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ABSTRACT

Background: Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between B cells of the
pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface
proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and
cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by B cells constitute an additional and biologically
important mechanism for transmitting signals to within the islet.

Scope of review: This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling
pathways influence their formation and cargo. We review the implications of EV release from [ cells for T1D pathogenesis, how EVs and their
cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes.
Major conclusions: Islet 3 cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this
context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the
B cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading

could be a novel disease-modifying approach in T1D.
© 2022 The University of Chicago. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION (e.g. endoplasmic reticulum stress, oxidative stress, mitochondrial
decompensation, DNA damage) that ultimately lead to cellular

Diabetes is a global epidemic affecting over 300 million people senescence, dysfunction, and/or death [2]. Whereas this cell-

worldwide and is expected to increase by 50% by 2030 [1]. Clinically,
diabetes has been classified as either emanating from autoimmunity
against the insulin-producing B cell (type 1 diabetes, T1D) or from an
inability of the B cell to compensate for peripheral tissue insulin
resistance (type 2 diabetes, T2D). It is now clear that molecular and
phenotypic diversity exists across these two forms such that this
simplistic categorization has necessitated more granular refinement.
Nevertheless, a common denominator across virtually all classifica-
tions of diabetes is the failure of sufficient insulin secretion from 3
cells, whether due to reduced B cell mass or 3 cell dysfunction. At the
molecular level, extracellular signals (e.g. viruses, inflammatory cy-
tokines, free fatty acids, hyperglycemia) trigger intracellular insults

autonomous perspective of B cell loss has garnered broad accep-
tance in the field, an increased focus on the islet microenvironment has
led to an appreciation of intercellular communication serving to
disseminate messages between neighboring cells [2]. Such commu-
nication between cells appears to be a means to propagate and amplify
signaling that can regulate cellular mass, survival or function. To date,
several modes of intercellular communication between B cells and
other local cell types (endocrine cells, cells of the immune system, etc.)
have been demonstrated, including the release of soluble factors (e.g.
senescence-associated secretory phenotype) [3] and direct cell—cell
communication (e.g. PD-L1/PD-1 interactions) [4]. More recently, the
potential of extracellular vesicles (EVS) as conduits to deliver nucleic
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acid and protein cargo to nearby cells has gained momentum. In this
review, we discuss the pathways that give rise to EVs, the nature of
their cargo, and their potential for communication, as biomarkers of 3
cell stress, and for engineering them as therapeutic vehicles. Particular
attention is paid to the role of lipids in these processes.

2. EV SUBTYPES AND LIPID PATHWAYS LEADING TO EV
FORMATION

Extracellular vesicles (EVs) are broadly classified into 3 major cate-
gories: exosomes, microvesicles, and apoptotic bodies, each of which
has distinct intracellular origins (see Figure 1). Exosomes (30—200 nm
diameter) and microvesicles (100—1000 nm diameter) are often
distinguished based upon size as well as mechanism of formation,
which occurs via orchestrated intracellular pathways. Apoptotic bodies
(>1000 nm diameter) are derived from the blebbing of cells under-
going apoptosis [5]. Exosomes are generated via an endocytic pathway
in which intracellular multivesicular bodies fuse with the plasma
membrane and release their intraluminal vesicles. Microvesicles, by
contrast, are generated from direct budding of the plasma membrane
[6]. The discrete distinction based upon formation may be an over-
simplification, as overlapping mechanisms can regulate the forma-
tion of both exosomes and microvesicles, with some proposing to
categorize only on size (and not mechanism of formation) by labeling
the vesicles as “small EVs” (usually <100 nm-200 nm) or “large EVs”
(usually >200 nm) [5,7,8].
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2.1. Formation of exosomes via the endosome pathway

The overall fate of the endosomal pathway can be divided into either
reutilization/recycling or degradation [9]. Endosomes are formed by
endocytosis, the process whereby extracellular and plasma membrane
components are internalized into the cell [9]. These “early endosomes”
are then directed to different cellular components such as the trans-
golgi network, lysosomes for degradation and recycling, to form late
endosomes, or back to the plasma membrane (Figure 1) [10]. The
majority of endosomes are recycled back to the plasma membrane but
a small number are targeted for autophagy, a degradative process that
clears defective proteins and organelles to maintain intracellular ho-
meostasis [11]. The endosomal sorting complex required for transport
(ESCRT) protein complexes 0-ll are fundamental in the targeting of the
endosomes for one pathway or another.

Endosomes that do not quickly recycle back to the plasma membrane
or are not targeted to lysosomes for degradation form multivesicular
bodies containing intraluminal vesicles [12]. When the multivesicular
bodies fuse with the plasma membrane, the released intraluminal
vesicles become exosomes [13]. Exosome biogenesis is a dynamic
process whereby the contents of the original early endosome may be
distinct from the contents released as exosomes. Exosome generation
and autophagy pathways overlap with multiple layers of regulation and
complexity that are only beginning to be understood [11—13]. Over-
lapping pathways are speculated to exist, but depending upon cellular
conditions, the intraluminal vesicles are shuttled either for release
(exosomes) or to lysosomes for autophagy [14]. For example, RAS
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Figure 1: Biogenesis and secretion of extracellular vesicles (EVs). Extracellular vesicles consist of at least three subtypes, exosomes, microvesicles, and apoptotic bodies. The
figure shows in the intracellular biogenesis of each subtype and the potential cargo contents of each.
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GTPase superfamily members, specifically Rab GTPases transport and
target vesicles intracellularly for endosomal recycling, to lysosomes for
degradation, or to secretion as exosomes [9]. Each Rab protein is
involved in a specific transport step, with greater than 28 Rab isoforms
characterized in exosomes. Most of these are involved in the endocytic
pathway, although some are involved in endoplasmic reticulum (ER)-
Golgi transport [10]. The three Rab proteins most frequently linked to
exosome biogenesis and secretion are: Rab11, Rab35 and Rab27,
whose presence direct the multivesicular body to plasma membrane
fusion and exosome release. In contrast, Rab7 targets the multi-
vesicular body to lysosomes and subsequent degradation [11]. Table 1
summarizes key proteins that have been described and their functions
in extracellular vesicle biogenesis.

2.2. Pathways leading to release of microvesicles

Localized changes in the plasma membrane that cause direct outward
blebbing of the membrane lead to the generation of a microvesicle
[12]. Similar to exosomes, microvesicle biogenesis is a regulated
process with selected cargo that differs based on the cellular micro-
environment [13]. One regulator is the small GTP-binding protein ADP-
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Ribosylation Factor 6 (ARF6), which initiates a phosphorylation cascade
required for microvesicle shedding [14]. Another regulator, TSG101
(tumor susceptibility gene), is an ESCRT machinery protein that in-
teracts with arrestin domain-containing protein 1 (ARRDC1) in order to
mediate the release of microvesicles containing TSG101, ARRDC1 and
other cellular proteins [15]. Rab GTPases are also involved in micro-
vesicle shedding, especially under hypoxic conditions. Specifically,
Rab22A expression increases after the activation of hypoxia-inducible
factors and co-localizes with budding microvesicles [16]. TNFo
treatment also changes the miRNA cargo of microvesicles released
from endothelial cells [17]. While the molecular mechanisms of
microvesicle biogenesis are not as well-characterized as exosome
biogenesis [18], multiple layers of regulation are clearly involved and a
significant degree of overlap in protein families and pathways are likely
at play.

2.3. Lipids in ESCRT-dependent and ESCRT-independent EV
formation pathways

Lipids are an integral component of the ESCRT-dependent system
whereby they both recruit appropriate proteins as well as characterize

Table 1 — Selection of Key Proteins in Extracellular Vesicle Biogenesis and Lipid Signaling.

Protein Complex or Protein Role References
ESCRT Targets endosomes to a pathway [11,194]
ESCRT-0 (with Hrs) Recognizes ubiquitinylated cargo and sorts to PI3P rich vesicles [9]
ESCRT-1 With ESCRT-2, generates membrane budding inward in endosomes to form intraluminal vesicles, recruits [195]
ESCRT-0-ubiquitin domains to buds
ESCRT-2 With ESCRT-1, generates membrane budding inward in endosomes to form intraluminal vesicles, recruits [195]
ESCRT-0-ubiquitin domains to buds
ESCRT-3 Cleaves membrane buds to form intraluminal vesicles [195]
Vacuolar protein sorting (Vps)4 Interacts with ESCRT I-lll and oxysterol-binding protein; may regulate facilitate miRNAs in exosomes that [22,23,196]
modulate PI3K/Akt pathway
TSG101 ESCRT machinery protein, interacts with ARRDC1, participates in multivesicular body sorting via binding with [15,197]
ALIX, mediates the release of microvesicles containing TSG101, ARRDC1 and other cellular proteins
Arrestin domain-containing Interacts with TSG101, mediates the release of microvesicles containing TSG101, ARRDC1, mitochondrial [15,198]
protein 1 (ARRDC1) proteins and other cellular proteins; mediates release of exosomes containing proteins implicated in
apoptosis
Charged multivesicular body protein (CHMP) Participates in multivesicular body sorting via binding with ALIX [197]
Rab GTPases Transport of endosomes [9]
Rab11 Targets multivesicular body to plasma membrane for fusion and exosome release [10,199]
Rab27 Targets multivesicular body to plasma membrane for fusion and exosome release [10,200]
Rab35 Targets multivesicular body to plasma membrane for fusion and exosome release [10,201]
Rab22A Selective recruitment of proteins to microvesicles under hypoxic conditions [16]

Alg2-interacting protein X (Alix)

Acid ceramidase

Recruited to endosomal membrane via domain that binds BMP; with LBPA, induces formation of endosome [197,202,203]
membrane invaginations; participates in multivesicular body sorting via binding with TSG101 and CHMP4,

interacts with syntenin to support intraluminal vesicle budding

Converts ceramide to sphingosine and fatty acids in lysosomes; inhibition increases exosome release [38,204]

ADP-Ribosylation Factor 6 (ARF6) GTPase; activates phospholipase D2 & PIP5K; interacts with syntenin; regulates intraluminal vesicle budding

and exosome production; regulates selective recruitment of proteins into microvesicles

[14,203,205]

ATP-binding cassette transporter A3 Reduces exosome formation; mediates transport of choline-phospholipids into intracellular vesicles (possible [206,207]
connection to exosome formation?)
Diacyl glycerol (DAG) kinase a Catalyzes conversion of DAG to phosphatidic acid; inhibits exosome secretion (by reducing DAG levels) [208]
Flotillins Modify exosomal cargo [34,41]
Phosphatidylinositol 4-phosphate Catalyzes phosphatidylinositol 4-phosphate (PI4P) phosphorylation to form phosphatidylinositol 4,5- [209]
5-kinase (PIP5K) bisphosphonate (P14,5P,), Activated by ARF6 and phosphatidic acid
Phospholipase D2 Catalyzes hydrolysis of phosphatidylcholine to produce phosphatidic acid; involved in formation of exosomes [205,210,211]
with syntenin, ALIX, CD63, regulator of intraluminal vesicle budding and exosome production
PIKfyve converts PI3P to either PI(3,5)P2 or PI5P [20]
Sorting nexin proteins (SNX) Interact with PI3P and enable transport to trans-golgi or plasma membrane [20]
Sphingomyelinases (SMase) Hydrolyze sphingomyelins to produce ceramide [24]
Syndecans Ubiquitous transmembrane proteins, enriched in CD63™, flotillin-1~ exosomes, bind with syntenin, likely [203]
recruit syntenin-ALIX and support membrane budding
Syntenin Interacts with ALIX, syndecans to support formation of intraluminal vesicles [203]
Tetraspanins Participate in exosome biogenesis; interact with other transmembrane receptors, within themselves and with [40]
integrins and other proteins; often form tetraspanin-enriched microdomains
Vps24 Binds with PI(3,5)P2 to target endosomes to EVs [20]
MOLECULAR METABOLISM 63 (2022) 101545 © 2022 The University of Chicago. Published by Elsevier GmbH. This is an open access article under the CC BY license (hitp:/creativecommons.org/licenses/by/4.0/). 3
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the type of endosome. The phosphatidylinositol phosphates (PIPs) and
derivatives recruit cytosolic proteins with key membrane recognition
domains, which then participate in transport and possible exosome
secretion [19]. The hepatocyte growth factor-regulated tyrosine kinase
substrate (Hrs) of the ESCRT-0 complex sorts ubiquitinylated cargo to
phosphatidylinositol-3-phosphate  (PI3P)-rich endosomal compart-
ments [9]. PI3P interacts with sorting nexin proteins (SNX) to facilitate
transfer of the endosome to the trans-Golgi network or plasma
membrane [20]. PI3P in turn is converted to either PI(3,5)P2 or PI5P by
phosphatidylinositol-3-phosphate 5-kinase (PIKfyve). PI(3,5)P2 is a
major component of late endosomes and autophagosomes whereas
PI5P is a negative regulator of endosomal maturation and blocks
degradation of associated proteins [20,21]. The fate of PI(3,5)P2
containing endosomes seems to be related to whether PI(3,5)P2 binds
to vacuolar protein sorting (Vps) 24 (targeting to EVs) or the transient
receptor potential cation channel 1 (TRPML-1) (targeting to lysosomes/
degradation) [20]. Another Vps (Vps4) associates with ESCRT com-
plexes I-lll and (in yeast) has been shown to interact with oxysterol
binding proteins, suggesting that oxysterols are implicated in EV for-
mation [22,23]. Alg2-interacting protein X (Alix) is involved in both
ESCRT-dependent and —independent pathways. It is recruited to the
endosomal membrane via a domain that binds the endosomal lipid
bis(monoacylglycero)phosphate (BMP), an endosomal lipid [22]. Lipids
relevant in EV biogenesis are summarized in Table 2.

Prominent among the ESCRT-independent pathways is the ceramide-
dependent pathway. Ceramides (Cer) are sphingolipids that are
generated in the ER by hydrolysis of sphingomyelin by sphingomyeli-
nases (SMases) or lysosomes [24]. Ceramides are the central pre-
cursors for a family of sphingolipids that includes sphingomyelins and
sphingosine phosphate (S1P). Ceramides can be generated via mul-
tiple pathways: de novo [25,26], sphingomyelin hydrolysis by acid (A)
or neutral (N) SMases [27], or salvage [28]. The major ceramides in

exosomes are the C18:0-Cer and C24:1-Cer molecular species [29,30]
and they are proposed to enable membrane curvature to facilitate
inward budding of the vesicles.

In @ mouse oligodendroglial cell line, exosome formation is decreased
both by knockdown or chemical inhibition of NSMase [31]. The impor-
tance of ceramide in EV formation (via NSMase) has been confirmed in
several other cell lines, although it does not appear to be a uniform trait,
since reduced SMase does not seem to affect exosome numbers in
prostate nor melanoma cells [32—35]. In polarized epithelial cells,
ceramides are involved in differential exosome secretion in which
basolateral but not apical exosome release depends upon ceramides
[36]. Notably, while neutral SMase plays a role in exosome biogenesis,
acidic SMase triggers microvesicle release in glial cells [37].

2.4. Lipid rafts

Lipid rafts, or lipid microdomains, are membrane sections enriched in
sterols, sphingolipids and glycosylphosphatidylinositol (GPI)-anchored
proteins. They generally function in forming membrane invaginations,
either via structural changes induced by lipid raft components and/or
by protein recruitment and complex formation [38,39]. Among these
recruited proteins are the tetraspanins, (also known as transmembrane
4 superfamily (TM4SF) proteins) and flotillins. Tetraspanins, which are
intimately associated with exosomes, are thought to participate in
exosome biogenesis, although the exact mechanisms have yet to be
elucidated. These proteins interact with other proteins, including other
tetraspanins, transmembrane receptors, and integrins, often forming
distinct membrane regions called tetraspanin-enriched microdomains
[40]. Flotillins do not seem to be directly involved in exosome release,
but rather in modifying exosomal cargo [34,41].

Within lipid rafts exist planar lipid rafts, with similar architecture as
surrounding membranes, and invaginated (caveolae) lipid rafts, which
have a distinct appearance from the rest of the membrane [39].

Table 2 — Lipids Subtypes in Extracellular Vesicle Biogenesis.

Stage of Biogenesis Lipid Main Function(s) References
Formation Bis(monoacylglycero) Induces formation of multivesicular bodies, interacts with ALIX, enriched in late [22,202,212]

phosphate (BMP) [a.k.a endosomes

lysobisphosphatidic acid

(LBPA)]

Ceramides Promotes formation of multivesicular bodies [31]

Cholesterol Allows for membrane conditions permitting budding [205]

Diacylglycerol Promotes formation of secretory vesicles in the trans-Golgi network; recruits soluble [208]

cell membrane proteins and interacts with cytoskeleton
Phosphatidic Acid Regulates membrane curvature and fission; interacts with syntenin and other proteins [43,211,213,214]

Transport and Cargo Sorting

Phosphatidylinositol 3-
phosphate (PI3P)
Ceramides

Cholesterol

Ether lipids
Lysophosphatidylcholine
Palmitate
Phosphatidylserine

PI3P

Sphingosine 1-phosphate

Cholesterol

Ether Lipids
Phosphatidylinositol-3,5-
bisphosphonate [PI(3,5)P2]

in intraluminal vesicle budding

Feature of early endosomes and multivesicular bodies; interacts with Rabs, SNX’s, [9,215,216]
HRS, PILfyve

May enrich for certain miRNA cargo [33]
Increases release of flotillin™ exosomes (oligodendroglial cells); controls movement of [41,217]
endosomes along microtubules

Changes protein composition of EVs [218]

With palmitate increases proinflammatory EV cargo [219]

With lysophosphatidylcholine increases proinflammatory EV cargo [219]
Regulates retrograde transport [215]
Interacts with SNX, facilitates endosomal transfer to the trans-Golgi network or plasma [20]
membrane

Activates inhibitory G protein-coupled S1P receptors on multivesicular bodies [220]
(necessary to target CD63, CD81, flotillin to intraluminal vesicles destined for plasma

membrane)

Increases exosome release, Induces fusion of multivesicular vesicles with cell [147,221]
membrane

Increases exosome release [218]
Component of late endosomes; interacts with Vps24 to target vesicles to EVs; high [20,24,215,222]

levels may target vesicles to autophagy/lysosomes
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Caveolae lipid rafts are non-clathrin-coated pits rich in the membrane
protein caveolin and participate in intracellular signaling, vesicle traf-
ficking, and cell migration. The caveolin protein Cavl has been
described in exosomes from several cancer cell lines and in
exosomes harvested from serum of melanoma patients [42]. Given the
location of caveolin in lipid rafts and role in cellular signaling and
endocytosis, it likely contributes to intraluminal vesicle sorting and
exosome formation [39].

2.5. Other relevant lipids in EV biogenesis

In addition to the aforementioned lipids, multiple other lipids are known
or suspected to participate in different stages of EV biogenesis. Table 1
outlines many of the proteins involved in the formation of these lipids
and Table 2 details individual lipids contributing to EV biogenesis.
Importantly, the role of a particular lipid may vary depending upon cell
type or physiological state (i.e. healthy, stressed, diseased). Another
complicating factor is that many studies use exosome number as the
measured variable. Thus, while one can conclude that a compound
inhibits or promotes total EV release, which stage of EV biogenesis and
release is involved still needs to be elucidated.

2.6. Lipid composition of EVs

Lipid content (relative to proteins) in exosomes is enriched 8.4-fold as
compared the cell from which they are derived [43]. The lipid
composition of EVs depends both upon cell of origin and health or
disease status (i.e. EVs from malignant cells may have different
compositions than nonmalignant cells) and likely also differs between
primary cells and immortal cell lines [19,44]. Mass spectrometry
quantification of the lipidomes of a prostate cell line (PC-3) and its
released exosomes reveals that exosomes are enriched in glyco-
sphingolipids, sphingomyelin, cholesterol and phosphatidylserine [43].
Collation of exosome lipid composition from multiple studies shows
that phosphatidylethanolamine content is similar in cells and exosomes
whereas phosphatidylcholine and phosphatidylinositol contents are
lower in exosomes compared to cells [19], perhaps to facilitate target
cell uptake [45] or due to the role of these lipids in EV biogenesis
(Table 2). In 3T3-L1 adipocytes, phospholipids, sphingolipids, and
glycerolipids are similar between the smaller EVs (mostly <100 nm)
and large EVs (100—200 nm). However, cholesterol is more enriched
in smaller EVs and annexin V binding (marker of externalized phos-
phatidylserine) is more enriched in large EVs [46].

In contrast to studies of lipid content in cell line-derived EVs, less in-
formation exists from EVs isolated from biofluids. One study examined
the EVs obtained from the ejaculate of vasectomized men with EVs
separated by differential centrifugation and size-exclusion chroma-
tography into approximately 50 nm and 100 nm populations [47]. In
contrast to studies in adipocyte cell lines, cholesterol content was
shown not to vary significantly between smaller and larger EV pop-
ulations; however, hexosylceramide is enriched in the smaller EVs and
sphingomyelin species are enriched in larger EVs [47]. Exosomes
harvested from urine have been shown to have significant cholesterol
content and the lipidome characterized by mass spectrometry can be
used to distinguish healthy controls from those with prostate or renal
cell carcinoma [48,49]. Lipid content of EVs isolated from human
serum was determined by an ultracentrifugation protocol in which
large debris and apoptotic bodies were first removed, followed by
ultracentrifugation of the supernatant. The lipid content was examined
in a total of 7 fractions and varied depending upon the fraction, with the
most buoyant fraction being lipid rich but lacking typical EV markers.
The EV pellet was enriched with ceramides [50]. To our knowledge, the
lipidome of B3 cell-derived EVs has not been characterized; however, it
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is possible that there may be a unique lipid signature of these EVs and/
or a characteristic signature of stressed [ cells.

3. LIPID CARGO IN EVS

EVs, initially described as conduits for disposal of undesired cellular
material, are now considered to be part of the secretome, serving as
carriers of important cargo that can be delivered from a donor cell to a
same or different recipient cell type (see Figure 2). Among the cargo
includes proteins, enzymes, transcription factors, RNA, miRNA, DNA,
and lipids [22,51—55]. Studies during the past decade have revealed
that EVs are released from a variety of cells and their cargo participates
in a variety of disorders, predominantly cancer, neurological, and
metabolic disorders [56,57].

Recent attention to EVs in T1D has been directed at understanding the
signaling transmitted by their protein or miRNA cargo. However,
whereas the nature of EV-derived lipid signaling has been addressed in
other disorders, it has been largely absent in the T1D literature. This
section of the review will discuss the important roles of EV lipid cargo
in propagating deleterious outcomes and extrapolate their importance
in B-to-immune cell communication, which ultimately leads to T1D
development.

3.1. Ceramides

A distinguishing feature of exosomal membranes, compared with
plasma and microvesicle membranes, is the lipid composition, which, as
noted previously, is enriched compared to their cell of origin. One of
these, the ceramides, represents a class of sphingolipids that has
generated much interest [58]. As signaling molecules, ceramides are
implicated in inducing apoptosis in multiple systems [59,60]. As one
example, treating oligodendroglioma cells with the Th1 pro-
inflammatory cytokines TNFo. and IFNy can cause cell death via the
formation, and exosomal release, of multiple ceramide molecular spe-
cies [61,62]. Such shedding of ceramides was proposed to contribute to
autoimmune responses that lead to neuronal demyelination. Consis-
tently, TNFo and IFNy are reported to be elevated in the brains of pa-
tients with multiple sclerosis (MS) [63], a disease associated with
demyelination, and this is associated with increased accumulation of
ceramide molecular species in the cerebrospinal fluid [64].

The neurodegenerative Alzheimer’s disease is associated with the
accumulation of amyloid-3 peptides in the brain. During the progression
of this disease, ceramide levels in the human brain increase [65—67].
Silencing NSMase2 using genetic approaches leads to reduced exo-
somes in the brain, reduced ceramide levels, and decreased plaque
burden [68,69], suggesting that ceramide-rich exosomes contribute to
Alzheimer’s disease pathology. Similarly, Parkinson’s disease is asso-
ciated with aggregation of high molecular weight o-synuclein [70].
Reducing NSMase?2 activity leads to decreased transfer of c-synculein
aggregates between neuronal-like cells and less accumulation and
aggregation of the high molecular weight o-synuclein [71]. While there
are several reports of NSMase involvement in a variety of disorders [72],
exosomes in the CSF of multiple sclerosis patients were found to contain
high SMase activity, which correlated with exosome number and
severity of the disease [73].

A recent comprehensive review [74] elegantly discusses the critical role
of ceramides and S1P in the function and secretion of exosomes in a
cancer milieu. For example, ceramides generated by the NSMase
pathway in exosomes from a human multiple myeloma cell line in-
creases exosomal secretion, decreases cell proliferation, and increases
caspase-3/9/PARP-mediated cell death [75]. This finding is associated
with increases in exosomal abundance of tumor-suppressive miRNAs.
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Figure 2: Lipid incorporation into exosomes and their release to recipient cells. The figure illustrates incorporation of lipids into exosomes of “donor” cells (/eff), which
release these exosomes that then communicate with the neighboring or distant “recipient” cells (righf).

All of these outcomes are reversed with GW4869, an inhibitor of
NSMase2. Consistently, lower expression of NSMase1 in exosomes has
been reported in patients with hepatocellular carcinoma and is associ-
ated with poor long-term survival of those patients [76]. Utilizing he-
patocellular carcinoma cell lines, the authors demonstrate that exosomal
NSMase1 reduces hepatocellular carcinoma growth by decreasing the
ratio of sphingomyelins to ceramides. Inflammation of the gut, promoted
by bacterial infection, can lead to colon cancer. The enteropathogenic
bacteria are proposed to stimulate intestinal epithelium to produce
exosomes that are enriched in S1P and prostaglandin E, (PGEy) lipids
[77]. Through induction of inflammatory Th17 cells, S1P is thought to
promote tumor cell growth, whereas PGE2 participates in recruitment
and proliferation of Th17 cells.

Exosomal ceramides also are reported to play a role in mitigating
atopic dermatitis, a systemic inflammatory disease that is associated
with epidermal barrier disruption [78]. In this study, administration of
exosomes from human adipose tissue-derived mesenchymal stem
cells to mice treated with oxazolone to induce dermatitis was found to
reduce inflammatory cytokine levels and restore epidermal barrier
functions. These outcomes correlate with decreased ceramide pro-
duction via the de novo pathway and increasing anti-apoptotic S1P via
the salvage pathway. In addition to ceramides and S1P, other toxic
sphingolipids like sulfatides and psychosine are under consideration as
being shuttled from sick to healthy cells by exosomes, thereby
spreading the disease [79].

3.2. Eicosanoids

Another class of lipids that are synthesized within and shuttled by EVs
are eicosanoids, bioactive oxygenated lipid metabolites of arachidonic
acid [54,80]. Arachidonic acid is hydrolyzed from membrane phos-
pholipids by phospholipases Ay (PLAy) [81,82]. The most abundant
eicosanoids in EVs are prostaglandins and leukotrienes, which are also
among the most inflammatory lipids [81]. Early studies identified the
involvement of secreted PLA,, PGE,, and lysophosphatidylcholine

[83,84], the other product generated by PLA, action, in maturation of
dendritic cells. Subsequent studies revealed the presence of lyso-
phosphatidylcholine and phospholipase D in exosomes from a baso-
philic leukemia cell line (RBL-2H3) [85,86]. Further analyses [87]
showed that the cargo load of these exosomes includes prostaglan-
dins, such as PGE, and 15d-PGJ,, a PPARy agonist. Moreover, the
concentrations (micromolar) of PGs in the exosomes are sufficient to
affect signaling. In another study, PGE; delivered by IDENSs (intestinal
mucus-derived exosome-like nanoparticles) to the liver was shown to
induce anergy in natural killer T cells and reduce their ability to respond
to foreign antigens [88]. In addition to its ability to affect communi-
cation between cells as EV cargo, PGE» through EP4 receptor signaling
can modulate EV sorting [89]. In this regard, clinical chemoresistant
breast cancer carcinoma cells express high COX2-PGE,-EP, signaling
[90] and blocking the PGE,/EP4 signaling in cancer stem cells has been
reported to promote conversion of of these cells to non-cancer stem
cells [89]. This effect is a consequence of increased EV release of
mesenchymal markers and drug transporters from cancer stem cells,
reducing the number of chemoresistant cells that continue to prolif-
erate. Paradoxically, the COX2 inhibitor celecoxib, which reduces COX2
mRNA in several cancer cells, increases COX2 accumulation in exo-
somes of lung cancer cells [91]. Recipient cells of these exosomes
produced higher PGE> and vascular endothelial growth factor, thus
spreading inflammatory responses.

Metabolism of arachidonic acid by 5-lipoxygenase leads to generation
of leukotrienes. Among them, LTB4 has garnered much attention
owing to its varied roles, including in recruitment of neutrophils and
other leukocytes in autoimmune diseases [92,93]. Exosomes contain
the enzyme machinery to synthesize LTB4 [94] and inhibition of the
enzymes decreases exosomal LTB4 and results in loss of directionality
during neutrophil migration [95]. Given the short half-life (1 min) of
LTB4 in vivo, stability and longevity of LTB4 is achieved through
packaging in EVs [96] and its time-dependent release from exosomes
serves as a signal to recruit neutrophils [97].
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Metabolism of arachidonic acid by 12-lipoxygenase (12-LOX) leads to
generation of 12S-HETE [98,99], which promotes invasion and
metastasis of tumors [100—102]. Platelets produce 12-LOX [103] and
can deliver 12-LOX packaged in EVs to colon cancer cells, leading to an
increased production of 12S-HETE and its esterification into cell
membrane phospholipids [104]. A further example of a role for platelet
EV cargo 12-LOX was demonstrated in autoimmune arthritis [105].
During inflammation, secreted PLA2-IIA is expressed in inflammatory
exudates [106] and catalyzes hydrolysis of arachidonic acid, which is
then metabolized to 12S-HETE by 12-LOX in the platelet EVs. When
neutrophils reach the inflammatory site, signaling by 12S-HETE via
BLT2 receptors on activated neutrophils triggers internalization of
platelet EV cargo, which enhances inflammation [105].

4. OTHER SIGNALING CARGO IN EVS

In recognizing the potential importance of cell-to-cell communication
in T1D development, much of the work characterizing 3 cell EVs has
focused on mRNAs, miRNAs, and protein cargo. Independent studies
have identified a variety of these species in B cell EVs that can impact
B cell function and survival including: miR-127 which can inhibit {3 cell
proliferation and insulin secretion [107]; mRNAs (VEGF-A, eNOS) and
miRNAs (27, 126, 130, 296) that contribute to B cell function and islet
endothelial cell angiogenesis, a key for engraftment of transplanted
islets [108]; miR-21—>5p, which is induced during inflammation and
can increase [3 cell apoptosis in T1D [109,110]; 19 miRNAs and 133
mRNAs [111] and cytokines [112] that are differentially expressed by
islets under proinflammatory conditions; and accumulation of the
spliced form of XBP1 mRNA, which correlates with ER stress and
apoptosis [113]. It has also been suggested that islet graft rejection
may be a consequence of major histocompatibility complex (MHC)
molecules carried by donor islet EVs that are recognized by recipient
antigen presenting cells (APCs) and immune cells [114].

In other studies, EVs from various preparations have been related to
consequences of islet stress in diabetes, although the precise EV cargo
was not identified. For example, human bone marrow-derived
mesenchymal stem cell EVs can induce tolerogenic dendritic cells to
reduce inflammation and mitigate T1D progression [115]; pancreatic
cancer cell-derived EVs induce ER stress genes and 3 cell dysfunction
[116]; human islet EVs containing mRNA of differentiation factors
NGN3, MAFA, and PDX1 upregulate C-peptide levels in iPSC clusters
[117], suppress human islet amyloid polypeptide amyloid formation
that occurs in the islets of patients with T2D [118], and trigger immune
responses and activate PBMCs [119]; human pancreas-derived
mesenchymal stem cells facilitate improved glucose tolerance, in-
creases in B cell number and insulin secretion in streptozotocin-
treated mice [120]; human umbilical cord mesenchymal stem cells
protect B cells from hypoxia-induced apoptosis [121]; healthy and
human lean adipocyte-derived EVs but not inflamed or obese adipose
explant-derived EVs improve {3 cell function and survival [122]; and EVs
from cytokine-exposed P cells promote the interaction of EV-derived
CXCL10 with recipient B cell CXCR3 receptor to induce a proin-
flammatory islet transcriptome and B cell dysfunction [123].

5. [-CELL STRESS, EV FORMATION, AND CONNECTION TO T1D
PATHOGENESIS

Little is known regarding the intersection of 3 cell stress and pathways
that lead to EV formation, although common players exist in both
diabetes pathogenesis and EV biogenesis. As one example, cytokines
such as IL-1B or TNFo. have been shown to activate the
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sphingomyelin/ceramide pathway or increase ceramide content [124].
Proinflammatory cytokines also activate or upregulate SMases, leading
to increased ceramide [ cell content with associated ER stress,
mitochondrial damage and caspase-3 activation [124,125]. It is
conceivable that these same pathways influencing ceramide content in
B cells could also affect EV biogenesis and EV properties. Ceramide-
rich EVs induce apoptosis in astrocytes [30] as well as in IFNy-
primed oligodendrocytes [61], suggesting that similar mechanisms
could be at play in other diseases, including diabetes. Another possible
impact of stress-induced alterations in B cell lipid pathways involves
dysregulation of intracellular endosome trafficking. Defects in auto-
phagy have been associated with the development of both T1D and
T2D [126]. Since significant overlap exists in the pathways leading to
exosome formation and targeting of endosomes to degradation,
reduced autophagy in T1D might be associated with changes in
multivesicular endosome trafficking and exosome formation. Similarly,
the induction of stress granule production by ER stress and the inte-
grated stress response is thought to alter the potential content of EVs
as they are shuttled through the endosome pathway. Stress granules
are non-membranous cellular inclusions that contain translationally
inhibited mRNAs and RNA binding proteins [127], and it has been
shown that hnRNPs present in stress granules can be identified in EVs
[128].

ER stress-induced B cell death is associated with increases in cer-
amide generation via hydrolysis of sphingomyelins by NSMase. Ac-
cumulations in ceramides cause decompensation of the mitochondria,
leading to release of cytochrome C into the cytosol, inducing caspase-
3-mediated [ cell apoptosis [129—132]. More recently, it was re-
ported that the development of T1D is associated with increased
production of proinflammatory eicosanoids by immune cells [133,134].
These outcomes are likely mediated by activation of the Ca*-inde-
pendent phospholipase A>p (iPLA2f). Given the observations that ER
stress in [ cells precedes T1D onset [135,136] and the literature
available to date on EV lipid cargo, we posit that cells integral to
inducing B cell death in TID communicate with each other, in part
through lipid signals delivered by EVs, as illustrated in Figure 3.

The impact of the lipid load in B cell-derived EVs has received little
attention, as evidence by a recent report in which a survey of EV lipid
content across various donor cells did not include the B cell [137].
Notably, a study performed with RBL-2H3 mast cells revealed that, in
addition to prostaglandins, the EVs from these cells contain a truncated
iPLA,3 protein [87]. It has also been previously reported that this
isoform is generated through caspase 3-mediated cleavage of iPLA>[3
and that the truncated iPLA>f protein manifests greater specific ac-
tivity [133,134]. Collectively, these observations provide rationale to
examine the contribution of EV-derived lipid signaling shuttled between
donor/recipient B cells and immune cells. As can be deduced from the
reports of EV-lipid signaling in various contexts above, such in-
vestigations will undoubtedly provide insights to new therapeutic av-
enues and identify lipid-related biomarkers of T1D onset.

6. EXTRACELLULAR VESICLE COMPONENTS AS POTENTIAL
T1D BIOMARKERS

For clinical trial purposes, a staging scheme for T1D has been recently
described [138] and includes pre-symptomatic periods of auto-
antibody positivity but without overt hyperglycemia. Therefore, the
development of biomarkers is deemed crucial for disease prognosis
and for the identification of patients who would benefit from preven-
tative therapies. EVs have potential as biomarkers, as they carry
cellular components from the cells from which they are derived that
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serve as molecular “signatures” of the disease process. Because
specific molecular species (miRNAs, lipids, metabolites) are enriched
in EVs, interrogation of EVs for these molecules might lead to the
identification of biomarkers that would be otherwise diluted and lost to
detection in circulating plasma. By example, in prostate cancer, urinary
EVs have been shown to carry RNAs that serve as signatures of disease
outcomes [139]. Similarly, in T1D, diverse components of [ cell-
derived EVs, including miRNA, DNA, protein, and metabolites have
been identified [140,141]. It is reported that rat and human pancreatic
B cells under inflammatory stress release EVs containing GAD65, I1A2,
and proinsulin that can subsequently can activate dendritic cells and
propagate adaptive immunity [142]. Studies have shown [ cell EV
production and cargo are altered upon proinflammatory cytokine
exposure [111,143], reinforcing their potential to harbor biomarkers.
Further, various clinical studies report differential expression of various
miRNA in subjects with long-standing T1D compared to healthy con-
trols, among which miR-21—>5p is being considered as a biomarker
[110,144—146]. With respect to diabetes, one group used lipidomic
profiling of urinary exosomes to distinguish individuals with diabetic
nephropathy (as compared to controls without nephropathy) and were
able to identify 5 lipids as significantly different [147]. Further research
is warranted to determine if a single biomarker or a group of bio-
markers in these EVs reflect B cell health.

Dysregulation in lipid metabolism has been suggested to precede the
onset of autoimmunity in T1D [148]. In this study, serum metabolomics
was performed from samples obtained from youth who later pro-
gressed to T1D. As compared to healthy controls, youth who later
progressed to T1D demonstrated increased levels of proinflammatory
lysophosphotidylcholines several months before seroconversion to
auto-antibody positivity. Another study demonstrated the utility of
sphingolipids as biomarkers in T1D [149]. In that study, using animal
models of diabetes, it was demonstrated that sphingosine-1-

phosphate is elevated compared to the controls. In addition, diabetic
animals demonstrated reductions in plasma levels of cytoprotective
omega-9 24:1 (nervonic acid)-containing ceramide, sphingomyelin,
and cerebrosides. A metabolomic study from cord blood also
demonstrated that levels of phospholipids, mainly phosphatidylcho-
lines and phosphatidylethanolamines, were decreased in T1D subjects
long before diagnosis [150]. Finally, a recent study also demonstrated
that the iPLA,-derived lipids are enhance in T1D subjects compared to
healthy controls [151]. These different studies reveal the relevance of
lipids as biomarkers of T1D progression. It is unknown if these lipids
are also released as EV cargo; however, considering the aforemen-
tioned studies in which lipid EV cargo appears to contribute to disease
pathogenesis, it is likely that lipid EV cargo contributes to the devel-
opment of diabetes and could serve as a biomarker.

Whereas EV properties such as their relative stability and protection
from circulating protease/nuclease activity are attractive for their use in
biomarker development, a major challenge to their clinical utility lies
with their isolation. Several biophysical approaches have been
employed for the isolation of EVs including ultracentrifugation, density
gradient ultracentrifugation, polymer-based precipitation, size-
exclusion chromatography, and immunocapture. These techniques
all have their advantages, but they also suffer from unique profiles of
contaminants. For instance, while ultracentrifugation is technically
simple, it results in poor recovery and large compositional variability.
Polymer-based precipitation has the advantage that it is a rapid
isolation technique allowing for isolation and characterization of large
numbers of samples; however, polymers can alter the composition of
the EVs, and the levels of polymers required to remove contaminating
lipoproteins result in precipitation of a majority of the EVs of interest.
Similarly, while size exclusion chromatography is gentle and has
excellent recovery and repeatability/reproducibility, EVs share similar
hydrodynamic diameters with large plasma lipoproteins, which results
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in co-fractionation of these distinct populations that can confound
compositional analysis [152—155]. This issue remains an ongoing
concern that receives continually refined recommendations by the
International Society for Extracellular Vesicles [8].

7. BIOENGINEERING EVS

With the increasing body of knowledge on factors effecting EV
biogenesis, secretion, contents, and (patho)-physiological roles, more
research is now being focused on how EVs might be used as thera-
peutic tools. Indeed, EV-based therapeutics can impart many of the
same effects as their cell-based counterparts while avoiding several
key drawbacks associated with patient risk, scalability, and cost [156].
The distinct biological structure and function of EVs means that they
possess high physiochemical stability [157], innate biocompatibility,
and the ability to interact with cells through signaling, fusion, and
delivery [158]. Despite these advantages, EVs must still be altered in
many cases to complement or enhance their therapeutic applicability.
Here, we will discuss several approaches for EV engineering and
suggest how they might be applied to T1D, as well as some consid-
erations for translational potential and commercial scalability. We will
also discuss how knowledge of lipid EV cargo is crucial for therapeutic
applicability.

Of the different approaches for EV functionalization, indirect engi-
neering through changing the parent cells is perhaps the most readily
adoptable method, as cell functionalization is a highly established and
widely employed field. For example, it was reported that exosomes
from human bone marrow mesenchymal stem cells transfected with
pshFas-anti-miR-375 silence Fas and miR-375 in human islets to
improve viability and function against inflammatory cytokines after
transplantation [159]. Although this approach involved gene silencing,
a more commonly employed method is to use tetraspanins such as
CD9, C63, and CD81, which are enriched in EVs [160], as backbones
for fusion proteins intended for EV loading. Tetraspanin fusion proteins
are used for a variety of purposes, from investigating secretion [161]
and trafficking [162] of EVs, to enabling more flexible engineering of EV
surfaces [163] and efficient EV loading of therapeutic cargo [164,165].
Other groups have used Rab5a [166] or lactadherin [167], both also
enriched in EVs, as backbones for fusion proteins for EV loading.
Recently, it was reported that exosomes derived from HEK293 cells
engineered to express an MHC-I/CD81/IL-2 fusion and a CD80/lac-
tadherin fusion were able to selectively deliver co-stimulation and IL-2
to antigen-specific CD8+- T cells [168], highlighting the distinctive role
that engineered EVs can play in antigen specific inmune interactions.
Engineering EVs for T1D therapeutics through cell functionalization
therefore seems highly feasible. For example, B cells genetically
engineered to express tetraspanin fusions containing immunomodu-
latory proteins or cytokines could be loaded into EVs that inherently
display B cell autoantigens in native MHC. Such EVs could then
function as a cell-free, antigen specific immunotherapy against dia-
betogenic T cells. However, cell-based EV functionalization typically
results in low packaging efficiency of therapeutic cargo, which is
highlighted by the large knowledge gap in the importance of post-
translational modifications in conferring specific properties to pro-
teins and sorting them into EVs [169]. There have been scattered
reports of lipid post-translational modifications, such as palmitoylation,
that targets a protein to EVs [170]; however, their relevance for EVs in
T1D therapeutics remains to be seen.

To overcome packaging inefficiencies, many groups have focused on
directly engineering EVs after purification. Direct EV engineering can be
accomplished in both passive and active manners to modify the
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surface with membrane binding species or to encapsulate materials
into the vesicle interior. Loading EV interiors with cargo is achieved
through membrane permeabilization. Permeabilizing via electropora-
tion is commonly used to load EVs with RNA cargos that then are taken
up by target cells to impart therapeutic effects [171—173]. Active EV
surface modification often includes some sort of chemical process to
alter the lipids or proteins on the surface of EVs, such as through click
chemistry [174,175]. Multiple groups have also devised ways to
directly load peptide antigen into exosomal MHC [176,177], again
highlighting the potential for EVs as antigen specific therapies. Passive
surface modification relies on noncovalent interactions including hy-
drophobic insertions, regularly used to label EVs with hydrophobic dyes
for investigating trafficking [178—180], and receptor-ligand binding. In
one recent example, an anchor peptide that enables EV targeting of
cargo through binding to CD63 was identified [181]. Coupling several
of these direct engineering strategies enables a “plug-and-play”
approach for internal cargo loading and external decorating to engineer
“designer” EVs. For instance, EVs derived from dendritic cells (DCs)
could be loaded with therapeutic RNAs like miR-375 [159] and tar-
geted to islets through surface functionalization, or directly loaded with
B cell autoantigens and functionalized with immunomodulatory pro-
teins. Indeed, there is already precedence for using DC-derived EVs as
therapies for cancer in clinical trials [182].

In addition to creating targeted EV cargo, knowledge of cell membrane
lipid components could be used to target therapeutic EVs to specific
cell types. The enrichment of phosphatidyl serine in EV membranes
has also been exploited experimentally for EV targeting by fusing a
phosphatidyl serine-targeting protein to a ligand for cell receptors of
interest, thereby targeting the EVs to the desired cell type [183]. The
extent to which the lipid composition of the EV membrane participates
in specific cellular targeting is not known. However, fusion of EVs with
liposomes have shown that different lipids can contribute to increased
uptake. The caveat of these studies is that they were only performed
in vitro, and not in vivo [184]. To add to the complexity, a recent study
showed that cellular uptake does not automatically indicate integration
into the cytosol; the exosomes can be re-released without apparent
modification or housed in endosomes for days only to undergo
degradation [185].

Any EV-based therapeutic intended for clinical use must pass regu-
latory rigor and conform to good manufacturing practice (GMP) grade
protocols. To this end, several groups have described technologies and
protocols for EV manufacturing that adhere to GMP standards [186—
188]. Considerations for scalability and quality control are also
important. Commercial bioreactors are widely available for large-scale
cell expansion, with microcarriers [189] or hollow fiber bioreactors
[190] now being used to reduce costs. It is possible to collect EVs from
cells cultured in hollow fiber bioreactors [191], demonstrating the
field’s interest in commercializing EV therapeutics. Furthermore, re-
combinant EVs as a biological reference tool for quantifying recovery
efficiencies of common techniques and normalizing and improving
sensitivity of EV counting methods has been described [192]. While
there are already several EV-based treatments in clinical trials for
various diseases that show great promise [193], technologies such as
those described above will be important for widespread, safe adoption
of this class of therapeutics.

8. CONCLUSIONS
EVs represent a new horizon in the study of diabetes pathogenesis. In

recent years, it has become apparent that different classes of EVs have
different intracellular origins, contain sometimes distinct cargo, and
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have lipid content that is enriched compared to the cell of origin.
Moreover, it is now appreciated that the content of EVs can vary
depending on the stress state of the cell. This latter observation has
significant ramifications with respect to intercellular communication,
thereby allowing neighboring cells to recognize and possibly respond
to states of prevailing stress by incorporation of EV cargo. Further
elucidation of EV function in health and disease has the potential to
leverage EVs as circulating biomarkers of prevailing cellular health and
possibly engage engineered EVs for targeted therapeutics. Neverthe-
less, several challenges remain in leveraging EVs to better understand
biology and manipulate pathologic states. These include, but are not
limited to, a better understanding of how cargo (lipids, RNA, metab-
olites) is specifically shuttled into EVs, methods for the reproducible
and reliable isolation of EVs, and methods for engineering and cargo
loading of EVs for cell-directed therapies. Given the potential promise
that EVs hold for therapeutics and diagnostics, recent requests for
applications from major granting agencies (e.g. US National Institutes
of Health) ensure that EV biology is likely to progress rapidly in the
coming years to meet these and other challenges.
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