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a b s t r a c t

In this study, we examine the asymmetric efficiency of cryptocurrencies using 1-
hour data of Bitcoin, Ethereum, Litecoin, and Ripple. In doing so, we utilize the
asymmetric multifractal detrended fluctuation analysis (MF-DFA). We find significant
asymmetric multifractality in the price of cryptocurrencies and that upward trends
exhibit stronger multifractality than downward trends. Using the time-varying deficiency
measure, we show that the COVID-19 outbreak adversely affected the efficiency of the
four cryptocurrencies, given a substantial increase in the levels of inefficiency during the
COVID-19 period. Bitcoin and Ethereum are the hardest hit, and at the same time, these
two largest cryptocurrencies recovered faster at the end of March 2020 from their sharp
dip towards inefficiency. The findings confirm previous evidence that market efficiency
is time varying; also, unprecedented catastrophic events, such as the COVID-19 outbreak,
have adverse effects of on the efficiency of leading cryptocurrencies.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The market efficiency of cryptocurrencies has been a hotly debated research topic in academia over the past four years.
t has important implications for market participants and policymakers due to the emergence of cryptocurrencies as an
lternative to government-backed currencies and as a new digital investment vehicle. Several studies have been conducted
n the market efficiency of cryptocurrencies, but the academic literature has just started to reveal the shortcomings on
everal fronts. Firstly, previous studies generally consider the largest cryptocurrency, Bitcoin, and provide inconclusive
esults that switch between overall inefficiency [1–4] and efficiency during some periods (e.g., [5–8]).1 Secondly, leading
ltcoins such as Ethereum, Ripple, and Litecoin,2 show less evidence of market efficiency. Yet the scarce evidence is quite
ixed, indicating that a few leading cryptocurrencies are gaining efficiency with time [8,10,11]. For example, using 1-
in high-frequency data, Drozdz et al. [10] indicate that ‘‘the Bitcoin market, and possibly other cryptocurrencies, carry
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1 Drozdz et al. [9] point to the dominance of Bitcoin in the cryptocurrency markets without ignoring the importance of other leading

cryptocurrencies such as Ethereum and Ripple.
2 Those altcoins mostly borrow their blockchain technology from Bitcoin. They compete with Bitcoin and are part of the digital investment vehicle.
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oncrete potential of imminently becoming a regular market’’. Thirdly, the efficiency of the cryptocurrency market seems
o be unstable and subject to the impact of various events [8].3

However, there is a lack of evidence regarding the impact of unprecedented and catastrophic events, such as the COVID-
19 outbreak, on the efficiency of leading cryptocurrencies. In this paper, we address this research gap by examining the
effect of the COVID-19 on the efficiency of major cryptocurrencies with hourly price data. We use high-frequency data
because Zargar and Kumar [4] find that inefficiency is more likely to be detected in intraday data than daily data. We
utilize a distinct approach that involves the asymmetric multifractal detrended fluctuation analysis (MF-DFA) approach
of Kantelhardt et al. [12]. In general, the asymmetric MF-DFA is especially useful when the data series under study is
non-linear and multifractal in nature, and the market exhibits both up-trends and down-trends [13,14], i.e., bullish and
bearish market states. Both features are common in the cryptocurrency markets (e.g., [15–17]), suggesting the need to
treat the various market states differently while examining multifractality. Previous studies have shown that the degree
of multifractality can be affected by crisis periods such as the global financial crisis (GFC) of 2008/2009 [13]. For example,
by applying the multifractality approach, Rizvi and Arshad [18] indicate a deterioration in the efficiency of stock markets
during the GFC.

Our main examination is further motivated as follows. On the one hand, the COVID-19 outbreak has induced a chaotic
financial environment and triggered a global economic freeze that has led to a global recession. The risk shocks of
the COVID-19 outbreak spread around the globe like a tsunami. It pushed up economic policy uncertainty and implied
volatility to extremely high levels [19] and adversely affected financial markets.4 Under normal conditions, investors are
ssumed to be fully informed, behave rationally, and make investment decisions based on public information. But crisis
vents such as COVID-19 can induce market overreaction, therefore disturbing the decision processes of investors. Such
ehavioral biases can alter market efficiency. Previous studies on financial markets (e.g., equities) show that market crash
r crisis periods can result in market inefficiency. For example, Liao et al. [20] show that the level of stock market efficiency
as disturbed by financial crises such as the GFC.
On the other hand, unlike the equity and futures, the markets of cryptocurrencies are immature, have weak regulatory

rameworks, and less information disclosure. They involve a lot of speculative activities, evolve around anonymous
nd pseudonymous fundamentals, and are highly subject to psychological and sociological factors. Participants in the
ryptocurrency markets are generally young individuals with a low level of education, an animal spirit, and their
nformation is irregular. Therefore, the cryptocurrency markets are often criticized as highly risky. Furthermore, by far
here exists no unified framework or model to determine the fair value of a cryptocurrency. These malfunctions can be
agnified by catastrophic events, such as the COVID-19 outbreak. Such events can drive the cryptocurrency markets far
way from the weak-form efficiency and lead to the possibility of predicting future cryptocurrency returns based on past
nformation.

Compared to previous studies, our analysis can be related to Chu et al. [11] and Zargar and Kumar [4], both of which
onsider the Adaptive Market Hypothesis (AMH). The AMH extends the static view of market efficiency of Fama [21] by
rguing that efficiency evolves over time and depends on the market environment. Like Chu et al. [11] and Zargar and
umar [4], we also use a data frequency higher than daily (i.e., hourly). Nevertheless, our methodological and theoretical
rameworks are different. Our focus is how the COVID-19 affects the market efficiency of a larger set of cryptocurrencies,
ncluding Bitcoin, Ethereum, Litecoin, and Ripple. In contrast, Zargar and Kumar [4] only examine Bitcoin and Chu et al.
11] on Bitcoin and Ethereum. Given the complexity of the cryptocurrency markets as reflected by the evidence of non-
inearity and asymmetric multifractality [16,17], the asymmetric MF-DFA approach emerges as a suitable approach to
tudy the market efficiency of leading cryptocurrencies in light of the COVID-19.5
Our current analysis offers several academic contributions. Firstly, our sample period covers the COVID-19 outbreak,6

uring which regular economic activities froze, market uncertainties spiked, and financial markets collapsed. Thus, we
ugment the literature on the effects of this unprecedented catastrophic event on financial markets [19,25,26] and
ryptocurrency markets [27,28]. We confirm previous evidence that cryptocurrency market efficiency is not stable and
aries with time [8,11]. Secondly, we apply the asymmetric MF-DFA approach to test the time-varying efficiency of
eading cryptocurrencies. To the best of our knowledge, we are the first to provide evidence on the effect of the COVID-19
andemic on the market efficiency of leading cryptocurrencies. Our analysis represents a nice extension to studies that
xamine market efficiency using statistical tests such as the serial correlation tests, runs test, variance ratio tests, and

3 For example, forking has been showed its ability to significantly decrease the level of efficiency in the cryptocurrency markets. Furthermore,
Chu et al. [11] study the markets of Bitcoin and Ethereum and show the presence of a time-varying efficiency.
4 The US equity indices declined by more than 30% during the period of February 19 to March 23, 2020. Crude oil prices declined by more than

60% during the period of January 1 to March 23, 2020. During the same period, the Bitcoin price declined by 19%.
5 The appeal and power of the asymmetric MF-DFA in studying market efficiency is well documented (e.g., [14,22]).
6 The first case of COVID-19 was reported in China on December 16, 2019 by the Wuhan Centres for Disease Prevention & Control. Since the

number of reported cases increased dramatically, Wuhan decided to lock down the whole city since January 23, 2020, and other provinces soon
took a similar measure. On April 8, the lockdown in Wuhan was lifted. Meanwhile, developed economies such as Italy, Spain, UK, and the US have
reported outbreaks consecutively, which led the WHO to declare that the outbreak ‘‘a global pandemic’’. Undoubtedly, the travel bans and business
shutdown brought the global economy to a standstill and caused the financial market to panic as the confirmed cases surged [23]. The pandemic
even caused the stocks whose firms or brand names containing ‘‘corona’’ to drop sharply in the price, even if these stocks had no bearing with the
Chinese stock market before the pandemic [24].
2
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nit root tests. Thirdly, we consider hourly rather than daily data. This choice is motivated by Zargar and Kumar [4],
hich highlight the differences in the efficiency results between daily and higher frequency data. Last, we extend related
tudies of symmetric multifractality (Bariviera, 2017; [29]) by differentiating upward and downward trends, and examine
he sources of asymmetric multifractality regarding the long-range correlations and fat-tail distribution.

Although no two crises are alike, the examination of cryptocurrency market efficiency during the COVID-19 outbreak
emains insightful and informative. It helps us draw lessons and might be useful in mitigating the adverse effects of
imilar events in the future. Furthermore, it helps better understands the efficiency of the immature and unregulated
ryptocurrency markets. With hourly data and advanced models such as the asymmetric MF-DFA, we can also learn
he behaviors of crypto-traders during the COVID-19 outbreak, which might provide informative indications for crisis
anagement.
Our main results show strong evidence of inefficiency in the cryptocurrency markets, which seems to vary with time

nd strongly emerge during the COVID-19 pandemic. Among the four cryptocurrencies we examine, Bitcoin and Ethereum
the two largest cryptocurrencies – are the hardest hit during the outbreak. Meanwhile, they recovered faster than

itecoin and Ripple: at the end of March 2020, they restored efficiency from their sharp dip towards inefficiency.
The rest of the paper is given as follows. Section 2 describes the asymmetric MF-DFA approach. Section 3 presents the

ataset and then discusses the empirical results. Section 4 concludes.

. Asymmetric MF-DFA approach

The weak-from Efficient Market Hypothesis (EMH) implies that: if the market is efficient, then the price follows a
artingale, of which a random walk is a special form. In many earlier studies on the US stock market, serial correlation,
rice reversal, and long-term dependence are found to exist in the prices, which run counter to the EMH [30,31]. These
tudies and some follow-up research in market efficiency rely on the existence of an equilibrium pricing relation. However,
uring a market turmoil—for example, the 2007/08 financial crisis and the recent outbreak of COVID-19—an equilibrium
s difficult to define.

As an alternative to the EMH, Peters [32] proposed the fractal market hypothesis (FMH). According to Weron andWeron
33] and Onali and Goddard [34], the main ideas of FMH are as follows. First, there are short-term, medium-term, and
ong-term investors in the market, and they have different valuations for the information flow. For example, long-term
nvestors focus more on the long-term performance, rather than the short-term fluctuations, of a stock. Second, when
here is ample liquidity from the investors, the market is stable; otherwise, when there is a shortage of liquidity, market
nstability ensues. Following the FMH, if both the long- and short-term investors start to focus on the current interim
luctuations of the market, the market equilibrium breaks down.

Since investors with different investment horizons interact with each other, they should behave similarly if we scale the
ime horizon appropriately. As a result, asset prices should exhibit ‘‘self-affinity’’ or ‘‘self-similarity’’ in the same market
tate [35]. Empirically, many time series exhibit multifractality, that is, they behave similarly in normal times or during
arket turmoil, respectively, but not so across each regime [22,36]. There are two sources of this multifractality. First,

he small and large fluctuations in a time series can be persistently correlated. Second, the distribution of the fluctuations
ay have fat tails. The multifractality of series can also be asymmetric: the magnitude of the multifractality differ in bull
nd bear markets, and both the two sources are able to generate such asymmetry [37].
To analyze the multifractality of the leading cryptocurrencies, we use the multifractal detrended fluctuation analysis

MF-DFA) proposed by Kantelhardt et al. [12].7 Roughly put, MF-DFA looks at the case where different series share
imilarities on multiple dimensions after proper scaling. In general, MF-DFA is widely used to assess the long-memory
roperty of a financial time series.
To conduct the MF-DFA, we apply the 5-step procedure of Kantelhardt et al. [12]. Denote our time series as {x (t) , t =

, . . . , T }, where T is the length of our sample horizon; let x be the (sample) mean of {x (t)}. To account for the asymmetric
multifractality in a series – that is, the positive and negative domain of a series may behave differently – we follow
Benbachir and Alaoui [38] and Shahzad et al. [14] to use the asymmetric version of MF-DFA.

The first step is to calculate the ‘‘profile’’ of the time series {x (t)}. We abstract the mean of {x (t)}, i.e. x, from each
x (t), and compute the cumulative sum from period 1 up to a period j

y (j) =

j∑
t=1

[x (t) − x] , j = 1, . . . , T (1)

The profile, in fact, is the discretized version of integration with respect to time t .
The second step is to divide the profile y (j) into a series of nonoverlapping segments (or windows). Each segment has

a length of τ , so the total number of segments is Nτ = int (T/τ), where the function int (·) denotes the integer part of
T/τ . However, as is the usual case, T/τ may have a decimal part. If we discard them from the Nτ segments, it may mean
nontrivial sample attrition. As a result, we divide the times series twice: one from period 1 to T , which leaves out the last
T −Nτ × τ observations; the other from period T to 1, which leaves out the first T −Nτ × τ observations. This procedure

7 Kantelhardt et al. [12] extend the detrended fluctuation analysis (DFA) to the multifractal case, which is known as the MF-DFA approach.
3
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elivers us 2Nτ segments in total, which we illustrate in the following graph. The two shaded segments mark the tail part
hat we leave out.

1 2 · · · Nτ Leave-out
y(1)

...

y(τ )

y(τ + 1)
...

y (2τ)

...

y (τ (Nτ − 1) + 1)
...

y(τNτ )

y (τNτ + 1)
...

y (T )

Leave-out 2Nτ · · · Nτ + 2 Nτ + 1
y (1)

...

y (T − τNτ )

y (T − τNτ + 1)
...

y (T − τ (Nτ − 1))
...

y (T − 2τ + 1)
...

y (T − τ)

y (T − τNτ + 1)
...

y (T )

In addition, we impose 5 ≤ τ ≤ N/4. This is because when we need to fit two linear models over the segments. If τ is
oo large, we would miss out on important characteristics of the segment; if τ is too small, then the fitting would have
poor finite sample property.

For the jth segment, let the kth element be sj,k, with k = 1, . . . , τ ; accordingly, the jth segment of the time series {x (t)}
is denoted as Sj =

{
sj,k, k = 1, . . . , τ

}
, j = 1, 2, . . . , 2Nτ . Similarly, for the jth segment of length τ , let the kth profile be

j,k; accordingly, the jth segment of the profile is written as Yj =
{
yj,k, k = 1, . . . , τ

}
, j = 1, 2, . . . , 2Nτ . That is,

sj,k =

{
x ((j − 1) τ + k) , j = 1, . . . ,Nτ

x (T − (j − Nτ ) τ + k) , j = Nτ + 1, . . . , 2Nτ

(2a)

yj,k =

{
y ((j − 1) τ + k) , j = 1, . . . ,Nτ

y (T − (j − Nτ ) τ + k) , j = Nτ + 1, . . . , 2Nτ

(2b)

or the jth segment of the time series, Sj =
{
sj,k, k = 1, . . . , τ

}
, and the corresponding profile Yj =

{
yj,k, k = 1, . . . , τ

}
,

it two linear models by ordinary least squares (OLS), respectively:

ŝj,k = αs
j + βs

j k (3a)

ŷj,k = α
y
j + β

y
j k (3b)

here ŝj,k is the fitted value for sj,k, and ŷj,k is the fitted value for yj,k; αs
j and α

y
j are the intercepts, while βs

j and β
y
j are

he slopes.
To capture the asymmetric multifractality, we distinguish between positive and negative βs

j s. If βs
j > 0, then over

egment j, x (t) is increasing in most of the cases, such that the profile will have a upward trend; by the same token, if
s
j < 0, then over segment j, x (t) in decreasing in most of the cases, such that the profile will have a downward trend.
For the jth segment (j = 1, 2, . . . , 2Nτ ), specify the variance function as follows:

Fj (τ ) =
1
τ

τ∑
k=1

(
yj,k − ŷj,k

)2 (4)

When x (t) have positive or negative trends over some segments, it might possess the asymmetric cross-correlation scaling
property. The original version of MF-DFA proposed by Kantelhardt et al. [12] features the average variance function (or
average fluctuation function):

Fq (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ 1
2Nτ

2Nτ∑
j=1

[
Fj (τ )

]q/2⎞⎠1/q

q ̸= 0

exp

⎛⎝ 1
2Nτ

2Nτ∑
j=1

ln
[
Fj (τ )

]1/2⎞⎠ q = 0

(5)

where q = 2 corresponds to the classic DFA procedure. To evaluate the degree of the asymmetry, we proceed to use two
directional variance functions:

F q
+ (τ ) =

⎛⎝ 1
M+

2Nτ∑
j=1

sign
(
βs
j

)
+ 1

2

[
Fj (τ )

] q
2

⎞⎠1/q

(6a)

F q
− (τ ) =

⎛⎝ 1
M−

2Nτ∑ −
(
sign

(
βs
j

)
− 1

)
2

[
Fj (τ )

] q
2

⎞⎠1/q

(6b)

j=1

4
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here for the sake of simplicity, we omit the case when q = 0; M+ and M− are the number of segments with positive
or negative trends, defined as follows

M+
=

2Nτ∑
j=1

sign
(
βs
j

)
+ 1

2
(7a)

M−
=

2Nτ∑
j=1

−
(
sign

(
βs
j

)
− 1

)
2

(7b)

or Eqs. (6a) and (6b), we need to examine how different values of q affects the two-directional fluctuation functions. To
in down a value for q, we follow Kantelhardt et al. [12] and Shahzad et al. [14] to use a log–log plot, where the horizontal
xis is the log of the window length τ while the vertical axis is the log of Fq (τ ). If x(t) has long-memory, then we expect
hat a power-law scaling:

Fq (τ ) ∼ τH(q) (8)

here the function H(q) is the scaling exponent or the generalized Hurst exponent. When q = 2, it reduces to the Hurst
xponent. If x(t) is monofractal, then H(q) does not depend on the value of q. Recall a few cases with respect to the Hurst
xponent: (i) if 0 < H < 0.5, then x(t) is not persistent; (ii) if 0.5 < H < 1, x(t) exhibits persistence; (iii) if H = 0.5, then

x(t) follows a random motion, which is a sufficient yet not necessary condition for market efficiency.
There are two other measures of multifractality: one is the Rényi exponent—or the classic multifractal scaling exponent,

and the other is the Hölder spectrum—or the singularity spectrum f (α) of the Hölder exponent α. Both can be written
as a function of the generalized Hurst exponent. In fact, the relationship between the generalized Hurst exponent, H(q),
and the Rényi exponent R(q) is:

R (q) = qH (q) − 1 (9)

The generalized Hurst exponent relates to the Hölder exponent α and the Hölder spectrum f (α) via the Legendre
transform, which we calculate as:

α = H (q) + qH ′(q) (10a)

f (α) = q [α − H(q)] + 1 (10b)

where α measures the degree of singularity, and f (α) captures the Hausdorff dimension of the fractal subset.

3. Data and empirical results

3.1. Data

The data we use for the empirical analysis consists of high-frequency 1-h prices of four major cryptocurrencies: Bitcoin
(BTC), Ethereum (ETH), Litecoin (LTC), and Ripple (XRP). Our sampling period is from July 1, 2017 to April 1, 2020. The
availability of data determines the sample starting date. Compared with previous studies, our study focuses on a more
recent period that covers a catastrophic event: the outbreak of the novel coronavirus (COVID-19).

Notably, the market capitalization of the four selected cryptocurrencies constitutes almost 81% of the market value of
all cryptocurrencies. All the data is sourced from CryptoDataDownload.com on a 24-h basis. So, there are 24 prices each
day, thus yielding a total of 24,121 observations. The observations are matched by their date/time information, which is
timestamped at the UTC time.

The Bitcoin and its major counterparts have been regarded as a good hedge alongside gold. However, since they were
born in the post-crisis period, they have not weathered any real stress tests. Kristoufek [28], by computing the quantile
correlations of the Bitcoin with S&P500 index and with the VIX, found that Bitcoin has stronger corrections with the two
benchmarks, thus cannot be regarded as a safe-haven asset. Following this line of research, we examine further if the
efficiency of the cryptocurrency markets has decreased because of the COVID-19, and if the four cryptocurrencies bear
the same magnitude of efficiency loss.

3.2. Results of asymmetric MF-DFA

As Lee et al. [13] argued, this asymmetric multifractality approach is especially useful when the market exhibits both
up-trends and down-trends. Lee et al. [13] found that during the 2008/09 financial crisis, there is a significant increase
in the degree of multifractality for stock indices. Similarly, in line with Rizvi and Arshad [18], we expect a decrease in
efficiency in the cryptocurrency markets during the COVID-19 outbreak.

Fig. 1 is the log–log plot for four cryptocurrencies, BTC, ETH, LTC, and XRP. The horizontal axis is the log of time scale τ ,
while the vertical axis is the log of the average variance function F2 (τ ), both with a base of two (i.e., in log2(·)). The time
range, τ , takes values from 64 to 4096, indicating time scales between the short- and long-run. Results of asymmetric
5
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Fig. 1. Log–log plot of the asymmetric MF-DFA functions for BTC, ETH, LTC, and XRP. Note: the y axis represents log2 (F2 (τ )) while the x axis
represents log2 (τ ), where τ is the time scale.

MF-DFA functions F2 (τ ) versus the log2 (F2(τ )) show similar trajectories at multiple frequencies. The black dots in each
panel shows the overall case, the blue dots show the cases with upward trends, and the red dots show the cases with
downward trends.

The two groups of dots – red and blue – correspond to the downward and upward trends, respectively. As the two
log directional average variance functions (log2

(
F 2
−
(τ )

)
and log2

(
F 2
+
(τ )

)
) show, for BTC, LTC, and XRP, the asymmetry

becomes most evident for the last few units of the time scaleτ . The two directional average variance functions exhibit less
pronounced deviations over lower frequencies, but the magnitude of deviation increases when the time scale is between
2048 and 4096. Our findings in Fig. 1 complement the earlier findings of Al-Yahyaee et al. [29,39] that cryptocurrency
investors tend to pay more attention to persistence in the longer term, which results in evident asymmetric persistence
when the time scale becomes larger.

We proceed to measure the excess asymmetry by

Dfq(τ ) = log2
(
F+

q (τ )
)
− log2

(
F−

q (τ )
)

where the expressions for F+
q (τ ) and F−

q (τ ) are given in Eqs. (6a) and (6b), respectively.8 Again, if Dfq(τ ) is close to zero,
hen the multifractality is close to being symmetric. Otherwise, if Dfq(τ ) has a large positive value, then the cryptocurrency
arket behaves more differently in market upturns versus in market downturns, then the positive trends of x(t) generating
igher cross-correlation than the negative trends.
Fig. 2 shows the excess asymmetry in multifractality for BTC, ETH, LTC, and XRP. In the figure, we can see large excessive

symmetric multifractality for all four cryptocurrencies. This strong asymmetry provides a strong rationale for using the

8 By Eq. (8) we have Fq (τ ) ∼ τH(q) , which means Fq (τ ) = cq,τ · τH(q) . Here, cq,τ is a constant that might differ with each τ and q. If the
multifractality is symmetric, we would expect cq,τ and H (q) to be very close for positive and negative variance measures, such that Dfq(τ ) is close
to zero.
6
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Fig. 2. Excess asymmetry in multifractality. Note: The horizontal axis shows the time scale τ , measured in hours and ranges from 5 to T/4, where
T is the total length of hours in our sample. The vertical axis shows the difference between log2(F

+

2 (τ )) and log2(F
−

2 (τ )).

asymmetric MF-DFA approach. Among these four cryptocurrencies, LTC and XRP have a higher degree of asymmetry than
BTC and ETH when τ tilts towards larger time scales.

Recall that when a time series exhibit monofractality, the generalized Hurst exponent should not vary with q. So, to
further verify themultifractality of a time series, we check whether the three exponents changes as the value of q increases.
Specifically, we examine how the overall trend H(q), the upward trend H+(q), and downward trend H−(q) vary with q,
here q ranges from −4 to 4. The results of the three curves are shown in Fig. 3.
We can see that as q increases, all three measures—H(q), H+(q) and H−(q)—show a downward trend, which suggests

hat multifractality exists in the time series of all four cryptocurrencies of interest. Despite this common feature, there
re nontrivial differences in these series. For BTC and ETH, when q is small (i.e., small average fluctuations), all three
ultifractality measures take similar values; as q approaches 4, the deviation of H+(q) from H(q) is almost equal to the
eviation of H−(q) from H(q). But for LTC, when q = −4, H+(q) is smaller than H(q) and H−(q). Conversely, for XRP, when
= −4, H−(q) is larger than H(q) and H+(q). The magnitude of the Hurst exponents with respect to q = 4 suggests that

nvestors bring the market to the stability in the long-term for all four markets. From an economic/financial standpoint, our
indings can relate to the evidence provided by Al-Yahyaee et al. [29]. They find asymmetry in the relationship between
he inefficiency in cryptocurrency markets with high volatility and low levels of liquidity in the markets. Our result is also
onsistent with Bouoiyour and Selmi [27], who looked at the return of the Bitcoin price index (BPI) from January 1, 2018
o February 15, 2020. They found that when the time scale τ > 20, the generalized Hurst exponent is 0.6 at q = −5, which
lowly decreases to around 0.3 when qapproaches 5. Also, our results suggest that the inefficiency is more persistent with
maller q (small average fluctuations) and during downward periods (shown by the red line in each graph).
Fig. 4 shows the Hölder spectrum f (α) versus the Hölder exponent, α. Recall that well if a time series is monofractal,

hen f (α) would reduce to the Hurst exponent, such that α = H , and f (α) = 1. For all four cryptocurrencies, the Hölder

pectrum shows an inverted parabola shape. This inverse U-pattern, again, validates our previous results of asymmetric

7
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r

Fig. 3. The generalized Hurst exponents, H(q), H+(q), and H−(q) for the four cryptocurrencies at different levels of q. Note: The horizontal axis is q,
which ranges from −4 to 4; the vertical axis shows the values of H(q), H+(q), and H−(q), which are represented by the black, blue, and red curves,
espectively. If (i) 0 < H < 0.5, then the time series x(t) is not persistent; (ii) if 0.5 < H < 1, x(t) exhibits persistence; (iii) if H = 0.5, then x(t)
follows a random motion.

multifractality. For all four series, the range of α for the upward trend (the max minus the min value of α under the blue
curve) is larger than that for the downward trend (the max minus the min value of α under the red curve), which implies
that the upward trend has stronger multifractality than the downward trend. For our sample series, compared with LTC,
BTC and ETH, XRP exhibits the strongest asymmetric multifractality.

We continue to pin down the source of multifractality in the cryptocurrencies – either from long-range correlations
or from the fat-tail distributions – by applying two methods to each time series. The first treatment, which aimed to see
the contribution of long-range correlations, is called shuffling. That is, we randomly switch the order of the observations
and compare the multifractality measures of the original series versus the shuffled series. The second method is called
phase randomization, which aims to disrupt the non-linearities in the phases. That is, we move to the frequency domain
and apply the Fourier phase-randomization method to the series and call the phase-shuffled series as the ‘‘surrogate
series’’ [40]. We then compare the multifractality measures of the original series and the surrogate series. We denote the
measures of asymmetric scaling for original series, the shuffled series, and the surrogate series as ∆Horig

± , ∆Hshuf
± , and

∆Hsurr
±

.
For each measure, we compute the difference between the Hurst exponent for the upward trend H+(q) and the

downward trend H+(q), say ∆H± (q) = |H+ (q) − H−(q)|. If ∆H± (q) approaches zero, the time series x(t) is close to
being symmetric; otherwise, if ∆H± (q) increases with q, then the time series x(t) exhibits stronger asymmetry.

Fig. 5 plots the for the ∆H± (q) measure for the original series ∆Horig
± (in black), the shuffled series ∆Hshuf

± (in blue),
and the surrogated series ∆Hsurr

±
(in red). Again, the four cryptocurrencies behave differently. For BTC, the ∆H± (q) of the

original series is low, so there is little evidence that the asymmetric multifractality comes from the long-range correlations
or fat-tail distribution. For ETH, both the shuffled series and the surrogated series have a lower ∆H q than the original
± ( )

8
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Fig. 4. The multifractal spectra f (α) versus α where q ranges from −5 to 5.

series, which means the asymmetry comes both from long-range correlations and fat-tail distribution. For LTC, at q < 0
(small fluctuations), both the shuffled series and the surrogated series have a lower ∆H± (q) than the original series,
so the asymmetric multifractality comes from both long-range correlations and fat-tail distributions. At q > 0 (large
fluctuations), only the shuffled series is lower than the original series, so the asymmetric multifractality comes from
fat-tail distributions. For XRP, at all levels of q, both the shuffled series and the surrogated series have a lower ∆H± (q)
than the original series, implying that both long-range correlations and fat-tail distributions contribute to the asymmetric
multifractality.

Last, we examine the market efficiency of the four cryptocurrencies using the market deficiency measure (MDM)
proposed by Wang et al. [41]:

MDM =
1
2

(|H (−4) − 0.5| + |H (4) − 0.5|)

here we choose H (−4) to represent small fluctuations and H (4) to represent large fluctuations. If the MDM takes a
alue that is close to zero, we say that the market of a cryptocurrency is efficient; otherwise, if the MDM is greater than
ero, then the market of a cryptocurrency may be inefficient. Rizvi et al. [42] has used this MDM measure to rank the
fficiency of 22 markets. Shahzad et al. [14] also use this measure to study the stock market indices for clean energies.
Recall that our sample period includes the recent boom-and-bust cycles for cryptocurrency markets, including the

ecent COVID-19 pandemic. To capture the time-varying nature of the MDM and account for possible structural changes,
e calculate a rolling window deficiency measures based on a fixed window of 10,000 hourly observations and a step
ize of 24 h.
Fig. 6 is an illustration of the MDM for all four cryptocurrencies, where the black, blue, and red trajectories correspond

o the MDM measure for the overall trend, the upward, and the downward trend. The markets showed large upside
nefficiency than the downside, especially towards the end of the sample period showing the COVID-19 impact, where
he upward trend (the blue curve) rises above the downward trend (the red curve).
9
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Fig. 5. ∆H±(q)(q) of the original, shuffled, and surrogated series.

Overall, the results show similar patterns of inefficiency without underestimating the complexity and dynamics of
cryptocurrency market efficiency. Although the four cryptocurrencies show evidence of deteriorating efficiency during
the COVID-19 period, Bitcoin (BTC), and to a less extent Ethereum (ETH), moved away faster from inefficiency levels and
becomes much closer to efficiency levels. The inefficiency rises at the start of the rolling sample from November 2018
until April 2019. During this period, the prices of the cryptocurrencies fell but the connectedness among cryptocurrencies
increased [43,44]. After that, the four cryptocurrencies entered a period of relatively low inefficiency, until at the end of
our sample period. The drastic increase of inefficiency from March 2020 is related to the recent outbreak of the COVID-
19. The surge in MDM measure potentially provides evidence to the herding behavior in the cryptocurrency market. Our
results are partly consistent with previous evidence showing that the efficiency of the cryptocurrency markets is unstable
and subject to various events (e.g., [8]). Our findings are also somewhat in line with Gajardo et al. [15], who show that
Bitcoin does not behave like a typical commodity or currency.

4. Conclusion

The short history of Bitcoin and other leading cryptocurrencies do not offer researchers an opportunity to examine their
market efficiency during major catastrophic events on a scale similar to the COVID-19 outbreak. The latter represents an
unprecedented catastrophic event in contemporary economic history. It has frozen the global economy and disturbed the
financial markets, leading to a chaotic financial environment.

In this paper, the effect of the COVID-19 on the efficiency of four leading cryptocurrencies is examined via the
application of an asymmetric MF-DFA method. According to the empirical results, cryptocurrency price returns exhibit,
somewhat, a significant presence of long-range dependence that intensified during the COVID-19, pointing to inefficiency.
On a cryptocurrency-by-cryptocurrency basis, the results show that the COVID-19 outbreak adversely affected the
efficiency of leading cryptocurrencies, with Bitcoin and Ethereum being the hardest hit. At the same time, these two
largest cryptocurrencies recovered faster at the end of March 2020 from their sharp dip towards inefficiency.
10
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Fig. 6. Time-varying dynamics of market efficiency using MDM with H(−4) and H(4).

The results of multifractal spectra f (α) show that upward trends exhibit stronger multifractality than downward trends.
urthermore, Ripple (XRP) exhibits the strongest asymmetric multifractality compared with Bitcoin (BTC), Ethereum
ETH), and Litecoin (ETH). We also find that the source of the asymmetric multifractality is not the same for all
he cryptocurrencies under study. The asymmetric multifractality of Bitcoin (BTC) cannot be explained by long-range
orrelations or fat-tail distribution. The asymmetric multifractality of Ethereum (ETH) and Ripple (XRP) comes from both
ong-range correlations and fat-tail distributions. For Litecoin (LTC), the asymmetric multifractality of small fluctuations
omes from both long-range correlations and fat-tail distributions, but that of large fluctuations is more likely to come
rom fat-tail distributions.

This study extends our limited understanding of the adverse effects of the COVID-19 on cryptocurrency market
fficiency. The findings show that important amounts of market inefficiency can emerge in periods of a global health crisis.
ur findings are of concern to market participants who always chase abnormal returns in the immature, unstable, and
nregulated cryptocurrency markets. The presence of multifractality indicates that cryptocurrency prices do not reflect all
vailable information. The lack of efficiency implies exploitable trading opportunities and, thus, the possibility of earning
bnormal profits. In other words, evidence of asymmetric multifractality may be useful to portfolio management and
edging strategists [14]. Such evidence may also shed light on cryptocurrency volatility and market crash forecast.
Our findings are also of interest to governments and regulatory bodies that have been monitoring the development

f the cryptocurrency markets for financial stability. The future development of the cryptocurrency markets remains an
ppealing topic for future research. The cryptocurrency markets have evolved around anonymous and pseudonymous
undamentals. This market characteristic makes them less constrained by the regulatory criteria imposed on traditional
inancial markets. Will the market efficiency of leading cryptocurrencies improve in the post-COVID-19 period? Whether
he implementation of some regulations will make cryptocurrencies more efficient? We leave these topics for future
esearch.
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