Skip to main content
. 2022 Jul 19;60(9):2721–2736. doi: 10.1007/s11517-022-02619-8

Table 3.

Comparison of lung and lesion segmentation results on the test dataset

Model Lung
Dice (%) Hausdorff (mm) VOE (%) RVD (%) ASD (mm) RMSD (mm) Accuracy (%)
FCN 88.12 ±3.18 42.47 ±27.30  − 9.61 ±16.97  − 7.81 ±16.85 18.53 ±6.87 1.35 ±0.61 93.15 ±8.78
SegNet 95.47 ± 2.84 37.59 ±47.08  − 5.16 ±6.76  − 4.83 ±6.29 13.53 ±10.58 0.91 ±0.56 96.43 ±1.35
Li et al. [23] 95.85 ± 2.11 20.30 ±7.45 3.39 ±6.46  − 3.98 ±5.77 8.55 ±6.76 0.63 ±0.47 95.38 ±2.03
Wang et al. [42] 95.72 ± 2.26 20.55 ±8.11  − 5.15 ±3.82  − 4.85 ±3.55 9.61 ±7.98 0.79 ±0.60 96.06 ±0.35
Müller et al. [43] 95.96 ±1.92 10.09 ±2.74  − 5.07 ±6.47  − 4.75 ±6.29 4.75 ±6.28 0.34 ±0.35 95.15 ±2.36
H-DenseUNet 96.38 ±1.64 11.14 ±3.15 2.15 ±1.12 2.19 ±1.16 3.48 ±2.26 0.32 ±0.26 96.63 ±0.03
TSH-UNet 97.00 ±1.26 8.95 ±2.23  − 0.44 ±2.44  − 0.41 ±2.41 2.73 ±2.10 0.27 ±0.28 97.23 ±0.93
Model Lesion
Dice (%) Hausdorff (mm) VOE (%) RVD (%) ASD (mm) RMSD (mm) Accuracy (%)
FCN 73.00 ±7.86 23.67 ±8.64 29.71 ±25.11 40.14 ±36.03 11.25 ±0.60 0.71 ±0.40 64.48 ±12.52
SegNet 81.98 ±5.65 17.69 ±5.02 10.62 ±16.34 12.91 ±19.72 8.54 ±5.09 0.70 ±0.49 78.44 ±9.09
Li et al. [23] 84.88 ±2.55 17.90 ±6.69 10.71 ±10.95 12.04 ±12.52 7.92 ±4.26 0.63 ±0.38 80.84 ±5.74
Wang et al. [42] 84.44 ±2.75 18.28 ±5.89 13.19 ±9.57 14.71 ±11.56 7.19 ±4.19 0.58 ±0.39 79.44 ±5.35
Müller et al. [43] 88.65 ±3.25 10.54 ±2.72  − 6.16 ±8.71  − 5.62 ±8.32 3.97 ±1.56 0.31 ±0.18 83.41 ±5.17
H-DenseUNet 83.80 ±2.88 15.70 ±5.11 16.56 ±13.13 19.15 ±15.30 6.66 ±2.85 0.49 ±0.26 77.81 ±7.01
TSH-UNet 89.22 ±1.93 8.47 ±2.55 12.24 ±8.18 7.33 ±3.63 3.64 ±1.52 0.29 ±0.15 84.58 ±3.48