Briefings in Bioinformatics, 2022, 23(4), 1-11

https://doi.org/10.1093/bib/bbac258
Advance access publication date: 30 June 2022

Problem Solving Protocol

OXFORD

Accurate identification of bacteriophages from
metagenomic data using Transformer

Jiayu Shang, Xubo Tang, Ruocheng Guo and Yanni Sun
Corresponding author. Yanni Sun, Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China.
E-mail: yannisun@cityu.edu.hk

Abstract

Motivation: Bacteriophages are viruses infecting bacteria. Being key players in microbial communities, they can regulate the com-
position/function of microbiome by infecting their bacterial hosts and mediating gene transfer. Recently, metagenomic sequencing,
which can sequence all genetic materials from various microbiome, has become a popular means for new phage discovery. However,
accurate and comprehensive detection of phages from the metagenomic data remains difficult. High diversity/abundance, and limited
reference genomes pose major challenges for recruiting phage fragments from metagenomic data. Existing alignment-based or
learning-based models have either low recall or precision on metagenomic data.

Results: In this work, we adopt the state-of-the-art language model, Transformer, to conduct contextual embedding for phage contigs.
By constructing a protein-cluster vocabulary, we can feed both the protein composition and the proteins’ positions from each contig
into the Transformer. The Transformer can learn the protein organization and associations using the self-attention mechanism and
predicts the label for test contigs. We rigorously tested our developed tool named PhaMer on multiple datasets with increasing
difficulty, including quality RefSeq genomes, short contigs, simulated metagenomic data, mock metagenomic data and the public
IMG/VR dataset. All the experimental results show that PhaMer outperforms the state-of-the-art tools. In the real metagenomic data

experiment, PhaMer improves the F1-score of phage detection by 27%.

Keywords: phage identification, protein cluster-based token, transformer, deep learning

Introduction

Bacteriophages (phages for short) are viruses infecting
bacteria. They are highly ubiquitous and are widely
regarded as the most abundant organisms on Earth
[1]. There is accumulating evidence showing phages’
significant impacts on various ecosystems [2, 3]. Phages
play an essential role in regulating microbial system
dynamics by limiting the abundance of their hosts and
mediating gene transfer. For example, marine viruses can
lyse 20-40% of bacteria per day in marine ecosystems
[4]. In addition, by regulating the bacteria inhabiting
human body sites, phages can also influence human
health [5, 6]. An important application of phage is phage
therapy, which uses phages as antimicrobial agents to
treat bacterial infections [7]. It has gained a resurgence
of attention because of the fast rise of antibiotic-resistant
bacterial infections.

However, despite the importance of phages to both
environmental and host-associated ecosystems, our
knowledge about this vast, dynamic and diverse

population is very limited. Previously, the limitation is
partially caused by the need of the host cell cultivation
in labs. Recently, metagenomic sequencing, which allows
us to obtain all genetic materials directly from a wide
range of samples regardless of cultivation [8-10], has
largely removed this limitation and becomes the major
means for new phage discovery. According to the NCBI
Reference Sequence Database (RefSeq), the number of
newly released phages is doubled from 2126 in 2019
to 4410 in 2021. Despite the rapid growth of the phage
genomes in RefSeq, the number of known phages is
only the tip of the iceberg compared with those in the
biome [11]. The uncharacterized phages comprise a big
portion of the ‘dark matter’ in metagenomic composition
analysis. Due to the lack of universal marker genes,
phages cannot be easily and comprehensively identified
[12] using conventional methods.

There are two main challenges for phage identification
in metagenomic data. First, both lytic and temperate
phages can integrate the host genetic materials into

Jiayu Shang received his bachelor’s degree from Sun Yat-sen University. He is now pursuing his Ph.D. degree at the City University of Hong Kong. His research
interest is bioinformatics, with a focus on algorithm design for analyzing microbial sequencing data.

Xubo Tang is currently pursuing his Ph.D. degree at the City University of Hong Kong. His main research interests include computational biology and
bioinformatics, particularly applying deep learning models to analyze genomic data.

Ruocheng Guo is currently a machine learning researcher at Bytedance Al Lab, London, UK. He got his Ph.D. from Arizona State University, USA. His research

interests include causal inference and machine learning.

Yanni Sun is currently an associate professor in the Department of Electrical Engineering at the City University of Hong Kong. She got her Ph.D. in Computer
Science and Engineering from Washington University in Saint Louis, USA. Her research interests are sequence analysis and metagenomics.

Received: March 10, 2022. Revised: May 22, 2022. Accepted: June 4, 2022
© The Author(s) 2022. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/

2 | Shangetal.

their genomes, leading to local sequence similarities
between the genomes of phages and bacteria [13]. For
example, ~76% phages with known hosts in the RefSeq
database have detectable alignments (E-value <le-5)
with their host genomes [14]. These common regions
pose challenges for distinguishing phages from their
bacterial hosts. Second, although some previous works
use phage structure-related genes as hallmark genes
for phage identification, those genes only account for a
small set of the proteins encoded by all phages. Using
a small set of hallmark genes can lead to low recall of
phage identification. The large gene set coded by phages
is further compounded by the fact that many newly
identified phages contain genes without any functional
annotation. For example, Caudovirales, the largest order of
phages containing about 93% of sequenced phages, has
about 187 006 hypothetical proteins. It is not trivial to
identify hallmark genes without functional annotation.

Related work

Many attempts have been made for phage identification
[15]. According to the algorithm design, they can be
roughly divided into two groups: alignment-based [16,
17] and learning-based [18-21]. The alignment-based
methods utilize DNA or protein sequence similarity
as the main feature to distinguish phages from other
sequences. For example, MetaPhinder [17] uses BLAST
hits against a phage reference database to identify phage
sequences. VirSorter [16] constructs a phage protein
family database and applies hidden Markov model-
based search to identify the protein clusters in input
contigs. Then, enrichment and depletion metrics are
computed to estimate the likelihood of input contigs
being phages. However, the limitations of alignment-
based methods are apparent. First, bacterial contigs can
have multiple alignments with phage genomes, which
will lead to false-positive phage predictions. Second,
novel or diverged phages might not have significant
alignments with the chosen phage protein families (e.g.
selected hallmark genes), leading to low sensitivity for
new phage identification.

To overcome the limitations of alignment-based meth-
ods, several learning-based tools have been proposed for
phage identification. These learning models are mainly
binary classification models with their training data con-
taining phages and bacteria. Some learning models use
extracted sequence features such as k-mers, while oth-
ers use automatically learned features in deep learning
models. For example, VirFinder [18] utilized k-mers to
train a logistic regression model for phage detection.
Virtifier [22] uses the codon-based features to train a
long short-term memory classifier for read-level phage
identification. Seeker [20] and DeepVirFinder [19] encode
the sequence using one-hot embedding and train a long
short-term memory model and convolutional neural net-
work, respectively. PPR-meta [21] is a three-class classifi-
cation model with predictions as phages, plasmids, and
choromosomes. It uses both one-hot embedding and k-
mers to train a convolutional neural network. VirSorter2

[23] employs a random forest model on sequence fea-
tures, such as HMM alignment scores and GC content.

Despite the promising results, a third-party review [15]
shows that the precision of these tools drops significantly
on real metagenomics data. Many bacterial contigs are
misclassified as phages. There are two possible reasons
behind this. First, current learning models did not care-
fully address the challenge that phages and bacteria
can share common regions. As a result, the training
data did not include sufficient hard cases to train the
model. For example, to construct a balanced training
data, these tools often randomly select a subset of bac-
terial segments as negative samples. These samples may
not share any local similarities with the phages and thus
the trained model cannot generalize to more complicated
and heterogeneous data such as real metagenomic data.
Second, current models need to crop the genomes into
short segments for training. The extracted features are
limited to the segment and larger context information
from the phage genomes cannot be effectively incorpo-
rated.

Overview

In this work, we present a method, named PhaMer,
to identify phage contigs from metagenomic data.
Because previous works have shown the importance
of protein composition for phage classification [24, 25],
we employ a contextualized embedding model from
natural language processing (NLP) to learn protein-
associated patterns in phages. Specifically, by converting
a sequence into a sentence composed of protein-based
tokens, we employ the embedding model to learn both
the protein composition and also their associations in
phage sequences. First, we will construct the vocabulary
containing protein-based tokens, which are essentially
protein clusters with high similarities. Then, we apply
DIAMOND BLASTP [26] to record the presence of tokens
in training phage sequences (Figure 1 A). Then, the tokens
and their positions will be fed into Transformer (Figure 1
B) for contextual-aware embedding. The embedding
layer and the self-attention mechanism in Transformer
enable the model to learn the importance of each protein
cluster and the protein-protein associations. Although
Transformer has been used for sequence embedding
based on k-mers and motifs [27-29], we are the first
in using protein clusters as tokens in Transformer for
phage identification. In addition, using the phages’ host
genomes as the negative samples in the training data,
the model can learn from the hard cases and thus
is more likely to achieve high precision in real data.
Finally, PhaMer can directly use the whole sequences for
training, avoiding the bias of segmentation. We rigorously
tested PhaMer on multiple datasets covering different
scenarios including the RefSeq dataset, short contigs,
simulated metagenomic data, mock metagenomic data
and the public IMG/VR dataset. We compared PhaMer
with four competitive learning-based tools (Seeker, Deep-
VirFinder, VirFinder and PPR-meta) and one alignment-
based tool (VirSorter) based on a third-party review [15].

PhaMer | 3

Input conti
A P 9 B Model structure
l Prodigal
— — — Prediction
3
lDIAMOND BLASTP /—
Transformer \
= = - = e
Feed
PCy PC, PCq PCn Forward
token; token, tokens tokeny
Vocabulary Identity Add & Norm
X
Alignment results l Multi-Head
_____ Attention
e o) S
Y =) Without results \ /
N emmeaAR | ggereRms ~.. (drop)
With results !) Embe)‘:d'ng
e \ PN
4 \
[Convert to sentence 1 Positional Protein cluster
: according to the position I Encoding Embedding
! | Inputs
TR s | —
| BIEW - [oole] | t
I\ T) .
|
| ke i - ! Contigs (sentences)
\)
N v

Figure 1. The pipeline of PhaMer. (A): converting inputs into protein-token sentences. During training, we apply Prodigal to predict open reading frames
(ORFs) from training phages and translate ORFs into proteins. Then a clustering method is applied to generate protein clusters (PCs), which are the
tokens in Transformer. During the test/usage, PhaMer takes contigs as input and converts them into protein-token sentences. (B) Transformer network
architecture. The converted sentences are fed into the Transformer model and a prediction is made.

Our experimental results show that PhaMer competes
favorably against the existing tools. In particular, on the
mock metagenomic data, the F1-score of PhaMer exceeds
other tools by 27%.

Methods

Inspired by semantic analysis problems in NLP, we
employ the state-of-the-art contextualized embedding
model, Transformer, to automatically learn abstract
patterns from the ‘language’ of phages. In this language,
the contigs are regarded as sentences defined on a phage-
aware vocabulary. There are three major advantages
behind this formulation. First, some proteins play critical
roles in phages’ life cycle. For example, coat proteins
and receptor-binding proteins can help us distinguish
phages from bacteria. These proteins can act as strong
signals similar to the words describing obvious emotions
in human language. Second, proteins often interact
with other proteins to carry out biological functions
[30]. Similar to multiple words that can form phrases
with different meanings, some protein combinations
in the contigs can also provide important evidence for
phage identification. Third, using protein-based tokens
allows us to integrate much larger context, including
the whole phage genome, into feature embedding.
Unlike existing learning-based tools that often split the
genomes into segments of fixed length, our model can
effectively employ proteins in the whole genomes. These
features prompt us to convert contigs into protein-based
sentences.

In order to automatically learn the importance of pro-
teins and their associations, we adapt the Transformer

model to phage identification task. Transformer has
achieved the state-of-the-art performance on a variety
of NLP problems [31-33]. In particular, the positional
encoding and self-attention mechanism enable the
model to learn both the importance of each word and
the relationships between words.

In the following sections, we will first introduce how
we construct the protein-cluster tokens and encode the
sequences into sentences. Then, we will describe the
Transformer model optimized for phage identification.

Constructing the protein-cluster tokens

Each token in our model is derived from a protein clus-
ter, which contains homologous protein sequences from
sequenced phages.

Generating protein clusters Our protein clusters are
constructed on the training data. Specifically, they are
extracted from 2126 phage genomes released before
December 2018 from the RefSeq database, which
constitute our training phages. More recently sequenced
phages are used as test samples. Constructing the
protein vocabulary using only the training sequences
allows us to rigorously test our method in scenarios
where newly sequenced phages harbor novel proteins
outside the vocabulary. Although there are available
gene annotations and their corresponding proteins for
the reference genomes, we did not use the annotation.
Instead, in order to be consistent with the gene pre-
diction process of the test sequences, we apply gene
finding and protein translation for the downloaded DNA
genomes. According to a recent review of gene finding
in viruses [34], Prodigal outperforms other annotation

4 | Shang et al.

tools, especially for phages. Thus, we use Prodigal to
predict ORF on both training and test genomes under
its default parameters. Second, we will run all-against-
all DIAMOND BLASTP [26] on the predicted proteins.
Protein pairs with alignment E-value < le-3 are used
to create a protein similarity network, where the nodes
represent proteins and the edges represent the recorded
alignments. The edge weight encodes the corresponding
alignment’s E-value. Then, Markov clustering algorithm
(MCL) [35] is employed to group similar proteins into the
clusters using default parameters. All the clusters that
contain fewer than two proteins are removed and finally
we have 45 577 protein clusters. The size distribution
of the protein clusters can be found in FigS. 1 in the
[Supplementary file 1].

Encoding a contig into a protein token sentence With the
generated protein clusters as the tokens in our vocab-
ulary, we will use them to convert contigs into sen-
tences. As shown in Figure 1 A, we will employ Prodigal
for gene finding and translation. Then, we will identify
the matched protein clusters for the translated proteins
by conducting similarity search. Specifically, DIAMOND
BLASP is applied to compare each translation against all
the proteins in the clusters. We identify the reference
protein incurring the smallest E-value and assign the
query with this reference protein’s cluster. We will record
both the ID of the token (protein cluster) and the position
of the protein in the query sequence. If an input sequence
has no alignment with any token, we will not keep it
for downstream analysis. Thus, if a new phage does not
contain any of the tokens in our established vocabulary,
it will be missed by our model and will be recorded as
a false negative. In our experiments, we found that this
type of phages is very rare. Most of them contain some
tokens.

Because the lengths of the contigs can vary a lot, the
converted sentences also contain different number of
protein-cluster tokens. We follow the original paper of
Transformer [31] and set the maximum length of the
sentence to be 300. If the sequence contains more than
300 protein clusters, we will only keep the first 300. For
sequences containing less than 300 tokens, we will pad
zeros at the end of the sentence. Finally, we will generate
a 300-dimensional vector for the input sequence and
each dimension encodes a token ID. For example, in
Figure 1 A, we show a sentence containing three tokens:
tokeny (PC1), tokens (PCs) and tokeny (PCy). The other posi-
tions in this sentence are padded with zeros. The maxi-
mum length of the sentence is a hyperparameter and can
be set by users.

The Transformer model

The model’s inputs are the converted sentences, repre-
sented by 300-dimensional vectors, and the output is a
score representing how likely the input contig is a phage.
The main purpose of Transformer is to automatically
learn whether these sentences contain essential features
for phage identification: the marker tokens (important

Embedding

Embedding
X

PACIN

Positional Protein-cluster
Embedding Embedding Sentence

e
@®—
—’H] /:?-z

—_—
[3][2]in] ~[o][o][o]

— [

t

Contigs (sentences)

Position Index |1]/2 | 3 2908|299 || 300

Figure 2. The embedding layer in PhaMer. There are two embedding layers
in the model: protein-cluster embedding and positional embedding. The
sum of these two embedding layers forms the input to the Transformer
block.

proteins) and phrases (protein-protein associations). Two
main components in Transformer contribute to these
aims: (1) the embedding layers and (2) the self-attention
mechanism.

The embedding layer As shown in Figure 2, before feeding
the Transformer block, we embed the sentence and
the position of the tokens via two embedding layers:
protein-cluster embedding and positional embedding.
The protein-cluster embedding layer resembles a look-
up table and returns a numerical vector representing
an input token. There are several ways to implement
the protein-cluster embedding layer, such as the one-
hot encoding used in DeepVirFinder [19] and Seeker [20].
However, because of the size of the vocabulary (45 577),
using one-hot encoding can lead to very sparse vectors,
which can make the model suffer from the curse of
dimensionality [36]. Thus, we use a fully connected layer
(FC layer) to conduct linear projection for computing
a low-dimensional embedding vector for each token.
Because the tokens in the sentences are IDs, the mapping
from the ID to a vector by the FC layer functions as a
learnable dictionary (look-up table). Given an ID of a
token, it will return a corresponding embedding vector
of the token.

Because Transformer contains no recurrence or con-
volution, it uses the positional embedding to encode the
position information. The input to the positional embed-
ding is the position index vector. The implementation is
the same as the protein-cluster embedding layer with
an individual learnable look-up table. The output of the
embedding layer has the same dimension as the protein-
cluster embedding so that the two embedded vectors can
be summed.

[, = FC(s, Wiy)
I, = FC(Iy, Wy,) (1)
X=IL+I

Mathematically, the embedding layers can be pre-
sented by Eqn. 1. I is the input sentence and I, is the
position index vector for the input tokens as shown

Self-Attention
Scaled Dot-Product

Multi-Head attention
& 1 el
——

Embedding

N_Embed ® —_—
N_words KT
® 2 N PGS = -
/N

Positional | [Protein-cluster Embedded S
Embedding | | Embedding sentence v
- - 1

Contigs (sentences)

Figure 3. The self-attention mechanism in the Transformer model. The
input of the self-attention is the embedded vector and the output is the
weighted features with protein—protein relationships information.

in Figure 2. W, e RN<emd and W), e Rlnembed gre
the learnable parameters of the look-up table for
protein-cluster embedding and positional embedding,
respectively. N is the number of protein clusters, which is
45 577 in our model, and len is the maximum length
of the sentence, which is 300 by default. embed is a
hyperparamter of the embedding dimension and it is
set to 512 by default following the guideline in [31].
The padding tokens, which are fixed to zero, are not
involved in the downstream computation. The outputs
of the embedding are two matrices I; € R3%°x512 and
I, € R**%12 where each row represents an embedded
token and position vector, respectively. The final output
X e R30%512 of the embedding layer is the sum of two
matrices I and I, Then, X will be fed into the Transformer
block. Ideally, these embedding layers will capture some
of the semantics of the input by placing semantically
similar tokens close together in the embedding space
[37]. Because the value of the embedding layers in
our work represents the proteins of the phages and
position of proteins, the embedding could help place
proteins with similar functions, such as the proteins for
constructing the capsid, in proximity in the embedding
space.

Self-attention After embedding the sentences, each token
is converted into a vector of size 512 and the embedded
sentences will be a R3%9%312 matrix. Then, we feed the
matrix into the self-attention mechanism as shown in
Figure 3. First, three FC layers are adopted to generate a
query matrix Q, a key matrix K and a value matrix V. We
want to train a model to learn: given a set of proteins
(query), which proteins (key) are usually co-present in
phage genomes (value). Then, when making a prediction
for the contigs, the model will evaluate whether the co-
occurrence of some proteins shows enough evidence for
phage classification.

. QKT
Attention(Q, K, V) = SoftMax(—=)V 2)

Ve

Figure 3 and Eqn. 2 show how the self-attention mech-
anism works. First, the embedded matrix X is projected
by three FClayersinto Q, K and V, respectively. Second, we
multiply Q and the transpose of K and obtain an attention
score matrix of size len by len, where len is the length

PhaMer | 5

of the sentence. Thus, the value in the attention score
matrix represents the strength of associations between
two proteins. Then, the SoftMax function is employed to
obtain normalized weights for each protein-cluster token
and finally we multiply the weight with the value matrix
V to score the protein clusters in the sentences. Because
the matrix multiplication between Q and the transpose
of K might grow large in magnitude when the dimension
of the embedding increases, leading to extremely small
gradients of the SoftMax function, we divided it with a
scaling factor /dy, to prevent gradient vanishing. Follow-
ing the suggestion of [31], we set dp = embed = 512.

Because the attention matrix only contains pairwise
protein cluster information, to model different combina-
tions of pairwise relationships, we use h FC layer groups
for linear projections. Each group is called a head (head;),
and on each of these projected versions of queries Q;,
keys K; and values V;, we can perform the self-attention
mechanism in parallel. To reduce computational com-
plexity, in each FC layer we will reduce the dimension
for the projected features. The dimension of the out-
put will be len x ds, where dg is calculated by embed/h.
In this work, we choose h = 8 by default. Thus, the
formula of each head attention can be written as in
Egn. 3.

head; = Attention(Q;, K;, V;)
Q = FC(X, W))
K; = FC(X, W5)
\T — FC(X, W)

The parameters in the FC layers are projections matri-
ces: W? € RNxds WK e RN*ds and WY e RN*ds_ Finally, we
will concatenate the output from each head and form the
final output of the multi-head attention block as shown
in Eqn. 4, where WO g Rsxembed,

MultiHead(Q, K, V) = FC(Concat(heads, ..., heady), W°) (4)

While convolution and recurrence in CNN and RNN
can record the relative positions directly, the attention
mechanism is more suitable for biological data, espe-
cially for protein-cluster tokens, because the attention
score can learn the remote interactions between proteins
from the embedded feature. CNN and RNN can be limited
by their architectures that only give them access to local
context with a limited window size or receptive field.
However, the self-attention mechanism of the Trans-
former grants access to all positions in the embedded
sentence. In addition, the positional embedding enables
the model to leverage the position of each protein for
prediction. Then all the information can be used in the
attention mechanism simultaneously.

Feed-forward networks The output of the multi-head atten-
tion block is fed to a two-layer neural network, which
is called feed-forward network, as shown in Figure 1
B. We employ a residual connection [38] to the out-
put of the multi-head, followed by layer normalization

6 | Shangetal.

[39] to prevent overfitting. Then, we employ the sigmoid
function to the final output of the Transformer block
to compute the probability of a contig being part of a
phage.

Model training During training, we first generate protein
clusters and vocabulary using the phage genomes
released before December 2018 (i.e. our training phages).
Then, we convert phage sequences into sentences using
the sentence construction method. We also apply data
augmentation by randomly generating short segments,
ranging from 3 to 15 kbp, to enlarge the training set.
These segments are used to improve the robustness to
the short contigs, which might not contain many protein
clusters. We use both the segments and the complete
genomes to train PhaMer to prevent the model from
overfitting to the complete genomes. The training data
also include the host bacterial genomes of the training
phage sequences. Because phages usually share local
similarities with their hosts, we use the host genomes
as the negative set to create harder negative samples
for model training. Compared with using randomly
selected bacterial sequences, using the hosts as the
negative samples can help the model learn a more
accurate classification surface and thus improves the
model’s generality. We download the host genomes from
RefSeq database and both chromosomes and plasmids
are included. The bacterial genomes go through the
same sentence encoding process as the positive samples.
Because some phages do not have known hosts, we
sample segments from bacterial genomes to balance
the training the positive and negative training data.
We employ binary cross-entropy (BCE) loss and Adam
optimizer with a learning rate of 0.001 to update the
parameters. The model is trained on HPC with the GTX
3080 GPU unit to reduce the running time. Finally, the
pre-trained model will be used to identify phages in input
sequences.

Experimental setup

Metrics We use the same metrics as the previous works
to ensure consistency and a fair comparison: precision,
recall and Fl-score. Their formulas are listed below
(Egqn.5, Eqn. 6, and Eqn. 7):

recision = s (5)
P ~ TP+ PP
TP
l= ——— 6
= TP EN (©)

2 % precision x recall

Fl—score = —
precision + recall

)

TP, FN and FP represent the number of corrected identi-
fied phages, missed phages and falsely identified phages
by PhaMer, respectively. If the input contigs do not con-
tain any protein-based token, we will directly assign
‘non-phage’ label to them, which become part of the FN.

Dataset We rigorously tested PhaMer on multiple datasets
with increasing complexity. The detailed information is
listed in Table 1.

Results

In this section, we will show our experimental results
on different datasets and compare PhaMer against
the state-of-the-art tools. Because we want to include
both alignment-based and learning-based methods in
the experiments, we choose the tools that have top
performance in each category based on a recent review
[15]. Thus, we compared one alignment-based method:
VirSorter [16] and four learning-based methods: Seeker
[20], DeepVirfinder [19], VirFinder [18] and PPR-meta [21].
Because Virtifier [22] is designed for short reads (length
<500bp), we exclude Virtifier from the comparison.

Experiments using the RefSeq dataset

Ten-fold cross-validation We trained our model using 10-
fold cross-validation. First, we split our training set into
10 subsets. Second, we use nine subsets for training and
the remaining one for validation. Finally, we repeated
step two by iteratively choosing one subset for testing
and recording the performance. The final results are
shown in Figure 4. We also show how the positional
embedding and attention mechanism affect the learning
performance. Without positional embedding means that
we only use the sentence as input (shown in Figure 2).
Without attention mechanism means that we directly
feed the embedding feature X into the feed-forward
network (shown in Figure 3). The results clearly show
that both strategies improve the performance. We also
visualize the attention score matrix (QKT e Re™n in
Figure 3) to show the self-attention mechanism canlearn
important protein associations with biological signif-
icance. Detailed information can be found in section
Visualization of the attention score in the [Supplementary
file 1]. After we conducted 10-fold cross-validation, we
fixed the parameters of PhaMer using the model with the
best performance on the validation set. The following
experiments were conducted using this model, whose
parameters are also available at our GitHub repository.

Performance on the test set and short contigs We run all
the state-of-the-art methods using the pre-trained model
with the default parameters on the test sequences. For
complete input genomes as inputs, we draw an ROC
curve using the output score of each tool in Figure 5. The
area under the ROC curve reveals that PhaMer has more
reliable results on the complete phages. Then, under
the same score cutoff value (0.5) as all other tested
tools, we recorded their precision and recall in Figure 6.
Meanwhile, we tested the tools on the short contig test
set described in Section Experimental setup. To reduce the
bias of data generation, we repeated the short contig
generation process for three times and reported the aver-
age performance in Figure 6. The comparison reveals
that PhaMer can achieve the best performance across

PhaMer | 7

Table 1. The detailed information of the datasets

Name

Description

RefSeq dataset

Short contig test set

Simulated metagenomic dataset

Mock metagenomic dataset

We split the training and test set by time. All the phage genomes released before December 2018 in RefSeq
comprise the training set, while the genomes released after that comprise the test set. This dataset is a widely
used benchmark dataset in phage identification task. For each phage, the host information is available based
on the keywords ‘isolate_host =’ or ‘host =" within each GenBank file. If no known host is available, we use this
phage as a positive sample without a negative pair. Finally, 305 bacteria and 4410 phages were downloaded. The
training set contains 106 bacteria and 2126 phages. The test set contains 194 bacteria and 2284 phages.

We randomly cut the test phage genomes into segments of different lengths: 1, 2, 3, 5, 10 and 15 kbp. To balance
the dataset, we randomly extract 10 segments from each test phage genome and 100 segments from each test
bacterial genome. Finally, we have 22 840 phage segments and 19 400 bacterial segments for each given length.
Then we use these segments to evaluate the performance of phage identification on short contigs.

We use a sophisticated metagenomic simulator, CAMISIM [40], to generate simulated data using six common
bacteria living in the human gut. Instead of adding random phages to this dataset, we add simulated reads
from phages that infect these bacteria to create a harder case for distinguishing phages from bacteria with
shared local similarities. Then, metaSPAdes [41] is applied to assemble the reads into contigs, which are fed into
test phage detection tools. Finally, MetaQUAST [42] is used to map contigs to reference phage genomes in order
to assign the labels to the contigs. The experimental results can be found in section Experiments on the simulated
data in the [Supplementary file 1].

Nine shotgun metagenomic sequencing replicates of a mock community [43] are retrieved from the European
Nucleotide Archive (BioProject PRJEB19901). We use metaSPAdes to assemble the reads into contigs, which are
used for evaluation. Similarly, The label of the contigs is determined using MetaQUAST.

IMG/VR dataset IMG/VR v3 database [12] contains 2314 129 viral contigs assembled from different environmental samples. We
recruit 354 501 contigs with known bacterial hosts. With this dataset, we will compare the recall of different
tools for identifying phages from different environments.

1 : ; I ROC Curve
[; . 1
| e I 3 1.0 1
0.9 : L[t /
: /
0.8 3 0.8 {
©
o
0.7 o] 0s0]
S 0.6
0.6 w0 | 5.
£ 0.4 PhaMer(0.996)
05) Seeker(0.763)
Orignal mode Without positional Without attention o DeepVirfinder(0.970)
embedding mechanism = 0.2 1 VirFinder(0.968)
Precision ®mRecall [Fl-score — PPR-meta(0.981)
0.0 1 VirSorter(NA)

Figure 4. The 10-fold cross-validation performance on the training set.
X-axis: training with different methods. Y-axis: the value of each metric
(precision, recall and F1-score).

all length ranges. With the increase of contig length, the
performance of all pipelines increases. This is expected
because longer sequences may contain more informa-
tion for phage identification. As Figure 6 shows, when the
contigs are as short as 1kbp, PhaMer has precision around
0.8, while others have precision lower than 0.8. Thus, we
do not suggest that users conduct phage identification
for even shorter contigs, which can lead to unreliable
results.

Because DeepVirFinder and Seeker support training a
customized model, we also tried to retrain these meth-
ods with our training set. However, the recall of Deep-
VirFinder and Seeker dropped to 0.47 and 0.65 on the
complete genomes, respectively. This indicates the pos-
sibility that their training set might contain some of
our test genomes. To keep the better results, we only
reported the predictions by the pre-trained models in all
the experiments.

00 02 04 06 08 1.0
False Positive Rate

Figure 5. ROC curves on the complete test genomes. The value in the
parentheses represents AUC for each tool. Because VirSorter does not
provide a score associated with each prediction, we only have one data
point. All later experimental results will be reported using the default
cutoffs of each tool.

The similarity between the training and test set The perfor-
mance of phage identification can be affected by the sim-
ilarity between the training and test sequences. We used
Dashing [44] to estimate the similarity between the train-
ing and test set. First, we ran all-against-all comparisons
between sequences in the training and test set. Then,
we recorded the largest similarity for each test phage
in the test set. The mean value of the similarity is 0.41,
indicating a relatively low similarity between the test and
training set. To show how the similarity affects the phage
identification, we divided the test set according to the
dashing similarity. Because low similarity between train-
ing and test phages mainly affects the recall of phage

8 | Shangetal.

A Precision

08 . . . e ——
06 ———

0.4

0.2

1kbp 2kbp 3kbp 5kbp 10kbp 15kbp Complete

genomes

B Recall

™

0.8
0.6
0.4

0.2

1kbp 2kbp 3kbp 5kbp 10kbp 15kbp Complete

genomes

«PhaMer «-Seeker «-DeepVirfinder

VirFinder PPR-meta «VirSorter

Figure 6. Precision and recall on the genomes and the simulated contigs
from the test phages and bacteria. X-axis: contigs with different lengths.
Y-axis: the precision on the test set (A) and the recall on the test set (B).
For simulated contigs, there are 22 840 phage contigs and 19 400 bacterial
contigs for each length range. The reported performance is averaged on
three such sets of contigs for each length range. The precision and recall
of all tools correspond to their default score cutoffs (0.5).

1 2500 @
— [@)]
©
1 2000 5
0.9 2
= 1500 -5
3 ’—‘ 8
o
} | 1000 ‘5
08 —— == g
Q
l_l 500 =
=3
07 0o <
<0.2 <04 <06 <0.8 =<1
Similarity
PhaMer Seeker --DeepVirFinder
VirFinder PPR-meta VirSorter

Figure 7. The impact of training-vs-test phage similarity on the recall of
PhaMer. X-axis: the dashing similarity between test and training phages.
The line plot: recall (left Y-axis). The bar plot: number of test phages (right
Y-axis).

identification, we recorded the recall in Figure 8. X-axis
stands for the maximum similarity between genomes
in the training and test sets. For example, X-axis value
0.2 indicates that all the test phages have similarity <
0.2 against the training phages. Figure 8 shows that with
the increase of the similarity, the recall of all methods
increases and PhaMer outperforms other tools on a wide
range of similarities.

Experiments on the mock metagenomic data

After validating PhaMer on the RefSeq database and the
simulated datasets, we compare all the methods on real
shotgun-sequenced metagenomic datasets that are used
for testing phage identification by the review [15]. The
sequencing data are from a mock community [43], which

contains 32 species or strains, including five phages.
There are nine sequenced datasets with different prop-
erties of cell number abundance and protein biomass
level from this mock community. These datasets are pub-
licly available at European Nucleotide Archive (BioProject
PRJEB19901). Following the guidelines of [15], we used
the FASTQC (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc) to control the quality of the data and
removed overrepresented reads with Cutadapt [46]. The
cleaned paired-end reads were fed into metaSPAdes [41]
and the output contigs were labeled by MetaQUAST [42].
Only the contigs with length >3kbp will be used for
comparison and the prediction results of all methods are
shown in Figure 7.

In general, the F1-scores of other tools were consider-
ably lower on this dataset than on the RefSeq benchmark
dataset, with an average F1-scores drop by ~30%. A closer
look shows that they commonly misclassified the bac-
terial contigs as phages in this metagenomic data. The
precision of PhaMer is still much better than the state-
of-the-art methods. Because PhaMer learns not only the
importance of proteins but also the associations between
proteins from phage sequences, it is able to make a fine
distinction between bacteria and phages. In addition,
we use the hard cases (the host genomes) for training,
enabling the model to generalize to real metagenomic
data.

Experiments on the IMG/VR data

Recently, IMG/VR published the largest public virus
genome database IMG/VR v3 [12]. The viruses in this
database are quality checked, taxonomically classified
and annotated. This dataset provides a good test set
to evaluate the recall of phage identification tools.
Following the previous work [20], we downloaded 2314
129 viral contigs assembled from different environmen-
tal samples and recruited 354 699 viral contigs with
known bacterial hosts. All contigs shorter than 3kbp
were removed, resulting in 354 501 phage contigs. Such a
broad coverage of phages from different environmental
niches allow us to test the reliability of the phage
identification tools. Because only phages were tested in
the experiments, we reported the recall of different tools.
Figure 9 shows the recall of all six methods on the
IMG/VR dataset. We split the dataset according to the
living environments of the phages and show the perfor-
mance of all tools on five of them with largest data sam-
ples (Figure 9 A): human, plant, marine, freshwater and other.
The results reveal that PhaMer outperforms all other
methods on these five domains. In particular, PhaMer
significantly improved the recall of phage identification
in plant-associated samples. Figure 9 B shows the sum-
marized recall on all the datasets with PhaMer having a
recall of 5% higher than the second best tool PPR-meta.

Running time comparison

The most resource-demanding components in PhaMer
are the translation (Prodigal) and sequence alignment

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc

PhaMer | 9

1.0

08
0.6 ea - =

= &5
04 [? i
0.2 ﬁg g

PhaMer Seeker DeepVirFinder VirFinder

oPrecision =Recall =F1-score

PPR-meta VirSorter

Figure 8. Results on the mock metagenomic data. X-axis: the names of the compared methods. Y-axis: the score of the metrics. Results on the mock
metagenomic data. PhaMer outperforms the other tools regarding precision, recall and F1-score. PPR-meta achieves the second-best recall but shows

low precision.

A
1
0.9
0.8
0.7
05 b = I
o o °
2 i) 2
O~ 0 40
55 8% g2
2E g2 25
2 o5 52
B @ @
o (o] [0}
a e} i = =

B
1
09 M [
0.8]
0.7
2 g
= ©
g E 0.6
8
LY
0.5 = -

All

OPhaMer OSeeker @DeepVirfinder @Virfinder @ PPR-meta O VirSorter

Figure 9. Results on the IMG/VR v3 database. Y-axis: the recall of PhaMer and the state-of-the-art tools for identifying phages in the IMG/VR database.
(A): Recall of different tools on phages living in different environments; (B): the overall recall on the whole database.

Table 2. The average elapsed time to make predictions for the RefSeq test genomes. All the methods are run on Intel® Xeon® Gold

6258R CPU with eight cores.

Program PhaMer VirFinder

DeepVirFinder

Seeker PPR-meta VirSorter

Elapsed time(min) 67 31

58 46 214

(DIAMOND BLASTP). We used these two steps to con-
vert input sequences into protein-based sentences. Both
the protein cluster vocabulary and position information
are utilized as input features of the Transformer model.
Table 2 shows the average elapsed time of classifying the
test set (2284 genomes) for each tool. PhaMer is not the
fastest program, and ~90% running time is used to run
Prodigal and DIAMOND BLASTP.

Discussion

As shown in the experiments, existing approaches,
such as Seeker, VirFinder, DeepVirFinder, PPR-meta and
VirSorter, failed to achieve high precision or recall in
phage identification, especially on metagenomic data. In
this work, we demonstrate that PhaMer can render better
performance for novel phage identification. The major
improvement of our method stems from the adoption
of the language model Transformer for bidirectional

contextual protein embedding and our careful construc-
tion of negative samples. By constructing protein-based
vocabulary, we can incorporate the similarity between
phages. Using the positional embedding and the self-
attention mechanism in Transformer, we can learn the
importance of proteins and also their associations. In
addition, we carefully construct our negative training
samples using phages’ host bacterial genomes. Because
of the local similarities between phages and their
hosts, this negative training set is more difficult to
classify and tend to have direct bearing on learning the
optimal decision surface. The benchmark experimental
results on complete genomes, short contigs, simple and
complicated metagenomic data show that our model
outperforms others in different scenarios. Importantly,
its performance is more robust than others on short
contigs. Anditincreases the F1-score by 27% on the mock
metagenomic data.

Considering that we first constructed protein clus-
ters from phage proteins, it is a fair question to ask

10 | Shang et al.

whether we can achieve an optimal classification by
controlling the protein matching criteria (E-value). When
constructing our negative set (bacterial host sequences),
we found that over 80% of bacterial genomes have mul-
tiple alignments with the protein clusters in our vocab-
ulary. Thus, there is a trade-off between the recall and
precision in terms of the E-value cutoff. Because phages
are highly diverse and some protein clusters can have
remote homologs in new phages, using a very stringent E-
value cutoff can miss new pages. We found that if we use
a very strict E-value cutoff (e.g. E-value close to 0), most
of these bacterial genomes can be rejected. However, the
recall of identifying phages will drop to 0.3. Thus, it is
hard to strike an optimal balance between sensitivity and
precision by adjusting E-value cutoffs.

Although PhaMer has greatly improved phage contig
identification, we have several aims to optimize PhaMer
in our future work. One possible extension is to incorpo-
rate prophage detection in PhaMer. There are a number
of prophage annotation tools, such as Prophage Hunter
[47] and Phage_Finder [48]. In our software, we supply a
metric named proportion to record the ratio of matched
tokens in our vocabulary to the predicted proteins by
Prodigal for each input contig. Intuitively, for each input
that is predicted as ‘phage’ by PhaMer, we can further
check the value of proportion. If this value is very small,
the input contig is likely to be a prophage rather than
a phage. Users can filter the contigs according to their
needs conveniently. In the future, we will incorporate
prophage detection tools in our pipeline.

Like a majority of phage identification tools, PhaMer is
a binary classification model with the goal of distinguish-
ing phages from bacterial contigs, which can originate
from either chromosomes or plasmids. In our current
design and test, we have plasmid sequences in both the
training and test sequences. For example, some contigs
assembled from the mock metagenomic data are from
plasmids. Because the plasmid-originated sequences are
treated as ‘negative’ samples as the bacterial chromo-
somes, PhaMer does not distinguish them from chro-
mosomes. There are other tools available to distinguish
plasmids from the host genomes [49-51]. Users can run
those tools for downstream analysis.

Key Points

e Phage identification is a key step for novel phage discov-
ery in metagenomic data.

e We developed a phage identification tool named PhaMer
that employs the Transformer and protein-based tokens
to learn both the protein composition and their associa-
tions in phage sequences.

e Qur rigorous test of PhaMer on both simulated and
real sequencing data and the benchmark experiments
against five recently published tools show that PhaMer
is the most accurate phage identification tool.

Data Availability

All data and codes used for this study are available
online or upon request to the authors. The source
code of PhaMer is available via: https://github.com/
KennthShang/PhaMer.

Funding

This work was supported by City University of Hong
Kong (Project 9678241 and 7005453) and the Hong Kong
Innovation and Technology Commission (InnoHK Project
CIMDA).

References

1. McGrath S, van D. Bacteriophage: genetics and molecular biology.
Wymondham: Caister Academic Press, 2007.

2. ZhongZ-P, Tian F,Roux S, et al. Glacier ice archives nearly 15,000-
year-old microbes and phages. Microbiome 2021;9(1):1-23.

3. Nishimura Y, Watai H, Honda T, et al. Environmental viral
genomes shed new light on virus-host interactions in the ocean.
Msphere 2017;2(2):e00359-16.

4. Gregory AC, Zayed AA, Conceicdo-Neto N, et al. Marine
DNA viral macro-and microdiversity from pole to pole. Cell
2019;177(5):1109-23.

5. Azimi T, Mosadegh M, Nasiri MJ, et al. Phage therapy as a
renewed therapeutic approach to mycobacterial infections:
a comprehensive review. Infection and Drug Resistance 2019;
12:2943.

6. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy.
Bacteriophage 2011;1(2):111-4.

7. Lee S-E, Lee D-Y, Lee W-G, et al. Osong Public Health and
Research Perspectives. Osong Public Health and Research Perspec-
tives 2020;11(3):118-27.

8. Moon K, Kang I, Kim S, et al. Genomic and ecological study
of two distinctive freshwater bacteriophages infecting a Coma-
monadaceae bacterium. Sci Rep 2018;8(1):1-9.

9. Moon K, Jeon JH, Kang I, et al. Freshwater viral metagenome
reveals novel and functional phage-borne antibiotic resistance
genes. Microbiome 2020;8:1-15.

10. Moon K, Kim S, Kang I, et al. Viral metagenomes of Lake
Soyang, the largest freshwater lake in South Korea. Scientific Data
2020;7(1):1-6.

11. Santiago-Rodriguez TM, Hollister EB. Human virome and dis-
ease: high-throughput sequencing for virus discovery, identifi-
cation of phage-bacteria dysbiosis and development of thera-
peutic approaches with emphasis on the human gut. Viruses
2019;11(7):656.

12. Roux S, Pdez-Espino D, Chen I-MA, et al. IMG/VR v3: an
integrated ecological and evolutionary framework for inter-
rogating genomes of uncultivated viruses. Nucleic Acids Res
2020;49(D1):D764-75.

13. Edwards RA, McNair K, Faust K, et al. Computational approaches
to predict bacteriophage-host relationships. FEMS Microbiol Rev
2016;40(2):258-72.

14. Congyu L, Zhang Z, Cai Z, et al. Prokaryotic virus host predictor:
a Gaussian model for host prediction of prokaryotic viruses in
metagenomics. BMC Biol 2021;19(1):1-11.

15. Ho SFS, Millard AD, van Schaik W. Comprehensive benchmark-
ing of tools to identify phages in metagenomic shotgun sequenc-
ing data. bioRxiv 2021;1:1-30.

https://github.com/KennthShang/PhaMer
https://github.com/KennthShang/PhaMer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Roux S, Enault F, Hurwitz BL, et al. VirSorter: mining viral signal
from microbial genomic data. Peer] 2015;3:€985.

Jurtz VI, Villarroel J, Lund O, et al. MetaPhinder-identifying
bacteriophage sequences in metagenomic data sets. PLoS One
2016;11(9):e0163111.

Ren J, Ahlgren NA, Yang Young L, et al. VirFinder: a novel k-
mer based tool for identifying viral sequences from assembled
metagenomic data. Microbiome 2017;5(1):1-20.

Ren J, Song K, Deng C, et al. Identifying viruses from metage-
nomic data using deep learning. Quantitative Biology 2020;8:1-14.
Auslander N, Gussow AB, Benler S, et al. Seeker: alignment-
free identification of bacteriophage genomes by deep learning.
Nucleic Acids Res 2020;48(21):e121-1.

Fang Z, Tan J, Wu S, et al. PPR-Meta: a tool for identifying
phages and plasmids from metagenomic fragments using deep
learning. GigaScience 2019;8(6):giz066.

Yan Miao F, Liu TH, Liu Y. Virtifier: A deep learning-based
identifier for viral sequences from metagenomes. Bioinformatics
2021;38:1216-22.

Guo], Bolduc B, Zayed AA, et al. VirSorter2: a multi-classifier,
expert-guided approach to detect diverse DNA and RNA viruses.
Microbiome 2021;9(1):1-13.

Bolduc B, Jang HB, Doulcier G, et al. vConTACT: an iVirus tool to
classify double-stranded DNA viruses that infect Archaea and
Bacteria. Peer] 2017;5:3243.

Shang], Sun Y. Predicting the hosts of prokaryotic viruses using
GCN-based semi-supervised learning. BMC Biol 2021;19(1):1-15.
Buchfink B, Xie C, Huson DH. Fast and sensitive protein align-
ment using DIAMOND. Nat Methods 2015;12(1):59-60.

Nambiar A, Heflin M, Liu S, et al. (eds). Transforming the lan-
guage of life: Transformer neural networks for protein prediction
tasks. In: Proceedings of the 11th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics. New
York NY United States: Association for Computing Machinery,
2020, 1-8.

Wei D, Zhao X, Sun Y, et al. SecProCT: In Silico Prediction
of Human Secretory Proteins Based on Capsule Network and
Transformer. Int] Mol Sci 2021;22(16):9054.

Ma Y, Guo Z, Xia B, et al. Identification of antimicrobial pep-
tides from the human gut microbiome using deep learning. Nat
Biotechnol 2022;40:921-31.

Chaban Y, Lurz R, Brasiles S, et al. (eds). Structural rearrange-
ments in the phage head-to-tail interface during assembly and
infection. Proc Natl Acad Sci 2015;112(22):7009-14.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need.
In: Guyon I, Von Luxburg U, Bengio S, Wallach H, Fergus R,
Vishwanathan S, Garnett R (eds). Advances in Neural Information
Processing Systems. Long Beach, California, USA: Curran Asso-
ciates Inc., 2017, 5998-6008.

Devlin], Chang M-W, Lee K, et al. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv
preprint 2018;1:1-16.

Kitaev N, Kaiser %, Levskaya A. Reformer: The efficient
transformer. In: 8th International Conference on Learning Rep-

35.

36.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

PhaMer | 11

resentations(ICLR). Engineering and Technology organization,
2020.

Gonzalez-Tortuero E, Krishnamurthi R, Allison HE, et al. Compar-
ative analysis of gene prediction tools for viral genome annota-
tion. bioRxiv 2021;1:1-17.

Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm
for large-scale detection of protein families. Nucleic Acids Res
2002;30(7):1575-84.

Mikolov T, Sutskever I, Chen X, et al. Distributed representations
of words and phrases and their compositionality. In: Burges
CJ, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds).
Advances in neural information processing systems. Lake Tahoe,
Nevada, USA: Curran Associates, Inc., 2013, 3111-9.

. Cul P, Wang X, Pei J, et al. A survey on network embedding.

IEEE Transactions on Knowledge and Data Engineering 2018;31(5):
833-52.

He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition. In: Bajcsy R, Li F-F, Tuytelaars T (eds). Proceedings of
the IEEE conference on computer vision and pattern recognition. Las
Vegas, Nevada, USA: IEEE, 2016, 770-8.

Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint
2016;1:1-14.

Fritz A, Hofmann P, Majda S, et al. CAMISIM: simulat-
ing metagenomes and microbial communities. Microbiome
2019;7(1):1-12.

Nurk S, Meleshko D, Korobeynikov A, et al. metaSPAdes: a
new versatile metagenomic assembler. Genome Res 2017;27(5):
824-34.

Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of
metagenome assemblies. Bioinformatics 2016;32(7):1088-90.
Kleiner M, Thorson E, Sharp CE, et al. Assessing species biomass
contributions in microbial communities via metaproteomics.
Nat Commun 2017;8(1):1-14.

Baker DN, Langmead B. Dashing: fast and accurate genomic
distances with HyperLogLog. Genome Biol 2019;20(1):1-12.
Andrews S, et al. FastQC: a quality control tool for high through-
put sequence data. 2017;2010.

Martin M. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet journal 2011;17(1):10-2.
Song W, Sun H-X, Zhang C, et al. Prophage Hunter: an inte-
grative hunting tool for active prophages. Nucleic Acids Res
2019;47(W1):W74-80.

Fouts DE. Phage_Finder: automated identification and clas-
sification of prophage regions in complete bacterial genome
sequences. Nucleic Acids Res 2006;34(20):5839-51.

Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting
plasmid sequences in metagenomic data using genome signa-
tures. Nucleic Acids Res 2018;46(6):e35-5.

Antipov D, Raiko M, Lapidus A, et al. Plasmid detection and
assembly in genomic and metagenomic data sets. Genome Res
2019;29(6):961-8.

Andreopoulos WB, Geller AM, Lucke M, et al. Deeplasmid: Deep
learning accurately separates plasmids from bacterial chromo-
somes. Nucleic Acids Res 2022;50(3):e17-7.

	 Accurate identification of bacteriophages from metagenomic data using Transformer
	 Introduction
	 Methods
	 Results
	 Running time comparison
	 Discussion
	 Key Points
	 Data Availability
	 Funding

