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Original Article

Introduction

Diabetic retinopathy (DR) screening is considered one of the 
most cost-effective initiatives on diabetes care,1 fitting into 
the World Health Organization criteria for the screening of 
chronic disease; its importance in preventing blindness is 
well established.2 However, implementation of broad public 
health DR screening programs remains a substantial chal-
lenge where there are insufficient health care structure and 
resources in terms of funding, trained health care human 
resources, and facilities.3

Novel portable smartphone-based retinal cameras are 
readily available, low-cost, easy-to-use devices with vali-
dated sensitivity and specificity for DR screening; their 
implementation is feasible and realistic.4
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Abstract
Background: Portable retinal cameras and deep learning (DL) algorithms are novel tools adopted by diabetic retinopathy 
(DR) screening programs. Our objective is to evaluate the diagnostic accuracy of a DL algorithm and the performance of 
portable handheld retinal cameras in the detection of DR in a large and heterogenous type 2 diabetes population in a real-
world, high burden setting.

Method: Participants underwent fundus photographs of both eyes with a portable retinal camera (Phelcom Eyer). 
Classification of DR was performed by human reading and a DL algorithm (PhelcomNet), consisting of a convolutional neural 
network trained on a dataset of fundus images captured exclusively with the portable device; both methods were compared. 
We calculated the area under the curve (AUC), sensitivity, and specificity for more than mild DR.

Results: A total of 824 individuals with type 2 diabetes were enrolled at Itabuna Diabetes Campaign, a subset of 679 (82.4%) of 
whom could be fully assessed. The algorithm sensitivity/specificity was 97.8 % (95% CI 96.7-98.9)/61.4 % (95% CI 57.7-65.1); AUC 
was 0·89. All false negative cases were classified as moderate non-proliferative diabetic retinopathy (NPDR) by human grading.

Conclusions: The DL algorithm reached a good diagnostic accuracy for more than mild DR in a real-world, high burden 
setting. The performance of the handheld portable retinal camera was adequate, with over 80% of individuals presenting with 
images of sufficient quality. Portable devices and artificial intelligence tools may increase coverage of DR screening programs.
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Artificial intelligence (AI) systems for DR screening/
grading have the potential to increase further the accessibil-
ity of DR screening for people with diabetes and increase 
diagnostic accuracy, efficiency, productivity, reproducibility, 
and outcomes;5 a robust economic rationale has been found 
for the use of deep learning (DL) systems as assistive tools 
for DR screening.6 Such characteristics confer to AI systems 
a great relevance especially in low-income, underserved 
areas with insufficient access to ocular exams, as is the case 
of Itabuna, Northeast Brazil, where patients rely on the 
Itabuna Diabetes Campaign, a once-a-year initiative that 
offers DR screening, treatment, and counseling. Involving 
mass gatherings of patients and retina specialists, for most 
patients it was the sole opportunity for the annual eye exam. 
During the 2019 event, a strategy based on handheld portable 
cameras with an embedded AI algorithm compatible with 
telemedicine was evaluated; if successful, such a strategy 
could allow for a more dispersed, continuous screening inter-
vention that would not require mass gatherings.

The study aims to evaluate the diagnostic accuracy of a 
semiautomated strategy of DR screening with mobile hand-
held retinal cameras and an AI algorithm, using a manual 
grading as the independent reference standard, in a real-life, 
high burden setting in an area with scarce healthcare 
resources in Northeast Brazil.

Methods

Study Design, Population, and Setting

This retrospective study enrolled a convenience sample of indi-
viduals aged over 18 years old with a previous type 2 diabetes 
mellitus (T2DM) diagnosis who attended the Itabuna Diabetes 
Campaign, an event that took place on November 23, 2019 at 
the city of Itabuna, Bahia State, Northeast Brazil (Latitude 14o 
47’08’’ longitude 39º 16’49’’W). This annual event mobilizes a 
significant amount of the city’s inhabitants and involves diabe-
tes awareness, counseling, screening, and treatment of diabetes 
complications. The study protocol was approved by the ethics 
Committee of Federal University of São Paulo (# 1260/2015) 
and was conducted in compliance with the Declaration of 
Helsinki, following the institutional ethics committees. After 
signing informed consent, participants answered a question-
naire for demographic and self-reported clinical characteristics 
and underwent ocular imaging.

Imaging

Smartphone-based hand-held devices (Eyer, Phelcom 
Technologies, São Carlos, Brazil) were used for fundus pho-
tography and image acquisition: two images of the posterior 
segment—one centered on macula and another disc centered 
(45° field of view)—were captured for each eye, after mydri-
asis induced by 1% tropicamide eye-drops.7 Image acquisi-
tion was performed by a team of nine examiners, including 

medical students, with variable degrees of previous experi-
ence in this kind of procedure.

Image Grading

Remote image reading was performed at EyerCloud platform 
(Phelcom Technologies, São Carlos, Brazil) by a single retinal 
specialist (FKM) after anonymization. The photographs were 
evaluated for quality, regarding transparence of the media, 
focus, and image boundaries, and classified as gradable or 
ungradable images.7 The lack of images with representative 
fields was considered as protocol failure. Subsequently, DR 
and maculopathy classification was manually determined from 
fundus photographs for those individuals with gradable images. 
Classification of DR was given per individual, considering the 
most affected eye, according to a strict standardized protocol 
(Table 1)8; apparently present macular oedema was defined as 
apparent retinal thickening or hard exudates in posterior pole.9 
For analysis, classification grades were combined into no or 
mild non-proliferative DR (NPDR) versus moderate NPDR, 
severe NPDR, proliferative DR, or apparently present macular 
oedema (more than mild DR, mtmDR) in at least one eye. 
Vision-threatening DR (vtDR) was considered as the presence 
of severe NPDR, proliferative DR, or apparently present macu-
lar oedema in at least one eye.9 Individuals with images of 
insufficient quality were excluded from analysis, except cases 
when one gradable eye was classified as vTDR. No informa-
tion other than ocular images was available for the reader.

Automated Detection of DR

Images from 824 individuals, totalizing 3,255 color images, 
were graded by a DL–enhanced method (PhelcomNet), a 
modified version of the convolutional neural network (CNN) 
Xception,10 with different input and output parameters but 
the same intermediate convolutional layers. The input was 
changed to receive images of size 699 × 699 × 3 RGB, and 
two fully connected layers of 2100 neurons were added at the 
top. Finally, two neurons with softmax activation classified 
the network input according to class. Softmax normalized 
the respective neuron input values, creating a probabilistic 
distribution in which the sum will be 1. Therefore, the neuron 
with the highest value identified the class to which the evalu-
ated image belongs.

The PhelcomNet prediction score was defined as x, cor-
responding to the interval between 0 and 1, which indicates 
the likelihood of DR. In contrast to the reference standard, 
the device puts both no DR and mild DR into one grade; all 
the other levels are considered more than mild DR. Since 
there are up to four images per individual, each of the images 
has a score indicating a probability of retinal alteration. In 
order to obtain a single score for each individual considering 
all outputs, we used a linear combination y of each prediction 
for image x1, x2, x3, x4ordered in descending order—x1 being 
the highest and x4 being the lowest score. In this case, four 
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linear combinations were employed, depending on the num-
ber of images per individual and defined as:
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The inspiration for these linear combinations is that a larger 
weight for predictions with a higher probability makes it more 
significant than the others, since fundus images with higher DR 
evidence tend to be more important on human assessment.

The PhelcomNet went through a training process that 
evaluated each image individually, progressively adjusting 
its internal parameters values to obtain an output from the 
softmax layer closest to the class to which the image belongs. 
For the algorithm training, a dataset of 10,569 fundus images 
captured between 2019 and 2020, exclusively using the 
Phelcom Eyer device (resolution 1600 × 1600 × 3 RGB) 
was used. For validation, 20% of these images were used to 
periodically evaluate the performance of the network. Images 
were separated into two classes: those containing only 
images from normal eyes (Class 0), and those containing 
images with retinal alterations (Class 1).

To add more diversity to the data, transformations were 
applied to images before CNN evaluation, a technique known 
as data augmentation. Rotation, width and height shift, zoom, 
and brightness values   were randomly applied.

GradCam Heatmap

In order to visualize the location of the most important regions 
obtained by CNN, as a means to discriminate between classes, 

the Gradient-Based Class Activation Map (GradCam) was 
used11; it generates a heat map with the values obtained on the 
last convolutional layer (Figure 1). The training set was split 
between Classes 0 and 1, rendering the lesions as the most 
important discriminatory region for classes to be differenti-
ated from each other; this is notably highlighted on the heat 
map. The equation to obtain the weights of importance of a 
neuron is described elsewhere.11

Statistical Analysis

Data were collected in MS Excel 2010 files (Microsoft 
Corporation, Redmond, WA, USA). Statistical analyses were 
performed using SPSS 19.0 for Windows (SPSS Inc., 
Chicago, IL, USA). Individual’s characteristics and quantita-
tive variables are presented in terms of mean and standard 
deviation (SD). A paired two-tailed Student t test was used to 
compare continuous clinical variables between the two 
groups. Fisher’s exact or chi-square tests were used for 
unpaired variables. The 5% level of significance was used. 
Sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV), and their 95% confidence 
intervals (CIs), were calculated for the device outputs with no 
or mild DR and mtmDR, compared with the corresponding 
reference standard classifications9; comparison was made 
against human reading as the ground-truth. The 0.75 thresh-
old was chosen as the operating point (see Supplementary 
Material). Diagnostic accuracy is reported according to the 
Standards for Reporting of Diagnostic Accuracy Studies 
(STARD).12

Results

Nine hundred and forty individuals aged over 18 years old 
with a previous T2DM diagnosis were assessed. Average age 

Table 1. Diabetic Retinopathy Severity Levels and Distribution 
Among Patients.

Diabetic retinopathy 
severity level

Distribution 
(%) Lesions

Absent 62.7 No alterations
Mild NPDR 11.0 At least one hemorrhage or 

microaneurysm
Moderate NPDR 10.0 Four or more hemorrhages in only 

one hemi-fielda

Severe NPDR  5.1 Any of the following:
-  Four or more hemorrhages in the 

superior and inferior hemi-fields
- Venous beading
-  Intraretinal microvascular 

abnormalities (IRMA)
Proliferative diabetic 

retinopathy
10.6 Any of the following:

- Active neovessels
- Vitreous hemorrhage

Abbreviation: NPDR, non-proliferative diabetic retinopathy.
aSuperior and inferior hemi-fields separated by the line passing through 
the center of the macula and the optic disc.

Figure 1. Example of heatmap visualization using gradient 
method. (a) Color fundus photograph depicting hard exudates 
and microaneurysms in the macular region, suggesting the 
possibility of diabetic macular oedema. (b) Overlay with the 
GradCam heatmap visualization can aid in making a diagnosis 
as the modifications are flagged in a color scale, from blue (low 
importance) to red (high importance).
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Analyzed: 
824 pa�ents with available 

images  

679 pa�ents with images gradable by 
both specialist and algorithm 

145 
Ungradable by specialist

Human reading 
mtmDR nega�ve 

495 

Enrolled: 
940 diabetes pa�ents  

Human reading 
mtmDR posi�ve 

184 

AI output  
mtmDR present: 191 
mtmDR absent: 304 

AI output  
mtmDR present: 180 

mtmDR absent: 4 

Figure 2. Waterfall diagram. Standards for Reporting of Diagnostic Accuracy Studies (STARD) diagram for the algorithm mtmDR 
output. mtmDR, more than mild diabetic retinopathy.

was 60.8 + 11.4 years, and diabetes duration was 10.4 + 8.7 
years; the majority of participants were women (64.9%). Use 
of insulin was reported in 25.8% of individuals, systemic 
blood hypertension was present in 68.4%, and smoking habit 
was present in 48.4%. The vast majority of participants relied 
on the public health system (94.1%); most individuals were 
illiterate or had incomplete primary education (54.4%).

Digital fundus photography images were obtained for 
both eyes of 824 individuals, 145 of whom (17.6%) could 
not be graded by the specialist reader due to insufficient 
quality; age (P < .001) and diabetes duration (P = .001) 
were inversely associated with gradeability. The remaining 
679 individuals had DR classified as follows: absent 426 
(62.7%), mild NPDR 75 (11.0%), moderate NPDR 71 
(10.0%), severe NPDR 35 (5.1%), and proliferative DR 72 
(10.6%) (Table 1). Diabetic macular oedema was detected in 
25.4% of individuals. Among individuals with ungradable 
images as per the specialist reader, the algorithm gave an out-
put of insufficient quality for one participant. Hence, a total 
of 679 individuals had their images with sufficient quality 
for classification by both the specialist reader and the AI sys-
tem (Figure 2).

The sensitivity/specificity, per the human grading stan-
dard, for the device to detect mtmDR was 97.8% (95% CI 
96.7-98.9)/61.4% (95% CI 57.7-65.1). PPV and NPV for 
mtmDR were 48.5% (95% CI 44.75-52.27) and 98.7% (95% 
CI 97.85-99.55), respectively (Table 2). Diagnostic accuracy 
was 71.3% (95% CI 67.91-74.69). Area under the receiver 
operating characteristic (ROC) curve was 0.89 (Figure 3).

All cases of false negative or positive exams were indi-
vidually reviewed. There were four false negative exams for 
the algorithm output according to the human grading refer-
ence standard. All of them were classified as moderate NPDR 
in the most affected eye, with two individuals having appar-
ently present macular oedema.

Discussion

The results show that a portable smartphone-based retinal 
camera with an AI algorithm achieved a good diagnostic 
accuracy for detecting mtmDR, compared to an independent 
reference standard, in a high burden setting. A review of false 
negatives did not reveal any case of severe NPDR or prolif-
erative DR. We believe that high sensitivity and the setting of 
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mtmDR as the cutoff point allows safe use in a screening 
strategy (Figure 3); the sensitivity reached by the current 
algorithm compares well with previous reports.4,13,14

Implementation and maintenance of DR screening pro-
grams worldwide are challenged by financial and workforce 
constraints;6 under-resourced health systems, particularly in 
low- to middle-income countries that face severe worker and 
infrastructure shortages,15,16 need rational and cost-effective 
strategies to deal with the increasing demand brought by 
growing global prevalence of diabetes mellitus and to over-
come social and economic barriers; telemedicine and AI 
have been established as successful and cost-effective strate-
gies for DR screening,6,17 helping increase program coverage 
and assisting in the detection of vtDR.15

The high sensitivity found in the present study also allows 
for a semiautomated strategy, with algorithmic assistance 
increasing efficiency of non-specialist clinicians to diagnose 
at scale and reducing the workload of the specialist in a high 
burden setting, as it directs attention to concerning features 
consistently across large data sets, for example, through 
heatmaps (Figure 1).18 Interestingly, the current algorithm 

comes embedded in the handheld device and works offline, 
which allows for a potential point-of-care DR detection.

The algorithm specificity was somewhat lower than pre-
viously reported, 4,13,14 and a review of false positives 
revealed mainly fundus pigment changes or image artifacts 
flagged as pathological changes by the algorithm (Figure 4); 
such an outcome brings insights between the differences of a 
deep neuronal network and biological intelligence, the for-
mer resulting from a feed-forward approach and the latter 
being characterized by context-sensitive checking.19

Adequate image quality is a major factor upon which the 
success of the screening strategy is dependent,20 and the 
quality of images obtained with portable devices relies heav-
ily on the training of the operator,21 among other variables. 
Handheld portable retinal cameras are becoming increas-
ingly popular because of its lower cost in comparison with 
traditional tabletop retinal cameras, and have been shown to 
help increase access to DR screening.22-24 In the present 
study, the team responsible for image acquisition was heter-
ogenous and composed of fully trained members as well as 
volunteers with no previous experience; there was a high 
flow of individuals due to the dynamics of the Itabuna 
Diabetes Campaign, a high-burden setting with more than 
900 individuals in a period of six hours. Nevertheless, in the 
present study, the overall ungradability rate of 17.6% for the 
specialist reading compares favorably with a recent experi-
ence in rural India of 34%.25 Variables related to the indi-
vidual profile also have influence on image quality, namely 
age, diabetes duration, poor collaboration, poor mydriasis 
and media opacities, especially cataracts:26 gradeability was 
inversely associated with age or diabetes duration.

Individuals enrolled in the present study adequately repre-
sent the population with T2DM treated in primary health care, 
characterized by the predominance of the elderly, mostly 
women and diabetes duration over 10 years. Arterial hyper-
tension (68.4%) was the most prevalent comorbidity associ-
ated with T2DM, but smoking habit (48.4%) was reported at 
a higher rate than in previous reports.27 The relatively high 
rate of apparently present diabetic macular oedema may 
reflect the low level of healthcare access in the region: Brazil 
contains the fifth largest population of patients with diabetes 
worldwide,28 and data from a Brazilian multicenter study 

Table 2. Confusion Matrix for Reference Standard According to Human Grading and Device Output; Sensitivity, Specificity, and 
Predictive Values of the Algorithm.

Device output

Human reference standard mtmDR Not mtmDR Total Sensitivity, specificity

mtmDR 180 4 184 97.8% sensitivity
Not mtmDR 191 304 495 61.4% specificity
All 371 308 679  
Predictive value 48.5% PPV 98.7% NPV  

Abbreviations: mtmDR, more than mild diabetic retinopathy; NPV, negative predictive value; PPV, positive predictive value.

Figure 3. Receiver operating characteristic (ROC) curve of 
the artificial intelligence device for detection of more than mild 
diabetic retinopathy (mtmDR). Area under the curve = 0.89.
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indicate that less than half of T2DM patients followed at ref-
erence centers reached the glycemic goal.27 In its Northeast 
region, access is low to both public healthcare and educa-
tion,27,29 and the region presented the higher mortality rate 
due to diabetes in the country, possible due to lack of access 
to healthcare, according to a study on the burden of T2DM in 
Brazil.30 Data on other diabetes complications are scarce in 
the region, but the reported prevalence of diabetic foot dis-
ease, foot ulcers, and amputation in a previous edition of the 
Itabuna Diabetes Campaign was 20.6%, 5.8%, and 1.0%, 
respectively;31 a study performed in a Northeastern Brazilian 
capital revealed that the most frequent cause of end-stage 
renal disease was diabetes.32 Most individuals in our sample 
relied exclusively on the public health system (94.1%), were 
illiterate, or had incomplete primary education (54.4%). Due 
to the lack of a standardized DR screening protocol in the 
Brazilian public health system, as an effort to raise access to 
DR screening and mitigate diabetic blindness, some initia-
tives based on volunteer work have emerged, and the Itabuna 
Diabetes Campaign is one successful example; besides diabe-
tes complications treatment and prevention, it helps raise dia-
betes awareness. Its model, which relies on the retina status as 
a biomarker of other diabetes complications, was replicated 
in all five regions of Brazil: during November 2019, Diabetes 
Campaigns occurred in 24 cities distributed throughout 15 
Brazilian states, in commemoration of the month of diabetes 
awareness and prevention, as established by the International 
Diabetes Federation33; however, with the COVID-19 pan-
demic, an alternative to massive gatherings is needed.34 The 
current strategy presented herein offers an alternative suitable 
for this new circumstance, with telemedicine allowing a more 
dispersed, continuous screening action that does not rely on 
the presence of specialists, which are scarce in underserved 
areas; additionally, portable cameras may be operated outside 
the clinic, even outdoors, rendering this strategy adequate 
during times of social distancing. A model based on semiau-
tomated screening with mobile units, portable devices, and AI 
in a primary care setting could contribute to address this novel 
challenge.

This study has important strengths, as it brings the results 
of a real-life situation of high burden DR screening in an 
underserved region of Brazil and a system that involved por-
table retinal cameras and algorithmic analysis; to the best of 
our knowledge, this is the first report of such a strategy that 
could increase access of DR screening in a relevant and cost-
effective manner in the country that hosts the fifth most sig-
nificant population of patients with diabetes on the planet. Of 
note, such a strategy has already been successfully used in 
2020, allowing the first major DR screening initiative after 
the pandemic.

Our study has several limitations, the most notable of 
which is that human grading was performed by only one spe-
cialist, a potential source of bias. Nevertheless, we believe 
that the goal of evaluating the potential of AI as an assistive 
tool for DR screening in a high-burden setting was accom-
plished; our conclusions point to the relevant role of technol-
ogy in increasing access to quality healthcare. Additionally, 
cataracts were not documented or classified systematically, 
raising concerns on the extent of their influence on grade-
ability of retinal images. Furthermore, diabetic maculopathy 
was not evaluated with gold standard methods; instead, its 
presence was inferred in non-stereoscopic images. The rela-
tively high rate of apparently present diabetic macular 
oedema found in our sample may be related to the methodol-
ogy; it may also have been the result of overcall. Finally, the 
lack of comprehensive clinical and laboratory data is also a 
limitation of the current study.

Conclusion

In conclusion, the present study shows the feasibility and 
presents favorable results of a strategy based on retinal 
images acquired with low-cost, portable devices and auto-
mated algorithmic analysis for DR screening in a high bur-
den setting. Such features, combined with telemedicine, may 
constitute a cost-effective model for middle- to low-income 
countries where there is insufficient access to ocular health-
care, in a sustainable, continuous manner, as opposed to epi-
sodic screening events. The high sensitivity achieved with 
the algorithm offers the possibility of point-of-care triage. 
Other challenges remain, such as establishing and complying 
with the legal and regulatory framework related to algorithm 
analysis in each healthcare environment. Additionally, DR 
screening should be envisioned as a part of promoting diabe-
tes awareness, education, and optimizing clinical control; 
finally, as postulated decades ago, screening should only be 
offered as long as the health system can provide proper treat-
ment to all detected cases.
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AI, Artificial intelligence; AUC, area under the curve; CI, confi-
dence interval; CNN, convolutional neural network; DL, deep 
learning; DR, diabetic retinopathy; FAPESP, São Paulo Research 
Foundation; GradCam, Gradient-Based Class Activation Map; 

Figure 4. Example of a false positive case. (a) Color fundus 
photograph depicting inferior pigmentary change. (b) Overlay 
with the GradCam heatmap; the pigmentary alteration is flagged 
by the algorithm, leading to a false positive output.
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mtmDR, more than mild DR; NPDR, non proliferative diabetic 
retinopathy; NPV, negative predictive value; PPV, positive predic-
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threatening DR.
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