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Abstract 

Background:  The role of M0 macrophages and their related genes in the prognosis of hepatocellular carcinoma 
(HCC) remains poorly characterized.

Methods:  Multidimensional bioinformatic methods were used to construct a risk score model using M0 mac-
rophage-related genes (M0RGs).

Results:  Infiltration of M0 macrophages was significantly higher in HCC tissues than in normal liver tissues 
(P = 2.299e-07). Further analysis revealed 35 M0RGs that were associated with HCC prognosis; two M0RGs (OLA1 and 
ATIC) were constructed and validated as a prognostic signature for overall survival of patients with HCC. Survival analy-
sis revealed the positive relationship between the M0RG signature and unfavorable prognosis. Correlation analysis 
showed that this risk model had positive associations with clinicopathological characteristics, somatic gene muta-
tions, immune cell infiltration, immune checkpoint inhibitor targets, and efficacy of common drugs.

Conclusions:  The constructed M0RG-based risk model may be promising for the clinical prediction of prognoses and 
therapeutic responses in patients with HCC.
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Introduction
Hepatocellular carcinoma (HCC) ranks sixth in terms of 
incidence among all types of tumors worldwide and has a 
high mortality rate [1]. The 5-year survival rate of patients 
is only 5–7%, and the recurrence rate of HCC is up to 
60–70% [2]. HCC tumorigenesis is driven by intrinsic 
factors, such as mutations in liver parenchymal cells, and 
external factors, including interactions between tumor 
cells and surrounding stromal cells, immune cells, and 
noncellular components [3]. Tumor cells and adjacent 
immune cells, stromal cells, and the extracellular matrix 
constitute a complex and dynamic network of the tumor 
immune microenvironment (TIME). The components of 

the TIME interact to produce growth factors, cytokines, 
and chemokines that participate in immunosuppression, 
thereby promoting the development, recurrence, and 
metastasis of HCC cells [4, 5].

Various immune cells in the TIME, such as tumor-
associated macrophages (TAMs), tumor-associated 
neutrophils, tumor-infiltrating lymphocytes, regu-
latory T cells (Tregs), CD8+ cytotoxic T lympho-
cytes, and natural killer cells, are active players in 
HCC pathogenesis. TAMs, as a critical factor of 
tumor-related inflammation, can be polarized into 
disparate functional phenotypes, among which M1 
macrophages, which are induced by interferon alone or 
with lipopolysaccharide, and M2 macrophages, which 
are induced by IL-4 and IL-13, are the most studied 
subgroups. Classically activated macrophages with 
the M1 phenotype can stimulate antitumor immune 
responses by presenting antigens to adaptive immune 
cells, producing proinflammatory cytokines, and 

Open Access

*Correspondence:  84172332@qq.com

4 Department of Infectious Disease, Xiangya Hospital, Central South 
University, Changsha 410008, Hunan, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-022-09872-y&domain=pdf


Page 2 of 13Zhang et al. BMC Cancer          (2022) 22:791 

phagocytosing tumor cells [6–10]. TAMs polarized 
into the M2 phenotype can promote HCC progression 
by upregulating cytokine secretion and protein expres-
sion. Resting-state macrophages (M0), derived from 
the bone marrow, are usually considered precursors 
of polarized macrophages. The prevailing view is that 
both M1 and M2 macrophages are generated from M0, 
and M0 is only a resting state of macrophages, without 
a specific function before their polarization. However, 
a recent study on immunophenotyping of glioma-asso-
ciated macrophages versus matched blood monocytes, 
health donor monocytes, normal brain microglia, non-
polarized M0 macrophages, and polarized M1 and 
M2 macrophages has indicated that macrophages that 
infiltrate into glioma tissues maintain a continuum 
state between the M1- and M2-like phenotypes and 
resemble M0 macrophages [11]. Further analysis of 
glioma data from The Cancer Genome Atlas (TCGA) 
and the Chinese Glioma Genome Atlas databases con-
firmed that differentiation of M0-like macrophages, 
rather than M1 or M2 macrophages, is associated with 
a high-grade tumor and a poor prognosis in glioma 
[12]. These studies indicated the tumorigenic role of 
M0 macrophages.

However, cellular infiltration and molecular features of 
M0 macrophages and their association with clinicopatho-
logical characteristics of HCC have not been explored. 
Bioinformatics tools can facilitate the efficient predic-
tion of the composition of and changes in the TIME [13]. 
Therefore, in this study, we used bioinformatic tools to 
explore the clinical significance of M0 macrophages, 
association between the TIME and tumorigenesis, and 
the effects of immunotherapy and chemotherapy on 
HCC [14, 15]. This study may help advance our under-
standing of the role of M0 macrophages in HCC, and 
the constructed risk model may be promising for clinical 
prediction of the prognosis and therapeutic efficacy in 
patients with HCC.

Materials and methods
Data acquisition
The gene expression profiles and clinical parameters of 
patients with HCC were obtained from TCGA, Inter-
national Cancer Genome Consortium (ICGC) and GSE 
datasets. Somatic mutation and copy number variation 
(CNV) profiles were obtained from TCGA data portal 
(https://​portal.​gdc.​cancer.​gov/). Somatic mutation data 
were analyzed using “maftools” in the R package. Signifi-
cant amplifications or deletions of the copy number vari-
ant were detected using GISTIC 2.0 with a false discovery 
rate threshold of < 0.05. As the study used only publicly 

available data from TCGA, there was no requirement for 
an ethical approval.

Analysis of infiltrating immune cells in HCC
Data on infiltrating immune cells in HCC were obtained 
using CIBERSORT. Differences in levels of infiltrating 
immune cells between high- and low-risk HCC samples 
were examined using the Wilcoxon test. The expres-
sion of M0-related genes (M0RGs) was calculated using 
Pearson’s correlation analysis with |R|> 0.3 and P < 0.05. 
Gene ontology (GO) enrichment analysis was used to 
reveal the M0RGs-related biological functions in HCC.

Establishment of M0RG signatures
Cox analysis and LASSO regression analysis were per-
formed to establish M0RG signatures in TCGA dataset, 
and then, the results were verified in the ICGC dataset. 
The risk score was calculated using M0RG expression 
and coefficient values as follows: coefficient 1 × M0RG 
1 expression + coefficient 2 × M0RG 2 expres-
sion + coefficient 3 × M0RG 3 expression.

The best cutoff value derived from the receiver oper-
ating characteristic (ROC) curve was used to divide the 
patients with HCC into low-risk and high-risk groups 
(Figure S3). For survival analysis, Kaplan–Meier sur-
vival curves were constructed for both the low- and 
high-risk groups in both the cohorts using the R pack-
age “survival.” A two-sided log-rank test was used with 
P < 0.05 considered significant. The prognostic value 
of the M0RG signatures was examined using “sur-
vival.” Using the R package “survivalROC,” a survival 
ROC curve was constructed to verify the prognostic 
performance.

A nomogram was constructed using the risk score 
and other clinical parameters for each cohort. ROC 
curves were used to compare the prognostic value of 
risk scores with that of other clinical features using the 
“ROC” package in the R software 4.0.5.

Gene set enrichment analysis (GSEA)
Enrichment terms were analyzed in the entire TCGA 
cohort using the GSEA software version 4.1.0 (http://​
www.​gsea-​msigdb.​org/​gsea/​index.​jsp, Cambridge, MA, 
USA) to reveal M0RG-related pathways. The gene sets 
of “c2.cp.kegg.v7.4.symbols.gmt” were selected for 
GSEA. Significance was indicated by P < 0.05 and a false 
discovery rate of < 0.05.

Expression of risk M0RGs in immune cells
tSNE analysis was performed using web tools (http://​
hcc.​cancer-​pku.​cn/) to examine the expression of risk 
genes in immune cells in HCC.

https://portal.gdc.cancer.gov/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://hcc.cancer-pku.cn/
http://hcc.cancer-pku.cn/
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Efficacy analysis of immune checkpoint inhibitors (ICIs) 
in HCC
The correlations between known ICI targets (TIM-3, 
IDO1, CTLA4, PD-1, PD-L1, and PD-L2) and our sig-
nature were analyzed to explore the possible roles of 
M0RGs and the risk signature in ICI efficacy in HCC.

Evaluation of potential model significance in clinical 
treatment
To evaluate the potential significance of the model in 
the clinical treatment of HCC, we calculated the half-
maximal inhibitory concentrations (IC50s) of commonly 
used chemotherapeutic drugs (etoposide, A.443654, 
doxorubicin, gemcitabine, cisplatin, dasatinib, gefitinib, 
metformin, and rapamycin) using TCGA- liver hepato-
cellular carcinoma (LIHC) project dataset. The differ-
ences in the IC50 values between the high- and low-risk 
groups were evaluated using the Wilcoxon signed-
rank test, and the results are shown as box drawings 

obtained using the “pRRophetic” and “ggplot2” tools in 
the R software.

Statistical analysis
The Wilcoxon signed-rank test was used for analysis of 
correlation between M0RGs and clinical characteristics 
of patients with HCC. The correlations among M0RGs, 
immune cells, and ICIs were analyzed using Spearman’s 
correlation coefficient. Kaplan–Meier curves were used 
for survival analysis.

Results
M0RGs in HCC
First, infiltration of M0 macrophages was analyzed in 
HCC using TCGA dataset. As shown in Figure S1A, 
infiltration of M0 macrophages was significantly higher 
in HCC tissues than in normal liver tissues. The patients 
with HCC with high infiltration of M0 macrophages 

Fig. 1  M0 macrophages related genes in HCC. A and B, A correlation network involving the 35 prognosis-related M0RGs and M0 macrophages 
in the TCGA cohort. C and D, GO analyzed of the 35 M0RGs. M0RGs: M0 macrophages-related genes; TCGA: The Cancer Genome Atlas; Go: Gene 
Ontology.
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showed a poor overall survival (OS) (Figure S1B). Next, 
the relationships between infiltration of M0 macrophages 
and clinical characteristics of HCC were analyzed. The 
results showed that infiltration of M0 macrophages was 
associated with the survival status, stage, and T stage 
(Figure S1C).

Subsequently, we identified 99 M0RGs using Pearson’s 
analysis (Table S1), of which 35 M0RGs were associated 
with the prognosis of patients with HCC in both TCGA 
and ICGC datasets (Tables S2 and S3). The correlation 
network involving the 35 M0RGs and M0 macrophages 
in TCGA cohort is shown in Fig. 1A and B. GO analysis 
showed that the 35 M0RGs were enriched in DNA dam-
age and cell cycle-related signaling pathways (Fig. 1C and 
D). Figure S2 shows the CNVs and mutation statuses of 
the 35 M0RGs.

Establishment and validation of a M0RG prognostic 
signature for OS of patients with HCC
The LASSO Cox algorithm was used to identify the 
most robust prognostic genes among the 35 candi-
date genes (Fig.  2A), and multivariate Cox regression 
analysis was performed to build prognostic signatures 
based on two M0RGs, Obg-like ATPase 1 (OLA1) and 
5-aminoimidazole-4-carboxamide ribonucleotide for-
myl transferase/inosine monophosphate cyclohydro-
lase (ATIC) (Fig.  2B). The risk score was calculated 
as follows: risk score = OLA1 × 0.0671 + ATIC × 0.02
41. Next, the best cutoff value of the ROC curve was 
adopted to distinguish between the high- and low-risk 
groups (Figure S3). Survival analysis showed striking 
differences between the two groups in both the train-
ing TCGA and test ICGC datasets (Fig. 3A and B). The 

Fig. 2  The M0RGs prognostic signature. A, Cross-validation for tuning parameter (lambda, screening in the LASSO regression model. B, LASSO 
coefficient profiles of 35 prognostic M0RGs. C, Forest plot of the seven DNA replication-related genes. M0RGs: M0 macrophages-related genes
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Fig. 3  Prognostic model of the train (TCGA) cohort and test (ICGC) cohort. A Train set (B) Test set. Risk score of the high and low groups. Heatmap 
of the expression of 2 M0RGs. Survival analysis of the high and low groups. The AUC of the ROC. TCGA: The Cancer Genome Atlas; ICGC: International 
Cancer Genome Consortium; M0RGs: M0 macrophages-related genes; AUC: Area under curve; ROC: Receiver operating characteristic curve
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cut-off points of optimal separation of overall survival 
(OS) were also analyzed using the X-Tile software (Yale 
School of Medicine, CT, USA) (Figures S5 and S6) [16]. 
The mRNA expression of the two M0RGs in each sam-
ple is shown in Fig. 3A and B. The accuracy was evalu-
ated based on the area under the curve (AUC) of the 
ROC curve, with AUC values of 0.714 at 1  year, 0.674 
at 2  years, and 0.673 at 3  years in TCGA dataset and 
0.681 at 1 year, 0.739 at 2 years, and 0.716 at 3 years in 
the ICGC dataset. We also validated the risk score in 
GSE14520 (Figure S4).

Association between clinicopathological characteristics 
and the prognostic risk score
To further verify the prognostic value of the risk signa-
ture, we explored the correlations between clinicopatho-
logical characteristics of patients with HCC and the risk 
signature. The univariate Cox regression analysis showed 
that the risk score and stage were significantly correlated 
with OS in the training set. Multivariate Cox regres-
sion analysis revealed that the risk score and stage were 

independent factors of HCC prognosis (Fig. 4A). Moreo-
ver, the AUC value for the risk Score was much higher 
than that for the other clinical characteristics (Fig.  4A). 
These results were also confirmed in the test set (Fig. 4B) 
and indicated that the risk model established based on 
the two M0RGs could be used as an independent prog-
nostic factor for patients with HCC.

Furthermore, patients with HCC in the high-risk 
group showed a poor prognosis in terms of progres-
sion-free interval (PFI), disease-free interval (DFI), and 
disease-associated survival (DSS) (Fig.  5). Patients with 
HCC with a high risk also showed a poor prognosis in 
terms of the OS, PFI, DFI, and DSS for the male, female, 
age > 55 years, and age ≤ 55 years groups (Figs. 5 and S4).

Construction and validation of a nomogram
A nomogram associated with the OS of patients with 
HCC was established using TCGA dataset (Fig.  6) and 
externally validated in the ICGC dataset (Figure S9). The 
calibration curve indicated a high reliability of the nomo-
gram (Fig. 6 and Figure S9). Similar results were obtained 

Fig. 4  Association between the clinicopathological characteristics and prognostic risk score. A, Univariate and multivariate Cox regression analyses 
and ROC value in training group. B, Univariate and multivariate Cox regression analyses and ROC value in testing group. ROC: Receiver operating 
characteristic curve
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for the DFI, PFI, and DSS of patients with HCC. These 
results suggested that the prognostic model might be 
a good predictor of survival of patients with HCC. The 
C-index for discrimination was calculated in TCGA and 
ICGC (Figure S7).

Relationship between M0RGs and immune cell infiltration
GSEA results showed that cancer- and immune-related 
signaling pathways were enriched in the high-risk group 
(Fig. 7A). To further understand the association between 
the risk signature and immune cell infiltration, CIBER-
SORT analysis was conducted. The different infiltration 
of immune cells was observed in the high- and low-risk 
group (Fig.  7B). Moreover, B memory cells, Tregs, and 
M0 macrophages were positively associated with the risk 
score, according to Pearson’s analysis (Fig. 7C).

Next, we investigated the role of the M0RGs signature 
in predicting ICI therapeutic efficacy in HCC by evaluat-
ing the relationship between six well-known ICI targets, 
including CTLA-4, PD-1, PD-L1, IDO1, TIM-3, and 
PD-L2. We found that the risk Score was positively corre-
lated with the expression of CTLA-4 and TIM-3 (Fig. 7D). 
Moreover, we analyzed the relationships between the risk 
signature and mutations. A higher number of mutations 
was observed in the high-risk group (Fig. 7E), and patients 
with HCC with TP53 mutations showed higher risk scores 
than those without TP53 mutations (Fig. 7F).

Furthermore, we analyzed the expression and role 
of the two risk genes in HCC. As shown in Figure 
S10A and S10B, the two risk genes were associated 
with a poor prognosis in TCGA and ICGC datasets. 
Single-cell sequencing analysis using the tSNE clus-
ter web tool (mentioned previously in the Material 
and Methods section) also revealed ATIC and OLA1 
expression in immune cells. Figure S10C and D show 
that the two genes were expressed more abundantly 
in the C8_CD4-CTLA4, C4_CD8-LAYN, C5_CD8-
GZMK, and C10_CD4-CXCL13 bundles of HCC 
tissues than in normal liver tissues. Immunohisto-
chemistry analysis using the HPA database (https://​
www.​prote​inatl​as.​org/) further showed that OLA1 
protein level was increased in HCC tissues (Figure 
S10E). No data for ATIC expression were available in 
the HPA database.

Correlation between the risk model and drug sensitivity 
of HCC
In addition to ICI therapy, we identified the associa-
tions between the risk score and efficacy of common 
drugs that were used against HCC in TCGA-LIHC 
project dataset. The data showed that a high-risk score 
was associated with lower IC50 values for drugs such 
as etoposide (P < 0.001), A.443654 (P < 0.001), doxoru-
bicin (P = 0.026), gemcitabine (P < 0.001), and cisplatin 

Fig. 5  The prognosis of HCC patients with high/low risk score. HCC: Hepatocellular carcinoma

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Fig. 6  Construction of the nomogram in the TCGA dataset. The nomogram to predict the 1-, 2- and 3-year survival risk of HCC patients. The 
calibration curve of the 3-year survival



Page 9 of 13Zhang et al. BMC Cancer          (2022) 22:791 	

Fig. 7  The Relationship between M0RGs and Immune infiltration, mutation state. A, GSEA analysis. B, immune cell in high/low groups. C, The 
relationship between immune cell and risk score. D, The relationship between risk score and ICB. E, The mutation in high/low risk group. F, The 
relationship between risk score and TP53, TTN, CTNNB1 mutation, TMB
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(P < 0.001) and with higher IC50 values for dasatinib 
(P < 0.001), gefitinib (P < 0.001), metformin (P < 0.001), 
and rapamycin (P < 0.001). These findings indicated that 
the model could be a predictor for drug sensitivity of 
HCC (Fig. 8).

Discussion
Our comprehensive integrated analysis of M0RGs in 
HCC enhances the understanding of the molecular 
events relevant to HCC progression and treatment. The 
bioinformatics tools used in the current study have facili-
tated efficient prediction of the composition and changes 
in the TIME of HCC. The robust statistical power pro-
vided by relatively large sample sizes in TCGA and ICGC 
databases enabled the identification and validation of an 
M0RG prognostic signature. This is the first M0 mac-
rophage-related risk score model for HCC; the model 
exhibited a good potential for the evaluation of HCC 
prognosis and the selection of a therapeutic strategy for 
HCC. Systematic analysis revealed that high risk scores 

were associated with a poor prognosis, immune infil-
tration, and gene mutations, and multivariate analysis 
confirmed that the risk model was an independent prog-
nostic factor for patients with HCC.

Our results showed that the risk model was positively 
correlated with CTLA4, PD-L1, and TIM-3 expression, 
suggesting a potential role of the risk model in evaluating 
the efficacy of ICI therapy. The liver is the largest immune 
organ in the human body. Carcinogenic factors, such as 
persistent hepatitis B and C viral infections [17, 18], can 
compromise the immune defense or balance, rendering 
the immune cells unable to remove carcinogens [19, 20]. 
In early stages of tumor initiation, immune suppression 
decreases immune surveillance [21]. Thus, ICIs, such as 
PD-1/PD-L1 inhibitors, have become a promising treat-
ment for HCC as they activate and restore immune func-
tions for the optimal ablation of tumor cells [22–24]. 
Identifying a predictive model is of great importance for 
improving HCC immune therapy. We identified the asso-
ciations between the risk model and drug sensitivity in 

Fig. 8  Drug sensitivity of HCC patients with high/low risk
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HCC. A high-risk score was associated with lower IC50 
values of several drugs, which indicated that this model 
could be a predictor for drug sensitivity in HCC as a 
clinical reference. For example, the potential antitumor 
effects of metformin can be further investigated using the 
“new uses of old drugs” strategy for drug repositioning.

The significance of our study lies not only in the rev-
elation of the composition of infiltrating immune cells 
in HCC but also in the demonstration of a systematic 
association of the M0 phenotype and gene clusters 
with genomic characteristics and clinical features. To 
this end, we identified biomarkers for potential clini-
cal application. These biomarkers were further used 
to construct a risk model to predict the prognosis of 
patients with HCC. Analysis of TCGA datasets revealed 
that M0 macrophages and relevant genes were unfa-
vorable factors that correlated with clinical features and 
prognosis of HCC. These results contrasted, to some 
extent, with previous findings, which suggested that 
the differentiation of polarized M1 or M2 macrophages 
was associated with functional properties of tumors 
[25, 26]. The canonical M1 versus M2 dichotomy has 
been challenged by recent evidence supporting abun-
dant differentiation of nonpolarized M0 macrophages, 
rather than that of M1 or M2 macrophages, in tumors 
[11, 12]. M0 macrophages are defined as undifferenti-
ated macrophages with the potential to polarize into 
specific macrophage subtypes. Different subtypes of 
liver macrophages, especially Kupffer cells and TAMs, 
exhibit diverse ontogeny, differentiation, and function 
[27, 28]. TAMs have been significantly implicated in 
HCC initiation, progression, immune evasion, invasion, 
angiogenesis, and metastasis, as well as in response to 
therapy [29]. Liver macrophages exhibit highly variable 
phenotypes that are modulated by signals derived from 
the liver microenvironment. M1 and M2 macrophages 
coexist in the tumor microenvironment of various can-
cers, which may be because of a continuous, rather 
than isolated, process of M0 macrophage polarization 
into M1 and M2 macrophages [30]. Based on our find-
ings, it is hypothesized that the infiltration and differ-
entiation of TAMs in the liver are possibly stimulated 
in response to carcinogenic factors, thus promoting 
chronic inflammation, suppressing immunity, and lead-
ing to HCC progression.

Single-cell analysis of infiltrating immune cells allows 
in-depth understanding of the landscape of these cells 
in the highly complicated tumor microenvironment. 
Recently, single-cell transcriptome technology has been 
applied to cancerous and immune cells from patients 
with HCC, resulting in the identification of 11 T cell sub-
sets based on their molecular and functional properties, 
which delineate their developmental trajectory [31]. In 

the present study, we analyzed the expression of M0RGs 
using single-cell sequencing data, and the results revealed 
that two M0RGs, ATIC and OLA1, were expressed more 
abundantly in specific subgroups of T cells with signa-
ture markers, such as the CD4-CTLA4, CD8-LAYN, 
CD8-GZMK, and CD4-CXCL13 bundles of HCC tis-
sues. Based on these results, we can propose two scien-
tific hypotheses. First, these specific subgroups might 
be activated in the HCC microenvironment. The status 
of T cell infiltration and their characteristics are usually 
associated with different prognostic outcomes [32]. Sev-
eral studies have also revealed the association of LAYN, 
CTLA4, and GZMK expression with tumor-infiltrat-
ing exhausted CD8+ T cells and a poor prognosis [31]. 
Therefore, inhibiting these specific cells might be another 
strategy for cancer immunotherapy. Second, there may 
be a crosstalk between macrophages and T cells in the 
HCC microenvironment, which plays a role in influenc-
ing HCC progression and therapeutic efficacy. The polar-
ization and function of HCC-associated macrophages are 
possibly regulated via these specific subgroups of T cells, 
which still requires further elucidation.

To our knowledge, this is the first study to construct a 
risk model based on M0RGs in HCC; the model showed 
that a low-risk score reflected a good prognosis, whereas 
a high-risk score indicated a poor prognosis, suggesting 
that the risk model is a robust prognostic biomarker. Fur-
ther analysis revealed that cancer- and immune-related 
signaling pathways were enriched in the high-risk group. 
B memory cells, Tregs, and M0 macrophages were posi-
tively associated with the risk score. These results are in 
agreement with the prevailing knowledge that pathologi-
cal division of cells is the basis of tumorigenesis and that 
immune tolerance can facilitate tumor development [30, 
33]. Additionally, we observed that our risk model was 
associated with known somatic mutations in TP53. These 
alterations in a somatic gene may inactivate tumor sup-
pressor genes and cause mutations in protooncogenes, 
resulting in tumorigenesis [34]. Therefore, our study con-
tributes to the identification of immunotherapeutic tar-
gets to inhibit the pathways involved in tumorigenesis.

The major limitation of our study is the lack of bio-
logical validation of immune cell infiltration in  vitro 
and in  vivo in HCC tissues because of a delayed arrival 
of antibodies due to the coronavirus disease pandemic. 
Unlike other studies on immune infiltration in HCC [35], 
our analysis mainly focused on M0 macrophages using 
a large number of HCC samples from public databases. 
In addition to the function of immune cells in the TIME, 
we comprehensively mapped the landscape of interac-
tions involving M0 macrophage-associated immune 
cells, genes, and clinicopathological features. Moreover, 
we confirmed that the prognostic value of the risk model 
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was superior to that of other clinical signatures. This 
precise and simple model of two M0RGs will contribute 
to evaluating the prognosis of and treatment efficacy in 
HCC. We also revealed promising immune-based candi-
date biomarkers for the diagnosis, prognosis, and therapy 
of HCC.

Conclusions
In conclusion, our comprehensive integrated analysis of 
M0RGs in HCC enhances the understanding of molecu-
lar events relevant to HCC progression and treatment. A 
risk model was constructed based on M0RGs and vali-
dated in clinical cohorts, which exhibited robust prog-
nostic value for patients with HCC. We also revealed 
promising candidate immune-based biomarkers for diag-
nosis, prognosis, and therapy in HCC.
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