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1   |   INTRODUCTION

The circadian clock is a transcription-translation feed-
back loop found ubiquitously in all mammalian cells 
(Takahashi, 2017). The clock regulates metabolic processes 
in anticipation of daily rhythms in energy availability and 
demand. The fidelity of this prediction is maintained by 
adjustments of the clock (entrainment) to environmental 

cues (Zeitgebers). While the central hypothalamic clock 
in the suprachiasmatic nucleus (SCN) responds primar-
ily to light as a Zeitgeber, feeding and fasting are the key 
Zeitgebers for metabolic tissues (Pickel & Sung, 2020). For 
example, time-restricted feeding can cause a complete 
phase inversion of peripheral tissue clocks, independent of 
the light cycle and SCN entrainment (Damiola et al., 2000; 
Hara et al.,  2001; Stokkan et al.,  2001). Peripheral clock 
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Abstract
The circadian clock regulates metabolism in anticipation of regular changes in 
the environment. It is found throughout the body, including in key metabolic 
organs such as the liver, adipose tissues, and intestine, where the timing of the 
clock is set largely by nutrient signaling. However, the circadian clocks of these 
tissues during the fasted state have not been completely characterized. Moreover, 
the sufficiency of a functioning host clock to produce diurnal rhythms in the com-
position of the microbiome in fasted animals has not been explored. To this end, 
mice were fasted 24 h prior to collection of key metabolic tissues and fecal sam-
ples for the analysis of circadian clock gene expression and microbiome composi-
tion. Rhythm characteristics were determined using CircaCompare software. We 
identify tissue-specific changes to circadian clock rhythms upon fasting, particu-
larly in the brown adipose tissue, and for the first time demonstrate the rhythmic-
ity of the microbiome in fasted animals.
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entrainment occurs largely through adjustment of clock 
gene expression in response to signals of energy availabil-
ity. For example, peripheral tissue clocks are responsive 
to fasting-associated signals of circulating ghrelin (Wang 
et al.,  2018) and glucagon (Sun et al.,  2015) and intra-
cellular activation of AMPK, PCG1a, and SIRT1 (Froy & 
Garaulet,  2018), as well as to postprandial increases in 
circulating insulin and IGF-1, and intracellular mTORC1 
activation (Crosby et al., 2019; Lipton et al., 2015).

Importantly, adjustments of the core clock orchestrate a 
cascade of downstream changes in the transcriptome and 
metabolome (Panda, 2016). The clocks of different tissues 
and the processes they regulate can become misaligned in 
time when exposure to key Zeitgebers is discrepant, for 
example, when humans and other diurnal mammals eat 
during the dark (inactive) phase. Inconsistencies in the 
timing of Zeitgeber exposure can also produce misalign-
ment because the entrainment of the core clock to nutri-
ent signaling occurs at different rates in peripheral tissues 
(Damiola et al., 2000). This is important because circadian 
clock misalignment is strongly associated with metabolic 
diseases (James et al., 2017; Kervezee et al., 2020; Kolbe 
et al., 2019; Scheer et al., 2009). On the other hand, im-
proving circadian alignment through time-restricted feed-
ing protects metabolic health (Chaix et al.,  2014, 2021; 
Jamshed et al., 2019).

The functions of major metabolic organs, including the 
liver, white and brown adipose tissues, skeletal muscle, 
and intestine are highly dependent on whether an animal 
is in the fed or fasted state (Secor & Carey, 2016). Processes 
of nutrient absorption, macronutrient catabolism and en-
ergy storage are altered in response to, and in anticipation 
of, the fasting state, and this anticipatory regulation de-
pends on the local circadian clock of peripheral tissues 
(Lamia et al.,  2008). Therefore, the response of the core 
clock in these metabolic organs to fasting is of great inter-
est. However, while the rhythmic expression of core clock 
genes in these metabolic tissues has been studied in ad 
libitum (AL) fed animals, the circadian clock of fasting an-
imals has only been characterized in the liver and skeletal 
muscle (Kinouchi et al.,  2018; Shavlakadze et al.,  2013). 
The regulation of core clock genes in the gut and adipose 
tissue of fasted animals remains unknown despite these 
being two critical loci of fasting physiology. In addition, 
previous investigations of the clock's response to acute 
fasting in metabolic organs confounded the variables of 
circadian time and fasting duration by beginning the fast 
of all animals simultaneously (Kawamoto et al., 2006; Sun 
et al.,  2015). This distinction is essential for meaningful 
interpretation, given that peripheral tissue clocks are sen-
sitive to the duration of fasting (Kuroda et al., 2012).

Moreover, the circadian response of the microbiome to 
fasting has not been investigated. The microbiome affects 

systemic metabolism and energy status through produc-
tion of bacterial metabolites and by modulating nutrient 
absorption in the intestine. The composition and function 
of the gut microbiota varies with a daily rhythm (Liang 
et al., 2015; Thaiss et al., 2014, 2016), and similar to clocks 
in other peripheral tissues, a robust rhythmicity is indica-
tive of health; disrupted microbial rhythms predicted T2D 
in large human cohorts (Reitmeier et al., 2020). However, 
the circadian profile of the microbiome has not been 
characterized in fasted animals. It is unknown whether 
its rhythms are entirely dependent on rhythmic nutrient 
availability or can persist during fasting.

We therefore sought to characterize the multi-organ 
circadian response to fasting. Gene expression analysis 
was performed for all core clock genes in the liver, brown 
and white adipose tissue, duodenum, and colon at 4-h in-
tervals in 24-h fasted mice. To test the sufficiency of the 
core clock to produce rhythms in the microbiota in the 
absence of food intake, 16S rRNA sequencing was per-
formed on fecal samples collected from animals as they 
were sacrificed for tissue collection.

2   |   METHODS

2.1  |  Animals

All animal experimental protocols approved by the Animal 
Care Committee of the Centre of Phenogenomics (TCP) 
conformed to the standards of the Canadian Council on 
Animal Care. Eight to 10-week-old male C57BL/6J mice 
were housed under a 12:12 light–dark cycle with AL ac-
cess to normal chow diet (Teklad Global #2918) and 
water. Food was withheld for the fasting group beginning 
24 h prior to the respective sacrifice time. Fasted and ad-
libitum fed mice were sacrificed at 4 h intervals over a 24 h 
period beginning at ZT0 (6 time points, n  =  3 mice per 
time point per group). Mice of the same time point and 
feeding condition were housed together in solid bottomed 
cages in the days leading up to the experiment. Tissues 
were collected and flash frozen in liquid nitrogen. Feces 
were removed from the distal intestine, and intestine was 
rinsed in PBS. Sections of colon and duodenum were re-
sected immediately distal to the cecum and to the stom-
ach, respectively.

2.2  |  RNA extraction and reverse 
transcription

Tissues were separately homogenized in TRIzol and total 
RNA was extracted from liver, perigonadal white adipose 
tissue (PWAT), interscapular brown adipose tissue (BAT), 
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duodenum and colon using an RNeasy Mini Kit (Qiagen). 
Complimentary DNA (cDNA) was synthesized by reverse 
transcription of RNA. DNA was extracted from stool using 
NucleoSpin Soil Mini Kit (Macherey Nagel).

2.3  |  Quantitative real-time PCR

Quantitative real-time PCR (RT-qPCR) was performed on 
cDNA using SYBR Green Master Mix (ThermoFisher) and 
QuantStudio Real-Time PCR System. Primer sequences 
are listed in Table S1.

2.4  |  16S rRNA gene sequencing

16S rRNA gene sequencing was performed by The Centre 
for the Analysis of Genome Evolution and Function 
(CAGEF) at the University of Toronto. The V4 hyper-
variable region of the 16S rRNA gene was amplified using 
uniquely barcoded 515F (forward) and 806R (reverse) 
sequencing primers to allow for multiplexing (Caporaso 
et al.,  2012). Amplification reactions were performed 
using 12.5  μl of KAPA2G Robust HotStart ReadyMix 
(KAPA Biosystems), 1.5 μl of 10 μM forward and reverse 
primers, 7.5 μl of sterile water and 2 μl of DNA. The V4 
region was amplified by cycling the reaction at 95°C for 
3 min, 18x cycles of 95°C for 15 s, 50°C for 15 s and 72°C 
for 15 s, followed by a 5-min 72°C extension. All amplifi-
cation reactions were done in duplicate to reduce ampli-
fication bias, pooled, and checked on a 1% agarose TBE 
gel. Pooled duplicates were quantified using PicoGreen 
and combined by even concentrations. The library was 
then purified using Ampure XP beads and loaded on to 
the Illumina MiSeq for sequencing, according to manufac-
turer instructions (Illumina, San Diego, CA). Sequencing 
is performed using the V2 (150bp x 2) chemistry.

2.5  |  Analysis of the bacterial  
microbiome

The UNOISE pipeline, available through USEARCH 
v11.0.667 and vsearch v2.10.4, was used for sequence 
analysis (Edgar,  2010, 2013, 2016; Rognes et al.,  2016). 
Sequences were assembled and quality trimmed using 
–fastq_mergepairs with a –fastq_trunctail set at 2, a 
–fastq_minqual set at 3, a -fastq_maxdiffs set at 5, a -fastq_
pctid set at 90, and minimum and maximum assemble 
lengths set at 243 and 263 (+/− 10 from the mean) base 
pairs. Assembled sequences were quality filtered using 
–fastq_filter with a –fastq_maxee set at 1.0. Sequences 
were de-replicated and sorted to remove singletons, then 

denoised, and chimeras were removed using the unoise3 
command. Assembled sequences were mapped back to 
the chimera-free denoised sequences at 99% identity op-
erational taxonomic units (OTUs), which are units of 
diversity that approximate groups of bacterial species or 
strains.

QIIME2 v2021.4 (Bolyen et al.,  2019) was used for 
the following analyses. Taxonomy was assigned to each 
OTU via q2-feature-classifier (Bokulich et al.,  2018) 
with the classify-sklearn naïve Bayesian classifier and 
the Greengenes 13_8 99% OTUs reference set based on 
the 515F/806R primer region (McDonald et al.,  2012). 
Abundances of taxa were plotted using data that were 
raw (relative abundances) or rarefied (count abundances) 
to the lowest per sample sequence count (34,800 reads). 
ANCOM analyses (Mandal et al.,  2015) were performed 
via q2-composition using OTU tables to which a pseudo-
count of ‘1’ had been added to remove zeros.

MicrobiomeAnalyst (Chong et al.,  2020; Dhariwal 
et al.,  2017) was used for the following analyses. LEfSe 
(Segata et al., 2011) was performed on raw genus-level data 
using a false discovery rate (Benjamini & Hochberg, 1995) 
cutoff of 0.1 and a LDA score cutoff of 2.0. Alpha diver-
sity was estimated using Shannon and Simpson indices. 
Beta diversities, estimated using Bray-Curtis dissimilar-
ities (Bray & Curtis,  1957), were plotted in multivariate 
space using principal coordinates analysis. PERMANOVA 
(Anderson,  2001) was used to identify significant differ-
ences between sample beta diversities grouped by time-
point or feeding. For diversity analyses the data were 
normalized, unless otherwise indicated, by removing 
OTUs in fewer than 4 samples and whose interquartile 
range varied by less than 10%; total-sum scaling was also 
performed.

2.6  |  Statistical analysis

RT-qPCR data were normalized to expression of 36B4 in 
all tissues, and to the geometric mean of 36B4 and Hmbs 
in BAT to account for minor rhythmicity of individual 
housekeeping genes (Figure  S1a). Data are presented as 
means + SEM and plotted relative to the ZT0 Fed condi-
tion. A 2-way repeated-measures ANOVA with post-hoc 
Bonferroni was performed (SPSS) using the mean of tech-
nical replicates to test for effects of time, feeding group, 
and their interaction. Differences in expression at sin-
gle time points were identified with a Student's TTEST. 
Periodicity and changes in amplitude, mesor (rhythm-
adjusted mean), and phase in the fasted compared to fed 
condition were analyzed in the R package CircaCompare; 
for genes rhythmic in only one condition, these parameters 
were estimated using circa_single (Parsons et al., 2020).
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3   |   RESULTS

3.1  |  Fasting alters core clock rhythms in 
a tissue-specific manner

Mice were fed ad libitum or fasted for 24 h prior to the 
respective sacrifice time (Figure  1a). A constant fasting 
duration allows isolation of the circadian time as the sole 
variable. The rhythmicity of core clock genes and their 
rhythm characteristics of amplitude, period, and mesor 
(rhythm-adjusted mean) (Figure 1B) were analyzed using 
CircaCompare (Parsons et al., 2020). The mRNA expres-
sion rhythms of core clock genes in the liver of fed and 
24 h fasted mice were consistent with those observed in 
previous work (Kinouchi et al.,  2018). With this experi-
mental design and methods, we further analyzed the 
expression of core clock genes in the perigonadal white 
adipose tissue (PWAT), brown adipose tissue (BAT), duo-
denum, and colon of AL fed and 24 h fasted animals. Fed 
state rhythms replicated previous results in the adipose 
(Zvonic et al., 2006), gut (Polidarová et al., 2009) and liver 
(Storch et al.,  2002). Significant phase shifts (Figure  1c) 
were only observed in BAT, where expression of Per3 and 
Rev-erbβ were phase delayed (4.87 and 5.01 h, respectively, 
p < 0.001). A trend toward phase delay was also observed 
in Cry1 in the PWAT (2.27 h, p  =  0.06). Nearly all core 
clock genes were rhythmic in both the fed and fasted con-
ditions (Figure  1d–h), though some rhythms were lost 
and gained, or rhythm characteristics were significantly 
altered, by fasting (Figure 2a).

Intriguingly, the BAT clock was most responsive to 
the 24 h fast, with one or more changes in circadian 
rhythm characteristics in every core clock component 
tested (Figure 2a). Fasting caused a gain of rhythmicity 
in liver expression of Cry2, PWAT Per2, and BAT Cry1, 
Cry2, and Rora (Figure 2a). Notably, Rora was arrhyth-
mic in fed and fasted conditions in all other tissues, 
while Rorγ, also highly expressed in the liver (Takeda 
et al., 2014), was strongly rhythmic. Fasting caused loss 
of rhythmicity in PWAT Per1, Rev-erbβ, and Cry2, as well 
as BAT Clock.

Fasting increased the amplitude of Bmal1 expression 
in BAT (peak: trough ratio of 12.7 and 17.9, p < 0.001), 
while it decreased in the liver (peak: trough ratio 35.9 
to 5.8, p < 0.001). Reverba was dampened in the BAT (19 
to 6, p < 0.01) and colon (19.9 to 9.8, p < 0.01). Cry2 was 
slightly dampened in the duodenum (5.25 to 5, p = 0.05). 
The clock output gene Dbp was strongly dampened in 
the liver (p < 0.01), PWAT (p < 0.001), and duodenum 
(p < 0.01). The expression of Clock was arrhythmic in both 
conditions in the intestine (Figure 1g,h), and its rhythm 
was weak in brown and white adipose tissue (Figure 1e,f). 
Interestingly, Per2 was arrhythmic in both conditions in 

the duodenum, but its mean expression was induced more 
than 3-fold by fasting (Figure 1g).

3.2  |  Fasting alters clock-controlled 
metabolic genes

The expression of metabolic genes known to be regulated 
by the core clock were also altered by fasting (Figure 2B). 
In the liver, the rate-limiting enzyme of bile acid synthe-
sis, cholesterol 7a-hydroxylase Cyp7a1, was phase ad-
vanced (4.97 h, p < 0.01). Rhythmic expression of Nampt, 
the rate-limiting enzyme of the NAD+ salvage pathway, 
was dampened. Expression of acetyl-CoA carboxylase 
Acc1, encoding the first enzyme of de novo fatty acid syn-
thesis, remained rhythmic during the fast but at signifi-
cantly reduced mean levels (mesor decrease p < 0.0001) 
and amplitude (p < 0.01). In the PWAT, the master regu-
lator of adipocyte differentiation and metabolism peroxi-
some proliferator-activated receptor gamma Pparγ was 
phase advanced (5.6 h, p < 0.05). In the BAT, the expres-
sion of Angiopoietin-like 4 Angptl4, which regulates li-
poprotein lipase (LPL) activity and thereby fatty acid 
utilization in the BAT, was increased (mesor increase 
p < 0.0001) and phase delayed (8.53 h, p < 0.0001). Though 
each of these is known to be regulated by the core clock 
(Chen & Yang,  2014; Ferrell & Chiang,  2015; Lavery & 
Schibler, 1993; Nakahata et al., 2009; Ramsey et al., 2009; 
van den Berg et al., 2018), their alterations did not corre-
late with changes to core clock gene expression. Further 
studies are required to determine whether the core clock 
mediates these fasting-induced shifts through other mech-
anisms, such as post-translational modifications.

3.3  |  Microbiome rhythms are sustained 
in fasted mice

Unexpectedly, the relative abundances of bacteria contin-
ued to fluctuate diurnally in 24 h-fasted mice (Figure  3a; 
Figure S3). Sequence read abundances were rarefied to ac-
count for differences in sequence counts between samples 
and analyzed using Circacompare (Parsons et al.,  2020). 
The five most abundant bacterial phyla are Bacteroidetes, 
Firmicutes, Verrucomicrobia, Actinobacteria, and 
Proteobacteria (Arumugam et al.,  2011). In both the fed 
and fasted condition, Bacteroidetes, Firmicutes, and 
Verrucomicrobia together comprised over 98% of detected 
microbes (Figure S3a). These three phyla were all rhythmic 
in the fed condition, and only Verrucomicrobia became ar-
rhythmic in the fasted condition (Figure 3b). Proteobacteria 
was also arrhythmic in the fasted condition, whereas 
Tenericutes gained rhythmicity upon fasting (Figure 3b).
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(a) (b)

(c)

(d) (e)

F I G U R E  1   Core clock rhythms in key metabolic organs of 24 h fasted mice. (a) Fasting schedule. (b) the three primary characteristics 
of rhythms: Period, amplitude, and Mesor—A rhythm-adjusted mean expression level (MESOR, midline estimating statistic of rhythm). (c) 
Acrophase (time of peak expression) of significantly rhythmic core clock genes in AL fed (red) and 24 h fasted (blue) mice. (d–f) expression 
of core clock genes in liver, PWAT, BAT, duodenum, and colon. Data plotted relative to ZT0 fed as mean + SEM (n = 3 replicates per time 
point per group). Black asterisks indicate significant differences between fed and fasted groups at a particular timepoint (TTEST), n = 3 
mice/timepoint/group. Colored asterisks indicate presence of 24 h rhythm. *p < 0.05, **p < 0.01, ***p < 0.001.
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(f) (g)

(h)

F I G U R E  1    (Continued)
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F I G U R E  2   An acute fast alters core clock and metabolic gene expression rhythms. (a) Comparison of rhythm characteristics in AL fed 
(red) and 24 h fasted (blue) mice, analyzed by Circacompare. (b) Expression of clock-controlled genes. Black asterisks indicate significant 
differences between fed and fasted groups at a particular timepoint (TTEST), n = 3 mice/timepoint/group. Colored asterisks indicate 
presence of 24 h rhythm. *p < 0.05, **p < 0.01, ***p < 0.001.

(a)

(b)
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(a)

(b)

(c) (d)

(e) (f)
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3.4  |  Fasting alters rhythmic 
abundances of bacterial phyla

The abundances of the major bacterial phyla are known 
to depend on the nutritional state, with the fed and fasted 
state being associated with Bacteroidetes and Firmicutes 
dominance, respectively. An increase in Bacteroidetes and 
decrease in Firmicutes was observed in healthy humans 
after a 10-day Buchinger fast, a modified fasting regimen 
of ~200–250 kcal/day (de Toledo et al., 2013), and this was 
partially reversed following 4 days of food reintroduction 
(Mesnage et al., 2019). In mice, alternate day fasting in-
creased Firmicutes and decreased Bacteroides abundance 
(Li et al., 2017), and a 48 h fast lead to dramatic increases 
in Verrucomicrobia (Miyamoto et al., 2019). Rhythms in 
feeding could thereby explain rhythms in bacterial abun-
dance. AL-fed mice consume the majority of calories 
during the active phase, at which time the proportional 
abundance of Firmicutes is highest, whereas Bacteroidetes 
and Verrucomicrobia are highest during the inactive, fast-
ing phase of the daily cycle (Zarrinpar et al., 2014). Our 
results confirm a significant increase in Verrucomicrobia 
upon fasting throughout the 24 h cycle (Figure  3c). 
Interestingly, fasting decreased Firmicutes abundance as 
predicted, but only during the night (Figure 3d).

However, fasting had no effect on the rhythm of 
Bacteroidetes abundance (Figure 3b). The correlation be-
tween the natural fasting period of AL-fed mice and the 
peak of Bacteroidetes (Zarrinpar et al., 2014) is therefore 
spurious. The Bacteroidetes rhythm is more robust (less 
variable) in the fasted condition and retains the same ac-
rophase and amplitude as observed in AL fed mice. This 
suggests that daily fluctuations in Bacteroidetes are not 
the result of feeding rhythms, but rather the outcome of 
interaction with clock-regulated processes in the host. The 
Bacteroidetes rhythm is also known to exhibit TRF effects, 
whereby restriction of feeding to the inactive phase causes 
phase inversion (Thaiss et al., 2014), and our results indi-
cate that these are likely mediated by the entrainment of 
the host clock to feeding.

Bacteroidetes and Firmicutes comprise more than 90% 
of the entire microbial community in mice and humans, 
and an increased ratio of Firmicutes to Bacteroidetes is 

associated with obesity and metabolic disease (Turnbaugh 
et al., 2006). We found that the Firmicutes:Bacteroidetes 
ratio has a circadian rhythm in both the fed and fasted 
condition (Figure 3e). This rhythmicity results in a ratio 
that is approximately twice as high when measured at 
ZT20-24 compared to ZT8-12 (Figure 3e).

3.5  |  Microbial diversity is rhythmic in 
fed and fasted mice

Alpha diversity estimates the number of different taxa 
within a sample, or intra-sample diversity. This can be 
estimated using Shannon and Simpson indices. Greater 
microbial diversity is associated with resilience and host 
health (Lozupone et al.,  2012). We found that alpha di-
versity followed a circadian rhythm in both fed and fasted 
mice, with no difference in average levels of diversity over 
the course of the day between these groups (Figure  3f). 
The alpha diversity of the microbiota is known to fluctuate 
over time in mice with AL access to normal chow, rising 
during the night after food consumption compared to the 
daytime fast; this rhythm was lost in mice fed with HFD 
(Zarrinpar et al., 2014), which would seem to suggest that 
alpha diversity follows the food intake rhythm. However, 
our data indicate that microbial diversity retains its robust 
circadian rhythm in 24 h fasted animals, meaning that this 
rhythm depends on host circadian physiology rather than 
on food intake. Further supporting the role of the host cir-
cadian clock in producing rhythmic levels of alpha diver-
sity, ClockΔ19-mutant mice have lower diversity (Shannon 
and Simpson indices) compared to wildtype mice (Voigt 
et al., 2016).

3.6  |  Circadian rhythms at the 
family and genus levels

To further characterize the effect of fasting on rhythms in the 
microbiota, we performed sub-phylum analyses, looking at 
bacterial families and genera (Figure 4a,b). A total of 28 fami-
lies were detected, of which 13 were excluded from analysis 
due to insufficient reads (>15% of samples had zero reads). 

F I G U R E  3   Rhythmicity of the microbiome. (a) Relative abundances of bacterial families. Bacteroidales and Bacteroidaceae belong to 
the phylum Bacteroidetes; Ruminococcaceae, Lachnospiraceae, Clostridiales, and Erysipelotrichaeceae belong to the phylum firmicutes; 
and Verrucomicrobiaceae belongs to the phylum Verrucomicrobia. A full list of families is available in Figure S3a. (b) Rhythms in rarefied 
abundances of the major bacterial phyla in AL fed (orange) and 24 h fasted (blue) mice. Black asterisks indicate significant differences 
between fed and fasted groups at a particular timepoint (TTEST), n = 3 mice/timepoint/group. Colored asterisks indicate presence of 24 h 
rhythm. *p < 0.05, **p < 0.01, ***p < 0.001. (c) Fasting increased mean expression levels of Verrucomicrobia. (d) Fasting depressed firmicutes 
during the dark phase. (e) Time dependence of the firmicutes/Bacteroidetes ratio. (f) Shannon and Simpson indices of α-diversity, or within-
condition microbial diversity.
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(a)

(b)
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Of the remaining 15 families, four were rhythmic in the fed 
and fasted condition, one in the fed condition only, and three 
in the fasted condition only (Figure 4a; Table S2). A total of 
46 genera were detected, of which 26 had sufficient reads. Of 
these 26 genera, eight were significantly rhythmic in both 
conditions, five only in fed mice, and three only in 24 h-fasted 
mice (Figure 4B; Table S2). For all families and genera found 
to be rhythmic in both conditions, there were no significant 
changes in rhythm characteristics upon fasting.

3.7  |  Effects of time and feeding on 
microbial rhythmicity

A total of 386 OTUs were detected in the fed condition, 
and a distinct set of 384 OTUs were detected in the fasted 
condition. Comparing microbial composition, at the 
OTU or other taxonomic level, between samples pro-
vides estimates of beta diversity, which can be used with 
PERMANOVA to test for effects of particular variables 
(i.e., timepoint or feeding), or with principal coordinates 
analysis (PCoA) to visualize how samples differ based on 
the variables. At the OTU level, time had a greater influ-
ence on the variation in microbiota composition than 
did the feeding condition. The microbiome composi-
tion was similar moving through time from ZT0 to ZT8, 
then shifted at ZT12 and again at ZT20 before returning 
at ZT24 to align with ZT0 (Figure 5a). Nearly 38% of the 
variation in microbial composition could be explained by 
time point (p < 0.001, Figure 5a), and 18% of the variation 
in microbial composition could be explained by feeding 
(p < 0.001, Figure 5b). Though there is some overlap, the 
fed and fasted microbiomes differed, and that of mice refed 
6 h was similar to the fasted group (Figure 5b). Time ex-
plained variation in the microbiota as much in the fasted 
as in the fed condition (R2 = 0.65 and 0.61, respectively. 
Figure  5c,d). At the Family level, time again explained 
more of the microbial variation (41%, p < 0.0001) than did 
feeding condition (16%, p < 0.0001). However, the effect of 
time within the fasted condition was greater than within 
the fed (R2 of 0.66 and 0.47, respectively. Figure S2).

3.8  |  Fasting increases metabolically 
protective Akkermansia

Linear Discriminant Analysis (LDA) Effect Size (LEfSe) 
analysis (Segata et al., 2011) was used to identify taxa that 

can discriminate between groups of samples by timepoint 
or feeding condition. Differential abundances were addi-
tionally verified using analysis of composition of microbi-
omes (ANCOM) (Mandal et al., 2015). Genera identified 
by both methods to significantly differ at particular time-
points were Allobaculum and Bacteroides (Figure 5e). The 
genera Clostridium, Lactobacillus, and Turicibacter distin-
guished the fed and fasted condition (Figure 5f). In the fed 
condition, Turicibacter and Roseburia additionally differ-
entiated timepoints, as did Turicibacter and Clostridium in 
the fasted condition (Figure S2e,f).

Of the genera whose abundances significantly differed 
between feeding conditions, Akkermansia showed the 
highest effect size for increase by fasting (Figure 5f). It con-
tributed on average 13.5% of reads to the fasted condition, 
compared to 3.6% in fed mice (p < 0.001). The upregulation 
of Akkermansia at ZT16 and ZT24 also appeared to drive a 
similar pattern in its family, Verrucomicrobia (Figure 4a). 
The role of Akkermansia as a beneficial microbe is well-
characterized (Naito et al., 2018). Abundances of species in 
this genus are inversely associated with metabolic disease, 
obesity, and inflammation (Zhou, 2017; Zhou et al., 2020), 
potentially through its effects on glucagon-like peptide 1 
(GLP-1) secretion(Yoon et al., 2021).

4   |   DISCUSSION

The circadian system regulates whole body physiology in 
anticipation of regular daily cycles in the environment. 
In metabolic tissues, signals of feeding and fasting act as 
Zeitgebers which entrain the core clock. We demonstrate 
that core clock gene expression remains robustly rhyth-
mic in 24 h fasted mice in the liver, PWAT, BAT, duode-
num, and colon. This is the first time that the rhythmicity 
of peripheral tissue clocks has been extensively character-
ized in fed and fasted animals. While previous work dem-
onstrated core clock gene rhythms in fed and 24 h-fasted 
liver and skeletal muscle (Kinouchi et al., 2018), we con-
tribute the rhythms of brown and white adipose tissue, 
intestine, and the microbiome, and further characterize 
the rhythms in all tissues using CircaCompare (Parsons 
et al.,  2020). This method supports the comparison of 
rhythmic data, allowing a statistically robust demonstra-
tion of the differences in rhythm characteristics (Parsons 
et al., 2020).

We found that particular elements of the clock were al-
tered in their amplitude, mean expression, and/or phase, 

F I G U R E  4   Sub-phylum microbiome rhythm analysis. Circadian rhythms in rarefied absolute abundances of bacterial families (a) and 
genera (b) in AL fed (orange) and 24 h fasted (blue) mice. Black asterisks indicate significant differences between fed and fasted groups 
at a particular timepoint (TTEST), n = 3 mice/timepoint/group. Colored asterisks indicate significant rhythmicity. *p < 0.05, **p < 0.01, 
***p < 0.001.
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while others lost or gained expression upon fasting, in a 
tissue-specific manner. For example, fasting increased ex-
pression of Per1 in the liver, Per2 in the BAT, and Cry2 
in the duodenum. The tissue-specific sensitivity of clock 
components to fasting suggests different mechanisms of 
circadian regulation by nutrient signaling. This is con-
sistent with the variable speed at which key metabolic 
organs entrain to new food intake rhythms (Damiola 
et al.,  2000). Future work identifying these mechanisms 
may allow targeted prevention of circadian misalignment 
in metabolism.

We found that of all metabolic tissues tested, the BAT 
was most sensitive to fasting. Significant changes to rhyth-
micity and rhythm parameters of amplitude, mesor, or 
phase were observed in every core clock gene. This was 
also the only tissue in which significant phase shifts 
were triggered by the 24 h fast; both Per3 and Rev-erbβ 
were phase delayed by approximately 5 h. Interestingly, 
the expression of Angptl4 was greatly increased, and its 
peak was also phase delayed (approximately 8.5  h). The 
role of Angptl4 in the BAT is to inhibit lipoprotein lipase 
(LPL) activity, thereby reducing free fatty acid (FFA) up-
take. During cold exposure, it is downregulated to permit 
thermogenesis through fatty acid combustion by the BAT 
(Dijk et al., 2015). This is important because the BAT acts 
as a metabolic sink, taking up FFA in a time-of-day depen-
dent manner that affects postprandial lipid clearance (van 
den Berg et al., 2018) and systemic energy availability. Our 
findings suggest that the circadian clock may be involved 
in inhibiting FFA utilization by BAT during fasting, which 
would contribute to a decreased energy expenditure 
(Levin & Trayhurn, 1987) and conserve FFA for essential 
organs. At the same time, this would be expected to reduce 
non-shivering thermogenesis, exposing the animal to po-
tential hypothermia.

A second major finding is that circadian rhythms in 
the microbiome are sustained in fasted animals. The 
alpha diversity of the microbiome was also rhythmic and 
sustained during fasting. The two major bacterial phyla, 
Bacteroidetes and Firmicutes, displayed even more ro-
bust 24 h rhythmicity in the fasted compared to the fed 
condition. Nutrient intake rhythms are therefore not the 
sole driver of circadian variation in the microbiota. In a 
complementary study, microbial abundance continued to 

vary diurnally in mice given continuous IV parenteral nu-
trition for 72 h (Leone et al., 2015). Together these results 
strongly implicate the endogenous clock of the host in the 
regulation of rhythmic bacterial abundance. An intact cir-
cadian system is sufficient to drive rhythms in the gut mi-
crobiota independent of food intake rhythms.

The necessity of clock genes in the host for robust mi-
crobial rhythms has been shown in whole-body knock-
outs of both the positive [Bmal1 (Liang et al.,  2015)] 
and negative [Per1/2 (Thaiss et al.,  2014, 2016)] arms 
of the core clock. However, the effects of clock disrup-
tion are confounded by arrhythmic activity and feeding 
(Butler & Gibbs, 2020). Feeding a high fat diet, which is 
known to cause disorganized feeding rhythms (Kohsaka 
et al., 2007), also caused dampened gut microbial rhythms 
in mice (Leone et al., 2015; Zarrinpar et al., 2014). Time-
restricted feeding (TRF) to the active phase partially re-
stored microbial rhythms in HFD-fed animals (Zarrinpar 
et al.,  2014) and Per1/2 knockouts (Thaiss et al.,  2014). 
This may seem to suggest that feeding rhythms control 
microbial rhythms. However, TRF also entrains endoge-
nous rhythms in host tissues, leaving it unclear whether 
TRF restores microbial rhythms directly through nutrient 
availability, or indirectly through effects on host tissue 
clocks (Liang et al., 2015). Our results support the latter 
hypothesis.

The relationships between the microbiome and host 
circadian system are multifaceted and bidirectional 
(Bishehsari et al.,  2020). Microbial interactions with 
intestinal epithelial cells are essential for their clock 
function (Mukherji et al., 2013) and impact expression 
of nutrient transporters and metabolic genes (Thaiss 
et al.,  2016; Wang et al.,  2018). Moreover, metabo-
lite oscillations in the gut are reflected in the serum, 
and abolished in germ free or antibiotic-treated mice 
(Thaiss et al.,  2016). The microbiome thereby has dis-
tal effects on key metabolic organs; the short chain 
fatty acid (SCFA) butyrate modulates the core clock in 
the liver (Leone et al., 2015), and the microbiome me-
diates PPARy-driven metabolic reprogramming in the 
liver upon high-fat feeding (Murakami et al.,  2016). 
Fluctuations in microbial abundance therefore contrib-
ute to the rhythmicity of nutrient absorption and sys-
temic metabolism in the host, and our results indicate 

F I G U R E  5   The effect of time of day and feeding versus fasting on microbiome composition. (a–d) PCoA plots of Bray-Curtis 
dissimilarities. PERMANOVA was used to determine whether timepoint and feeding had a significant effect on microbiome composition. 
(a) the effect of time on microbiome composition. Data points are colored by timepoint (see legend). Color clustering by timepoint illustrates 
the 38% of variation explained by time. (b) the effect of feeding condition on microbiome composition. Data points are colored according to 
feeding group (see legend). 18% of variation was explained by feeding condition. (c) the effect of time in AL-fed animals. (d) the effect of time 
in 24 h-fasted animals. (E) Genera whose abundances significantly differed at particular timepoints (p < 0.05) with LDA scores >2 are shown. 
(f) Genera whose abundances significantly differed between feeding groups (p < 0.05) with LDA scored >2 are shown. Red stars indicate 
significant differences corroborated with ANCOM analysis.
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this component of circadian physiology persists also in 
the fasted condition.

Though direct relationships cannot be inferred, 
it is interesting to note that the robust rhythm of 
Bacteroidetes abundance has a clear antiphase rela-
tionship to the colonic expression of Bmal1. Similarly, 
Firmicutes abundance appears to be in phase with co-
lonic Bmal1 expression. This could suggest the influ-
ence of the negative and positive arms of the core clock 
on these phyla, respectively. Further studies are needed 
to investigate the relationship between the core clock in 
the colon and rhythms in the microbiome. Future stud-
ies would benefit from the use of wire-bottomed cages 
and limited bedding during the fasting period to con-
trol for coprophagia and fiber consumption from cage 
bedding (Gregor et al., 2020). A related limitation of the 
present study is that mice from each timepoint and feed-
ing condition were cohoused in the days leading up to 
feces collection, which can produce cage effects in the 
microbiome (Ericsson et al.,  2018). Nonetheless, there 
was substantial variation in the microbiome composi-
tion of mice within a cage (Figure S3b), and the signif-
icant circadian rhythmicity, wherein many taxa closely 
fit a 24 h cosinar function, supports that this variation is 
physiological rather than artefactual.

The present study emphasizes that the recency of feed-
ing and the time of sample collection are two essential 
parameters to consider when assessing not only circadian 
physiology, but also the expression of important metabolic 
genes or the composition of the microbiome. These vary 
greatly on the scale of just a few hours. For example, the 
Firmicutes:Bacteroidetes ratio has a circadian rhythm; it 
is approximately twice as high when measured at the end 
of the dark phase (ZT20-24) as compared to the end of the 
light phase (ZT8-12). In studies using this ratio as a met-
ric of metabolic health (Turnbaugh et al., 2006), it would 
be possible to observe significant changes simply as a re-
sult of microbial samples from two groups being collected 
at different times of day. When considering study design 
optimization, timed and repeated sampling from individ-
ual subjects, rather than single samples from the maxi-
mal number of subjects, may produce more consistent 
and accurate results (Poyet et al.,  2019; Vázquez-Baeza 
et al., 2018). Future investigations of metabolic organs and 
the microbiome will benefit from a circadian-informed 
design.

In conclusion, our study characterizes the effect of an 
acute 24 h fast on circadian gene expression in key met-
abolic organs, including for the first time the intestine 
and brown adipose tissue (BAT). Core clock rhythmicity 
remains robust in the fasted state, with tissue-specific 
changes to rhythm parameters, particularly in the BAT. 
Examples of large changes in the amplitude and phase 

of key metabolic genes across the 24 h period and in the 
fed versus fasted condition emphasize the importance of 
these parameters in study design. We further show that 
the abundances of bacterial phyla in the fecal microbiota 
are rhythmic. Phyla-specific alterations were observed 
upon fasting, however, bacterial abundances retained sig-
nificant 24 h rhythmicity even in the absence of rhythmic 
nutrient availability. This strongly implicates the endoge-
nous host circadian system in the regulation of daily fluc-
tuations of the microbiota.
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