereas the correlation is anti-persistent when H(2)〈0.5. If H(2) = 0.5, the 
time series follows a random walk process. Similarly, if H+(q) = H− (q), the correlation in time series is symmetric, whereas if 
H+(q) ∕= H− (q), the correlation in time series is asymmetric. The asymmetric scaling behaviour indicates that the correlations in time 
series are different positive and negative trends. 

Table 2 
Comparison of static PE in pre- and during- COVID periods for both returns and GARCH-filtered standardized returns.   

GOLD S&P500 DXY BRENT BOND BTC mean PE 

Panel A: Returns 
Pre-COVID PE 0.9915** 0.9911* 0.9907 0.9913 0.9913 0.9918* 0.9911 
During COVID PE 0.9879*** 0.9876*** 0.9879 0.9875** 0.9883** 0.9876*** 0.9879  

GOLD S&P500 DXY BRENT BOND BTC mean difference 
During COVID - Pre-COVID PE difference − 0.0036 − 0.0035 − 0.0028 − 0.0038 − 0.003 − 0.0042 − 0.0035*** 

Panel B: GARCH(1,1) filtered returns 
Pre-COVID PE 0.9925 0.9912 0.9904 0.9915 0.9912 0.9916** 0.9914 
During COVID PE 0.9889* 0.9886 0.9868** 0.9879 0.9881** 0.9884*** 0.9883  

GOLD S&P500 DXY BRENT BOND BTC mean difference 
During COVID - Pre-COVID PE difference − 0.0036 − 0.0026 − 0.0036 − 0.0036 − 0.0031 − 0.0032 − 0.0033*** 

Note: PE stands for normalized permutation entropy calculated with embedding dimension m = 6. The cutoff date is December 1, 2019. For the rows 
that start with PRE-COVID PE and During-COVID PE, *, ** and *** denote the rejection of efficiency at 10 %, 5 % and 1 % significance levels 
respectively. In the rows that examine the POST-COVID – During-COVID difference, *** denotes that mean PE across assets is significantly lower in the 
COVID19 phase compared to pre-COVID period.  
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4. Empirical results 

4.1. Permutation entropy results 

We start our analysis with a static approach where the cutoff date is December 1, 2019. Table 2 shows the parameter values of static 
PE in pre- and during- COVID periods as well as their difference 

(
PEPre− COVID− PEDuringCOVID

)
. A negative value means a decrease in 

efficiency (increase in inefficiency level). Accordingly, we see that pricing efficiency worsens for all asset classes. Moreover, the cross- 
sectional mean difference between the two periods is statistically significant, showing that this deterioration in the efficiency is sig-
nificant. This implies that investors can invest historical information (past returns) to predict future prices and generate abnormal 
returns during the pandemic. This result is explained by the investor panic, irrational trade, and herding behaviors of market actors. 
COVID-19 pandemic has intensified the volatility of markets under study, generating a huge panic and fear as well as overreaction. 

Before starting our dynamic analysis, we want to emphasize that our sample returns exhibit volatility clustering and fat tails (see 
Table 1). Thus, the presence of ARCH effects may make the results of PE spurious (Matilla-Garcia and Marin, 2008). To consider this 
limit, we estimate the PE using not only the log-returns but also GARCH (1,1) filtered returns (i.e., standardized returns). On the other 
hand, our dynamic setup utilizes a rolling window approach to account for the time-varying efficiency analysis. In particular, it reveals 
the number of times the null hypothesis is rejected by the PE test statistic when window runs over the sample, and hence the percentage 
of sub-samples with an insignificant test is applied to compare the relative efficiency of the different asset classes before and during 
COVID-19 outbreak (Sensoy et al., 2017). At this stage, we carry out the PE under a 2-week rolling window approach (that jumps 1 day 
at a time) since (i) it allows us to catch the time-variation of the PEs, and (ii) it is large enough to provide satisfactory statistical 
significance. In this way, we have the flexibility of not being forced to impose cutoff dates which are usually subject to criticism in 
empirical studies. 

Panels A and B of Fig. 1 show the dynamic PE for each market before and during COVID-19 outbreak for each log-returns and 
GARCH (1,1) filtered returns series, respectively. As we can see, the degree of dependence for all markets is time-varying and affected 
by COVID-19 outbreak. During Pre-COVID outbreak, the dependence is more volatile for US T-bond and SP500 stock market index 
returns, whereas Brent oil price and US dollar index returns demonstrate less volatile dynamic dependence. During COVID-19 
outbreak, gold exhibits less volatile dependence. All markets experience some degrees of inefficiencies in pre- and during COVID- 
19 outbreak. In addition, a rough observation shows that the markets become more inefficient during the pandemic period. To sta-
tistically test this assertion, we proceed with the efficiency ratio analysis. 

Table 3 presents the results of efficiency ratios pre- and during the pandemic outbreak. We show that all markets become more 
inefficient during the pandemic period as the efficiency ratio is higher before COVID-19 outbreak for all markets (with the exception of 
bond market when log-returns is used and for gold when GARCH (1,1) filtered returns is considered). This finding mostly supports that 
of the static analysis. Moreover, Brent oil is the highest efficient market before and during COVID-19 outbreak. This result underscores 
that the information is not embodied in prices instantaneously in all markets at the same rapidity. Evidently, the information diffusion 
process takes more time for Bond than for Brent oil. We conclude that the degree of efficiency is heterogeneous among all markets. BTC 
becomes more inefficient during the COVID-19 pandemic than before. This result is consistent with the findings of Wang and Wang 
(2021) who used the entropy-based analysis to explore the efficiency of gold, S&P 500 index, BTC, and US Dollar Index during the 
pandemic period. 

For another dynamic perspective, we compare the sample PE values obtained from a rolling window approach in pre- and during- 
COVID19 periods. In particular, we formally test whether the mean PE value is smaller in the second phase compared to the first one. 
At this stage, we use a two-sample t-test, where we account for inequality in variances by Satterwhite approximation. The results are 
provided in Table 4, where we see that mean PE decreases during COVID19 period for all asset classes. Moreover, this decrease is 
significant for gold, S&P500 and Bitcoin (US dollar index and Bitcoin) when we use raw returns (GARCH filtered returns), supporting 
our earlier findings and further confirming the negative impact of the outbreak on market efficiency. 

Finally, to see whether the negative impact of the outbreak is an instant response or a trend for the market efficiency, we compare 
the time trends of dynamic permutation entropies in pre- and during- COVID periods. The results, provided in Table 5, show evidence 
of worsening efficiency during the pandemic; moreover, this effect seems to have a trend during the pandemic period since almost all 
trend coefficients of the dynamic PEs are negative. Furthermore, negative trend coefficient is significant for S&P500, US dollar index, 
Brent oil and US Treasury bond (S&P500, US dollar index and Brent oil) if we use log-returns (GARCH filtered returns). 

4.2. A-MF-DFA results 

We show in Fig. 2 the Asymmetric MF-DFA functions F2(n) versus the time scale n of the market returns. The results reveal a 
significant asymmetric multifractality for all market and for various time scales. Specifically, the downward trend deviates from the 
upward trend for all markets, which is more pronounced at higher time scales. This exhibits that long-term investors should pay 
attention to this asymmetric long-range dependence. The extent of the asymmetry differs across the six markets. It is more apparent in 

Fig. 1. Dynamic normalized PEs for each market before and during COVID-19 crisis. Note: Black curve denotes the estimated time varying 
normalized permutation entropies for gold, Brent oil, Bitcoin, S&P500, Treasury bills, and US dollar index log-return series with 30-minute sampling 
frequency. In the figure, m is the embedding dimension that we use to calculate PE series, and GARCH denotes GARCH (1,1)-filtered standardized 
return series. The blue (red) markers denote the windows that we reject efficiency at 10% (5%) significance level. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 1. (continued). 
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Fig. 1. (continued). 
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Table 3 
Efficiency ratio results for raw returns and GARCH-filtered standardized returns.  

Note: We use a rolling window with length 15 business days and that jumps 1 day at a time. In each window, we calculate permutation entropy for the 
selected series with an embedding dimension m = 5 and test for efficiency. When the window runs over the whole, pre- (and during-) COVID periods, 
we calculate the efficiency ratio by dividing the number of windows that we cannot reject efficiency by the total number of windows in the pre- (and 
during-) COVID periods. Higher efficiency ratio is an indicator of better market efficiency. For each time period and return type, red values indicate 
the least efficient market whereas shaded values stand for the highest efficient market.  

Table 4 
Mean PEs obtained from rolling windows in pre-COVID and during-COVID periods.   

Pre-COVID PE mean (Rolling window) During COVID PE mean (Rolling window) Pre-COVID mean – During COVID mean difference 
p-value 

Panel A: Mean PE results (raw returns) 
GOLD  0.9825  0.9817  0.02** 

S&P500  0.9823  0.9817  0.05** 

DXY  0.9828  0.9827  0.91 
BRENT  0.9834  0.9833  0.60 
BOND  0.9812  0.9816  0.88 
BTC  0.9827  0.9799  0.00*** 

Panel B: Mean PE results (GARCH(1,1)-filtered standardized returns) 
GOLD  0.9824  0.9825  0.60 
S&P500  0.9826  0.9824  0.33 
DXY  0.9816  0.9806  0.01*** 

BRENT  0.9825  0.9822  0.18 
BOND  0.9827  0.9824  0.23 
BTC  0.9821  0.9809  0.00*** 

Note: PE stands for normalized permutation entropy. In the first two columns, we present the average PE values obtained from rolling windows in the 
pre-COVID and during-COVID periods respectively. The third column presents the p-values for the test that examines whether the pre-COVID mean is 
significantly higher than post-COVID mean for each asset class. ** and *** denote the significance at 5% and 1%, respectively. 
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the S&P500 and Brent oil markets. Moreover, we find that the extent of downtrend multifractality is higher than the uptrend mul-
tifractality for S&P 500 index, DYX, Brent oil and US Treasury Bond. In contrast, the multifractality in uptrends is higher than those in 
downtrends for BTC and gold. The evidence of the crossover reveals that the behavior of investors is heterogeneous, depending on 
horizons. In addition, the investment strategies are sensitive to multifractal behaviors. In addition, the difference is the size of 
asymmetric multifractality can be attributed to the depth, maturity, and the development of each market. 

Fig. 3 plots the excess asymmetry in multifractality for markets under study. The value of excess asymmetry in multifractality 
(Δh(q)) is the difference between the upward Hurst value (h+(q)) and the downward Hurst value (h− (q)). When Δh(q) is zero, it in-
dicates evidence of symmetric multifractality that is upside multifractality is equal to the downside multifractality. Conversely, when 
Δh(q) is different to zero and the higher, it is the more asymmetric multifractality exist in the price return series. The graphs show a 
significant scale-dependent excess asymmetric in multifractality for all return series. This result shows the importance of disentangling 
downtrends from uptrends and thus the advantage of A-MFDA method relative to symmetric MF-DFA. More importantly, the trajectory 
of the excess asymmetry in multifractality differs across markets. For gold market, we find a positive value of excess multifractality, 
indicating that the cross-correlation exponent is higher when the price returns have a positive trend than when it has a negative trend. 
The excess asymmetry in multifractality has a positive value in most periods, implying that the multifractality is much stronger in 
upward price movements. Similar result is found for BTC and US bonds. This reveals that the positive trends generate higher cross- 
correlations compared to negative trends. In contrast, S&P500, Brent oil and US dollar index exhibit a negative excess asymmetry 
in multifractality. This reveals a stronger multifractality in downward S&P500, Brent oil price and US dollar index movements. 
Overall, our result reports evidence against informational efficiency of the considered markets. The large excess multifractality 
confirms the appropriateness of A-MF-DFA method. 

To confirm this result, we illustrate in Fig. 4 the overall, downward, and upward Hurst exponent values. We observe that the Hurst 
exponent differs for overall, downward, and upward trends. Looking at both gold, Brent oil, US dollar index and US bonds, the graph 
shows that the deviation of upward Hurst and downward Hurst is important for positive scales. This suggests that the gold, Brent oil, 
bonds and US dollar index markets are more inefficient during upward trends than in its overall or downward trends. These threes 
markets experience anti-persistence behavior for high scales as the Hurst value is below 0.5. They follow a mean reverting process for 
positive scales. For S&P500 and BTC the deviation of upward and downward Hurst is higher under negative scales, suggesting a higher 
efficiency during downward trends. The inefficiency is higher under upward trends for US dollar index irrespective to the scale. In 

Table 5 
Comparison of time trends of permutation entropies in before and during COVID crisis.   

time trend coefficient × 10^5 t-stat p-value 

Panel A: Returns 
Pre-COVID 
GOLD  − 0.75  − 1.56  0.12 
S&P500  − 0.02  − 0.04  0.97 
DXY  2.59***  3.69  0.00 
BRENT  − 0.84  − 1.26  0.21 
BOND  − 1.95***  − 2.65  0.01 
BTC  1.79***  3.89  0.00 
During COVID 
GOLD  − 0.20  − 0.20  0.84 
S&P500  − 3.26***  − 2.90  0.00 
DXY  − 5.55***  − 3.72  0.00 
BRENT  − 2.33**  − 2.29  0.02 
BOND  − 2.16**  − 2.24  0.03 
BTC  0.33  0.27  0.79 
Panel B: GARCH(1,1) filtered returns 
Pre-COVID    
GOLD  − 1.35**  − 2.46  0.02 
S&P500  3.36***  4.71  0.00 
DXY  1.22**  2.03  0.05 
BRENT  − 0.46  − 0.68  0.50 
BOND  2.29***  3.42  0.00 
BTC  2.94***  5.50  0.00 
During COVID 
GOLD  − 0.92  − 1.11  0.27 
S&P500  − 7.59***  − 7.16  0.00 
DXY  − 5.459***  − 5.13  0.00 
BRENT  − 2.52*  − 1.97  0.05 
BOND  − 0.18  − 0.12  0.91 
BTC  1.73*  1.98  0.05 

Note: PE stands for normalized permutation entropy. For each asset, we fit a simple linear model to the time-varying PEs obtained from 
rolling windows in pre- COVID and during- COVID periods respectively, i.e., PE = a + bt, where a is the intercept, t is the time trend 
and b is the corresponding trend coefficient. A positive (negative) trend coefficient is an indicator of improving (deteriorating) market 
efficiency. *, **, and *** denote significance at 10 %, 5 % and 1 %, respectively.  
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contrast, the inefficiency higher under downward trend for different scales for gold, S&P500, Brent oil, and bonds. This result is 
consistent with Mensi et al. (2022) for the case of gold. For BTC, the inefficiency is higher under downward trends for negative scale 
and under upward trends for positive scales. Moreover, we show a significant persistence or long-range memory under negative scales 

Fig. 2. Asymmetric MF-DFA functions F2(n) vs the time scale (n). Note: This figure represents the plot of log10(F2(n) ) vs log10(n) for each 
intraday returns. 
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Fig. 3. Excess asymmetry in multifractality for intraday returns. Note: The x-axis represnts the time scale n, which varies from 5 to N/4 (where N is 
the number of observations in the time series). The y-axis represents the difference between log10

(
F+

2 (n)
)

and log10
(
F−

2 (n)
)
. 
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Fig. 4. Plots of Hurst exponents for stock markets. Note: This figure shows the trend of overall H(q), upwards H+(q), and downwards H− (q) versus q 
(q = -10, − 9, …, 9, 10). 
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and anti-persistence for positive scales. We notice that the values of Hurst exponent decrease with the increase of q, implying high 
correlations under small fluctuations than large fluctuations. 

Fig. 5 depicts the asymmetric multifractal spectrum. The graphical evidence shows that the multifractality of the gold, Brent oil and 

Fig. 5. Asymmetric multifractal spectrum.  
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BTC has a very large width compared to the remaining markets. This suggests evidence of strong multifractality in these markets. More 
importantly, a very large width of multifractality for downward trends compared to those of the upward trends is observed for BTC 
market. In addition, we observe that the spectrum exhibits an inverted parabola shape for all markets. This inverse U-pattern supports 
previous findings of asymmetric multifractality. In addition, we show that S&P500, gold and BTC have a spectrum centered at α, which 
is equal to 0.5. In addition, the width of multifractal spectrum in downtrends is wider than those in uptrends. This implies that down 
multifractality is higher than upper multifractality. 

To assess the degree of market efficiency, we follow Wang et al. (2009) to compute the market efficiency measure (MDM) as 
follows: 

MDM =
1
2
(|h( − 4) − 0.5 | + |h(4) − 0.5 | ). (13) 

A market is efficient if all kinds of fluctuations, such as small fluctuations (q = − 4) and large fluctuations (q = + 4), will follow a 
random walk process. Therefore, the MDM value will be zero for an efficient market. Conversely, it will have high value for an 
inefficient market. 

Table 6 reports the market deficiency measure (MDM) of the overall, upward, and downward Hurst exponent trends for the whole 
period, before and during COVID-19 crisis. As we can see in Panel A of Table 6, gold, Brent oil, and US treasury bonds are more 
inefficient during upward market conditions whereas the US dollar index, BTC, and S&P500 index are more inefficient during 
downward market conditions. Before the COVID-19 (Panel B), all markets are more inefficient during downward trend. However, we 
find that gold and BTC are more inefficient during upward trend during the pandemic spread (Panel C). Conversely, Brent oil, US 
bonds, US dollar index and SP500 index are more inefficient during downward trend. Overall, we observe that the inefficiency is 
higher for gold during the pandemic spread under upward movements, implying large upside inefficiency than the downside in-
efficiency. This indicates that the predictability of future prices of gold is higher during upside trends. The inefficiency is higher during 
the pandemic for S&P500, DXY, US bond markets irrespective of movement trends. Conversely, BTC is less inefficient during the 
COVID-19 crisis. A for Brent oil market, it is more inefficient during the pandemic under downward movements. On the other hand, 
S&P500 is the least inefficient market before COVID-19 period for overall and upward trends and DXY for downward trend. During the 
pandemic, DXY is the least inefficient market for overall and downward trends and Brent for upward trend. This inefficiency of BTC 
market indicates the possibility of predicting future cryptocurrency returns based on past information. The predictability becomes 
more pronounced during the COVID-19 and particularly for downward movements. The long-range memory and fat tails are the 
common source of multifractality. These are due to the uncertainty, different investor’s risk appetite, investor heterogeneity, macro 
shocks. These variables lead to over-speculation, generating inefficiency of financial and commodity markets. 

In sum, the transition in the efficiency degree is explained by the heterogeneous responsiveness to the global health crisis. The 
different patterns of inefficiency explain the complexity of price dynamics of financial and commodity markets. Besides, the rise in the 
values of up/down MDM during the pandemic crisis reveals the presence herding behaviors of market actors. The external economic 
and financial stocks are the driver of upside and downside inefficiency of the analyzed indexes. Moreover, it is worth noting that the 
difference in the inefficiency level may be attributable to the fact that prices of some assets like US dollar index, treasury bonds and 
gold experience an upside trend during economic or health crises, playing the role of a safe haven asset. In contrast, the price of 
S&P500 and Brent oil experience a downside pattern during times of financial and energy crises. Therefore, the efficiency of the 
markets under investigation is sensitive to the market conditions (bearish, tranquil, and bullish market scenarios). This finding reveals 
that financial, energy, and precious metals are not a single asset class and have different risk–return pattern. To monitor the panic and 
fear during the ongoing pandemic, the policymakers can issue various regulations including restrictions of positions and increased 
margins, reducing market-wide position limits for volatile scripts. 

5. Conclusion 

This study is the first to examine the impact of COVID-19 outbreak on the degree of informational efficiency and asymmetric 

Table 6 
Measurement of market efficiency using MDM.   

GOLD SP500 DXY BRENT USTBOND BTC 

Panel A: Whole period 
Overall  0.3254  0.1011  0.1062  0.1317  0.2189  0.1722 
Upward  0.3268  0.1262  0.1208  0.2584  0.3248  0.1160 
Downward  0.2842  0.1976  0.1808  0.2421  0.2664  0.2196 
Panel B: Pre COVD-19 
Overall  0.3653  0.0928  0.1319  0.1180  0.1159  0.2231 
Upward  0.2896  0.0552  0.1265  0.1424  0.1024  0.2184 
Downward  0.4112  0.2412  0.1413  0.1450  0.1554  0.2263 
Panel C: During COVID-19 
Overall  0.2442  0.1553  0.1414  0.1473  0.1762  0.1583 
Upward  0.3717  0.2018  0.1371  0.1312  0.2038  0.1927 
Downward  0.2178  0.4438  0.1509  0.2034  0.4152  0.1773 

Note: The bold values indicate the most inefficient market in each intraday returns. 
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multifractality in different asset classes, including gold, oil, Bond, Bitcoin, US dollar index, and S&P500. We apply the permutation 
entropy and the asymmetric MF-DFA methods with a rolling window approach to intraday data. 

Accordingly, both static and dynamic analysis show a deterioration in pricing efficiency for almost all markets during COVID-19 
outbreak, and in many cases, this deterioration is significant. Moreover, trend analysis shows that the worsening in pricing efficiency is 
not a one-off instant response to COVID-19 outbreak but a drift, suggesting that the deterioration in the efficiency of these asset classes 
will continue in the near future. On the other hand, we show using the A-MF-DFA approach significant asymmetric multifractality 
which rises with scale increases. The magnitude of downtrend multifractality is higher than the uptrend multifractality for S&P 500 
index, DYX, Brent oil and US Treasury Bond whereas for both BTC and gold the uptrend multifractality exceeds the downward 
multifractality. Besides, the downward trend Hurst is higher than the upward trend Hurst for all markets except DYX as well as BTC for 
positive scales. COVID-19 crisis intensifies the degree of inefficiency for all markets except Bitcoin. 

In terms of implications, findings suggest that there exist exploitable patterns in asset prices that makes these markets more 
speculative in the COVID-19 period. Regulators and policymakers should be more careful and even be pro-active in the pandemic 
period. Moreover, all sample assets in our paper serve as underlying to many derivative products. Many models of derivatives pricing 
assume the randomness of the underlying assets’ prices. However, our findings reveal that this is not the case during COVID-19 period. 
Therefore, it is possible that mispricing occurs more than there used to be in the derivatives markets around these days, which might 
lead to new risk measurement-related problems in financial markets. 
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