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SUMMARY

The same intervention can produce different effects in different sites. Existing transport mediation esti-
mators can estimate the extent to which such differences can be explained by differences in compositional
factors and the mechanisms by which mediating or intermediate variables are produced; however, they are
limited to consider a single, binary mediator. We propose novel nonparametric estimators of transported
interventional (in)direct effects that consider multiple, high-dimensional mediators and a single, binary
intermediate variable. They are multiply robust, efficient, asymptotically normal, and can incorporate
data-adaptive estimation of nuisance parameters. They can be applied to understand differences in treat-
ment effects across sites and/or to predict treatment effects in a target site based on outcome data in source
sites.

Keywords: Interventional indirect effect; Non-parametric methods; Mediation; Stochastic indirect effect; Targeted
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1. INTRODUCTION

The same intervention can produce different effects in different populations (e.g., Orr and others, 2003;
Miller, 2015; Arnold and others, 2018). Different effects could arise from differences in (i) the distribution
of compositional factors that modify aspects of the intervention’s effectiveness (e.g., gender, age), (ii)
probability take-up or degree of adherence to the intervention, (iii) the mechanism by which important
mediating or intermediate variables are produced, and/or (iv) the mechanism by which the outcome is
produced in different populations, including different population- or site-level contextual variables that
are predictive of the outcome (Pearl and Bareinboim, 2018). Transportability has been defined by Pearl
and Bareinboim (2018) as the “license to transfer causal information learned in experimental studies to
a different environment.” Previously, we proposed using the transport graphs of Pearl and Bareinboim
(2018) coupled with a transport estimator that predicts effects “transported” to a target population as a
tool for quantitatively examining the extent to which differences in effect estimates between sites could
be explained by factors (i)–(iii) above (Rudolph and others, 2017, 2020). In this previous work, we
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developed an efficient and robust semi-parametric estimator of transported interventional (also called
stochastic, see Rudolph and others, 2020) direct and indirect (what we refer to as (in)direct) effects in a
target population. Although this previous estimator accounted for the presence of intermediate variables
(those affected by treatment/exposure that could affect downstream mediator and outcome variables), it
was limited in that it could only consider binary versions of a treatment/exposure variable, intermediate
variable, and mediator variable and assumed that the distribution of the mediator was known (Rudolph
and others, 2020). To our knowledge, it is currently the only available estimator for transporting (in)direct
effects. However, many research questions involve continuous and/or multiple mediator variables.Thus, we
address this methodologic gap by proposing novel nonparametric estimators of transported interventional
(in)direct effects that allow for multiple, possibly high-dimensional mediators without constraints on their
distributions.

To motivate this work, we consider an illustrative research question from the Moving to Opportunity
study (MTO), a multi-site randomized controlled trial conducted by the US Department of Housing and
Urban Development, where families living in high-rise public housing were randomized to receive a
Section 8 housing voucher that they could use to move to a rental on the private market (Sanbonmatsu and
others, 2011). Families were followed up at two subsequent time points with the final time point occurring
10–15 years after randomization. In this study, some unintended harmful effects on children’s mental
health, substance use, and risk behavior outcomes were documented (Sanbonmatsu and others, 2011),
and these overall effects were partially mediated by aspects of the peer and school environments (Rudolph
and others, 2018b). However, these unintended harmful effects and their indirect effect components were
not universal across sites (Rudolph and others, 2018a, 2020). To illustrate our proposed methods, we
use the transportability framework and our novel estimators to shed light on possible reasons why the
intervention had harmful effects in some sites, particularly in Chicago, but not in others. For example, if we
take Chicago as the site we would like to transport to, then we borrow information from the remaining sites
to learn the outcome model, we can predict the effect for Chicago, standardizing based on the covariates,
intermediate and mediating variables.

Putting the above in more general terms: our approach to estimate transported interventional (in)direct
effects involves (i) borrowing information from the source population about the conditional distribution of
the outcome given the mediating variables, intermediate confounding variables, treatment, and covariates,
and (ii) using data from the target population for the distributions of the mediating variables, intermediate
confounding variables, treatment, and covariates to get estimates using the outcome model that are essen-
tially standardized to the target population. The utility of borrowing or transporting information across
sites applies more broadly than the above MTO example. It applies to questions that seek to: (i) understand
differences in treatment, policy, or intervention effects across sites in multi-site trials or cohort studies,
or to (ii) predict treatment effects in a target site based on outcome data in source sites. This article is
organized as follows. In Section 2, we introduce notation, define the structural causal models we consider,
and define and identify the transported interventional (in)direct effects. In Section 3, we describe the
efficient influence function (EIF), including a reparameterization that allows for estimation with multiple
and/or continuously distributed mediators, and derive the robustness properties of the EIF. In Section 4,
we describe two efficient estimators for the transported interventional (in)direct effects, based on the EIF
derived in Section 3: an estimator that solves the EIF in one step and a targeted minimum loss-based
estimator (TMLE). In Section 5, we present results from a simulation study in which we demonstrate
the consistency, efficiency, and robustness of the two estimators across various scenarios. In Section
6, we apply the two estimators to estimate the transported indirect effects of housing voucher receipt
on subsequent behavioral problems as adolescents among girls in Chicago, operating through aspects
of the school environment, borrowing information from the other MTO sites. Section 7 concludes the
manuscript.
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2. NOTATION AND DEFINITION OF (IN)DIRECT EFFECTS

Let O = (S, W , A, Z , M , SY ) represent the observed data, where S denotes a binary variable indicating
membership in the source population (S = 1) or target population (S = 0), W denotes a vector of observed
pretreatment covariates, A denotes a categorical treatment variable, Z denotes an intermediate variable (a
mediator-outcome confounder affected by treatment), M denotes a multivariate mediator, and Y denotes
a continuous or binary outcome. Let O1, . . . , On denote a sample of n i.i.d. observations of O. Note that
the outcome is only observed for the source population/sites, S = 1, but we are interested in estimating
effects for the target population/site, S = 0. We formalize the definition of our counterfactual variables
using the following nonparametric structural equation model (NPSEM, Pearl, 2009) though equivalent
methods may be developed by taking the counterfactual variables as primitives (Rubin, 1974). Assume
the data-generating process satisfies:

S = fS(US); W = fW (S, UW ); A = fA(S, W , UA); Z = fZ(S, W , A, UZ);

M = fM (S, W , A, Z , UM ); Y = fY (W , A, Z , M , UY ). (2.1)

Here, U = (US , UW , UA, UZ , UM , UY ) is a vector of exogenous factors, and the functions f are assumed
deterministic but unknown. We use P to denote the distribution of O. We let P be an element of the
nonparametric statistical model defined as all continuous densities on O with respect to some dominating
measure ν. Let p denote the corresponding probability density function. We denote random variables with
capital letters and realizations of those variables with lowercase letters. We define Pf = ∫

f (o)dP(o) for
a given function f (o).

We use the following additional definitions. The function c(a, z, m, w) denotes P(S = 1 | A = a, Z =
z, M = m, W = w), g(a | w, S = 0) denotes P(A = a | W = w, S = 0), e(a | m, w, S = 0) denotes
P(A = a | M = M , W = w, S = 0), q(z | a, w, S = 0) denotes the density of Z conditional on (A, W , S) =
(a, w, 0), r(z | a, m, w, S = 0) denotes the density of Z conditional on (A, M , W , S) = (a, m, w, 0),
b(a, z, m, w, S = 1) denotes E(Y | A = a, Z = z, M = m, W = w, S = 1), and t denotes P(S = 0).
Let Xa denote the counterfactual outcome observed in a hypothetical world in which P(A = a) = 1.
For example, we have Za = fZ(S, W , a, UZ), Ma = fM (S, W , a, Za, UM ), and Ya = fY (W , a, Za, Ma, UY ).
Likewise, we let Ya,m = fY (W , a, Za, m, UY ) denote the value of the outcome in a hypothetical world where
P(A = a, M = m) = 1.

2.1. Transported interventional (in)direct effects

We define the total effect of A on Y in the target population S = 0 in terms of a contrast between two
user-given values a′, a� ∈ A among those for whom S = 0. The total effect can be decomposed into the
natural direct and indirect effects. However, natural direct and indirect effects are not generally identified
in the presence of a mediator-outcome confounder affected by treatment (Z , using our notation above)
(Avin and others, 2005; Tchetgen Tchetgen and VanderWeele, 2014). Direct and indirect effects may be
alternatively defined considering a stochastic intervention on the mediator (Petersen and others, 2006;
van der Laan and Petersen, 2008; Zheng and van der Laan, 2012; VanderWeele and others, 2014; Rudolph
and others, 2017). Let Ga denote a random draw from the conditional distribution of Ma conditional on
(S, W ). The interventional indirect effect (also called randomized interventional indirect effect) among
those for whom S = 0 can be written: E(Ya′ ,Ga′ − Ya′ ,Ga� | S = 0). Generally speaking, this is the
average effect of A on Y that operates through M in the target population. Specifically, it is the average
difference in expected outcomes setting A = a′ and stochastically drawing M from the counterfactual
joint distribution of mediator values, conditional on W , in a hypothetical world in which A = a′ versus
drawing from the counterfactual joint distribution of mediator values, conditional on W , in which A = a�,
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in the target population. The interventional direct effect among those for whom S = 0 can be similarly
written: E(Ya′ ,Ga� − Ya� ,Ga� | S = 0), and, generally speaking, is the average effect of A on Y that does not
operate through M in the target population. Specifically, it is the average difference in expected outcomes
setting A = a′ versus A = a� and stochastically drawing M from the counterfactual joint distribution of
mediator values, conditional on W , in a hypothetical world in which A = a�, in the target population. We
focus on identification and estimation of θ = E(Ya′ ,Ga� | S = 0). Contrasts of θ under the values of a′ and
a� given in the above definitions correspond to the transported interventional (in)direct effects. Under the
assumptions

(1) Ya′ ,m⊥⊥A | W , S = 0,
(2) Ma�⊥⊥A | W , S = 0,
(3) Ya′ ,m⊥⊥M | (Z , A, W , S = 0),
(4) E(Y | A = a′, Z = z, M = m, W = w, S = 1) = E(Y | A = a′, Z = z, M = m, W = w, S = 0),

and
(5) positivity:

• P(w | S = 0) > 0 implies P(a | w, S = 0) > 0 for a ∈ {a′, a�}
• P(m | a�, w, S = 0) > 0 and P(z | a′, w, S = 0) > 0 imply P(m | a′, z, w, S = 0) > 0

• P(a′, z, m, w | S = 0) > 0 implies P(a′, z, m, w | S = 1) > 0,

θ is identified and is equal to

θ =
∫

b(a′, z, m, w, S = 1)q(z | a′, w, S = 0)p(m | a�, w, S = 0)p(w | S = 0)dν(w, z, m). (2.2)

(The identification proof is in the Supplementary materials available at Biostatistics online.) Assumptions
(1)–(3) are sequential randomization assumptions that involve the target population only. Assumption
(1) states that, conditional on W , there is no unmeasured confounding of the relation between A and Y ;
assumption (2) states that conditional on W there is no unmeasured confounding of the relation between A
and M ; (3) states that conditional on (A, W , Z) there is no unmeasured confounding of the relation between
M and Y . Assumption (4) is the transportability assumption and states that there is a common outcome
model across source and target populations. It is this last assumption (4) that allows us to transport or
borrow information on the outcome model from other sites. If an alternative data source is available where
Y is observed among those for whom S = 0, then the null hypothesis of equivalence between S = 0 and
S = 1 can be tested nonparametrically (Luedtke and others, 2019).

3. EFFICIENT INFLUENCE FUNCTION FOR θ

The efficient influence function (EIF) characterizes the asymptotic behavior of all regular and efficient
estimators (Bickel and others, 1993; van der Vaart, 2002). In addition to being locally efficient, estimators
constructed using the EIF have advantages of multiple robustness, which means that some components
of the data distribution (i.e., nuisance parameters) can be inconsistently estimated while the estimator
remains consistent. The multiple robustness property also allows the use data-adaptive machine learning
algorithms in estimating nuisance parameters while retaining the ability to compute correct standard errors
and confidence intervals. This is due to fact that the asymptotic analysis of the estimators yield second-
order bias terms in differences of the nuisance parameters, and therefore allow slow convergence rates
(e.g., n−1/4) for estimating these nuisance parameters.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa057#supplementary-data
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THEOREM 3.1 (Efficient influence function) For fixed a′, a� define

h(z, m, w, S = 0) = p(m | a�, w, S = 0)

p(m | a′, z, w, S = 0)

u(z, w, S = 0) =
∫

M
b(a′, z, m, w, S = 1)p(m | a�, w, S = 0)dν(m)

v(w, S = 0) =
∫

M×Z
b(a′, z, m, w, S = 1)q(z | a′, w, S = 0)p(m | a�, w, S = 0)dν(m, z).

(3.3)

The efficient influence function for θ in the nonparametric model M is equal to

DP,θ (o) =DP,Y (o) + DP,Z(o) + DP,M (o) + DP,W (o), where

DP,Y (o) = 1{s = 1, a = a′}
t × g(a′ | w, S = 0)

1 − c(a′, z, m, w)

c(a′, z, m, w)
h(z, m, w, S = 0){y − b(a′, z, m, w, S = 1)}

DP,Z(o) = 1{s = 0, a = a′}
t × g(a′ | w, S = 0)

{
u(z, w, S = 0) −

∫
Z

u(z, w, S = 0)q(z | a′, w, S = 0)dν(z)

}

DP,M (o) = 1{s = 0, a = a�}
t × g(a� | w, S = 0)

{∫
Z

b(a′, z, m, w, S = 1)q(z | a′, w, S = 0)dν(z) − v(w, S = 0)

}

DP,θ ,W (o) =1{s = 0}
t

{v(w, S = 0) − θ} . (3.4)

This theorem makes two important contributions that advance the previous work deriving the EIF for a
similar θ , but one that was limited in that it (i) assumed that the distribution of M conditional on (A, W , S)

was known and (ii) could only consider a single binary M (Rudolph and others, 2020). First, the EIF
we derive does not assume that that the distribution of M conditional on (A, W , S) is known, reflected
in the DP,M (o) component of the EIF in Equation 3.4, above. Second, we can overcome the challenge
of estimating multivariate or continuous densities on the mediator, M , and intermediate variable, Z , as
well as integrals with respect to these densities, if either M or Z is low-dimensional (though it can be
multivariate) by using an alternative parameterization of the densities that allows regression methods to be
used in estimating the relevant quantities. In the remainder of this work, we assume Z is low-dimensional
(e.g., binary, as in our MTO illustrative application), though similar parameterizations may be achieved
if M is low-dimensional.

The EIF given in Theorem 3.1 may be represented in terms of the expressions given in Lemma 3.1
below, which does not depend on conditional densities or integrals on the mediating variables.

LEMMA 3.1 (Alternative representation of the EIF for univariate Z and multivariate M ) The functions h,
u, and v may be parameterized:

h(z, m, w, S = 0) = g(a′ | w, S = 0)

g(a� | w, S = 0)

q(z | a′, w, S = 0)

r(z | a′, m, w, S = 0)

e(a� | m, w, S = 0)

e(a′ | m, w, S = 0)
(3.5)

u(z, w, S = 0) = E
{

b(a′, Z , M , W , S = 1)h(Z , M , W , S = 0),

∣∣∣∣ Z = z, a′, W = w, S = 0
}

, (3.6)
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v(w, S = 0) = E
{∫

Z
b(a′, z, M , W , S = 1)q(z | a′, W , S = 0)dν(z)

∣∣∣∣ A = a�, W = w, S = 0
}

.

(3.7)

In the remainder of the article, we denote η = (c, g, e, q, r, b, u, v) and DP,θ (o) = Dη,θ (o). We let
η̂ denote an estimator of η, and η1 denotes the probability limit of η̂, which may be different from the
true value. We derive the robustness properties of Dη,θ (O) in the Supplementary materials available at
Biostatistics online; they are given below in Lemma 3.2. The behavior of the term PDη1,θ determines the
robustness properties of the EIF as an estimating equation. Theorem 1 in the Supplementary materials
available at Biostatistics online, together with the Cauchy–Schwarz inequality shows that PDη1,θ yields a
term of the order of:

R(η1, η) = ‖v1 − v‖‖g1 − g‖
+ ‖u1 − u‖‖q1 − q‖
+ ‖b1 − b‖‖q1 − q‖
+ ‖b1 − b‖{‖c1 − c‖+‖q1 − q‖+‖r1 − r‖+‖e1 − e‖}

such that consistent estimation of θ is possible under consistent estimation of certain configurations of
the parameters in η. The following lemma is a direct consequence.

LEMMA 3.2 (Multiple robustness of Dη,θ (O)) Let η1 = (c1, g1, e1, q1, r1, b1, u1, v1) be such that one of the
following conditions hold:

(1) v1 = v and either (c1, q1, e1, r1) = (c, q, e, r) or (b1, q1) = (b, q) or (b1, u1) = (b, u), or
(2) g1 = g and either (c1, q1, e1, r1) = (c, q, e, r) or (b1, q1) = (b, q) or (b1, u1) = (b, u).

Then PDη1,θ = 0 with Dη,θ defined as in Theorem 3.1.

We note that the cases (b1, v1, u1) = (b, v, u) and (b1, g1, u1) = (b, g, u) may be uninteresting if the
re-parametrization in Lemma 3.1 is used to estimate the EIF, because in that case, consistent estimation
of u and v will generally require consistent estimation of (b, c, q, r, e) in addition to the outer conditional
expectations in Equations (3.6) and (3.7).

4. ESTIMATORS

We describe two efficient, robust estimators of θ . In Section 4.1, we propose an estimator that solves the
EIF estimating equation in one step (Pfanzagl and Wefelmeyer, 1985) (which we refer to as a one-step
estimator), and in Section 4.2, we propose a targeted minimum loss-based estimator (TMLE, van der
Laan and Rubin, 2006), which is a substitution estimator that also solves the EIF estimating equation, but
does it through iterative de-biasing targeted updates to nuisance parameters. We provide the R code to
implement the proposed estimators, freely available at https://github.com/kararudolph/transport.

Let θ̂os and θ̂tmle denote the estimators defined below in Sections 4.1 and 4.2. Per the theorem below,
the two estimators are asymptotically normal and efficient.

THEOREM 4.1 (Asymptotic normality and efficiency) Assume

(1) Positivity, described as identification assumption (5) in Section 2.1, and

https://github.com/kararudolph/transport
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(2) The class of functions {Dη,θ : |θ − θ0| < δ, ||η − η1|| < δ} is Donsker for some δ > 0 and such
that P0(Dη,θ − Dη1,θ0)

2 → 0 as (η, θ) → (η1, θ0), and
(3) The second-order term R(η̂, η) is oP(n−1/2).

Then,
√

n(θ̂os − θ) → N (0, σ 2), and
√

n(θ̂tmle − θ) → N (0, σ 2), where σ 2 = Var(Dη(O)) is the
nonparametric efficiency bound.

The proof of this theorem follows the general proof presented in Appendix 18 of van der Laan and
Rose (2011). As a consequence, the variance of the estimators that follow can be estimated as the sample
variance of the EIF, with θ̂ and the nuisance parameters estimated as described above. This variance
estimate may be used to construct Wald-type confidence intervals.

The Donsker condition of Theorem 4.1 may be avoided by using cross-fitting (Klaassen, 1987; Zheng
and van der Laan, 2011; Chernozhukov and others, 2019) in the estimation procedure. Let V1, . . . , VJ

denote a random partition of the index set {1, . . . , n} into J prediction sets of approximately the same size.
That is, Vj ⊂ {1, . . . , n}; ⋃J

j=1 Vj = {1, . . . , n}; and Vj ∩ Vj′ = ∅. In addition, for each j, the associated
training sample is given by Tj = {1, . . . , n} \ Vj. let η̂j denote the estimator of η, obtained by training the
corresponding prediction algorithm using only data in the sample Tj. Further, we let j(i) denote the index
of the validation set which contains observation i. The one-step and TMLE estimators may be adapted to
cross-fitting by substituting all occurrences of η̂(Oi) by η̂j(i)(Oi) in the respective algorithms.

The third condition of Theorem 4.1 can be satisfied by many data-adaptive algorithms (e.g., lasso
(Bickel and others, 2009), regression trees (Wager and Walther, 2015), neural networks (Chen and White,
1999), and highly adaptive lasso (HAL) (van der Laan, 2017)); we use HAL in the simulations that follow.

4.1. One-step estimator

The one-step estimate of θ is given by the solution to the EIF estimating equation:

θ̂os = 1

n

n∑
i=1

{Dη̂,Y (Oi) + Dη̂,Z(Oi) + Dη̂,M (Oi)} + 1

n

n∑
i=1

1{Si = 0}
t̂

v̂(Wi, S = 0).

We first describe how to estimate Dη,Y . The regression b(a′, z, m, w, S = 1) can be estimated by fitting
a regression of Y on W , A, Z , M among observations with S = 1 and then predicting values of Y setting
A = a′. The probability t is estimated as the empirical proportion of observations with S = 0 (i.e., in
the target population). The regression function c(a′, z, m, w) can be estimated by fitting a regression of
S on W , A, Z , M and predicting the probability that S = 1 setting A = a′. The treatment mechanism
g(a | w, S = 0) for a ∈ {a′, a�} can be estimated by fitting a regression of A on (S, W ) and predicting
the probability that A = a, setting S = 0. For the motivating example, we consider here in which
assignment of A is randomized, these can be estimated as the empirical probabilities that A = a′ and
A = a� among those with S = 0. Under the reparameterization in Lemma 3.1 and in our motivating
example, q(z | a′, w, S = 0) can be estimated by fitting a regression of Z on S, A, W and predicting
the probability that Z = z setting A = a′, S = 0. Likewise, r(z | a′, m, w, S = 0) can be estimated by
fitting a regression of Z on S, A, M , W and predicting the probability that Z = z setting A = a′, S = 0.
The treatment probabilities e(a′ | m, w, S = 0) and e(a∗ | m, w, S = 0) can be estimated by fitting a
regression of A on S, M , W and predicting the probability that A = a′ and A = a∗, respectively, setting
S = 0.
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We next describe how to estimate Dη,Z . For binary Z , the EIF simplifies to be

Dη,Z(o) = 1{s = 0, a = a′}
t × g(a′ | w, S = 0)

{u(1, w, S = 0) − u(0, w, S = 0)} {
z − q(1 | a′, w, S = 0)

}
.

The parameters t, g(a′ | w, S = 0) and q(z | a′, w, S = 0) can be estimated as described above. For each
z, u(z, w, S = 0) can be estimated by regressing the quantity b(a′, Z , M , W , S = 1) × h(Z , M , W , S = 0)

on S, Z , W and getting predicted values, setting Z = z, S = 0.
To estimate Dη,M , we estimate t, g(a∗ | w, S = 0), b(a′, z, m, w, S = 1), q(z | a′, w, S = 0) as described

above. The function v(w, S = 0) can be estimated by marginalizing out Z from b(a′, z, M , W , S = 1)

using q(z | a′, W , S = 0) as predicted probabilities for each z, and then regressing the resulting quantity
on A, W , S, and predicting values setting A = a∗, S = 0.

4.2. TML estimator

We now describe how to compute a related TML estimator. As an overview, this estimator entails targeting
b(a′, z, m, w, S = 1), q(z|a′, w, S = 0), and v(w, S = 0), which correspond to solving terms 1, 2, and 3,
respectively, in (3.4). Plugging in θ̂ solves the last term in (3.4).

We assume Y can be bounded in [0, 1], as described previously (Gruber and van der Laan, 2010).
Many of the steps are identical to those for the one-step estimator, the differences are in the targeting of
b(a′, z, m, w, S = 1), q(z | a′, w, S = 0), and v(w, S = 0).

Let b̂(a′, z, m, w, S = 1) be an initial estimate of b(a′, z, m, wS = 1). We update this initial estimate
using covariate

Ĉb(a
′, Z , M , W ) = 1 − ĉ(a′, Z , M , W )

ĉ(a′, Z , M , W )

ĥ(Z , M , W , S = 0)

ĝ(a′ | W , S = 0) × t̂

in a logistic regression of Y with logit b̂(a′, Z , M , W , S = 1) as an offset, among the subset for which S = 1.
Let ε̂b denote the maximum likelihood estimation (MLE) fitted coefficient associated with Ĉb(a′, Z , M , W ).
The targeted (i.e., updated) estimate is given by

logit b̃(a′, z, m, w) = logit b̂(a′, z, m, w, S = 1) + ε̂bĈb(a
′, z, m, w).

An alternative algorithm would use

ê(a�|M , W , S = 0)

ê(a′ | M , W , S = 0)

1

ĝ(a� | W , S = 0) × t̂

as weights of what would become a weighted logistic regression model with covariate

Ĉb(a
′, Z , M , W ) = 1 − ĉ(a′, Z , M , W )

ĉ(a′, Z , M , W )

q̂(Z | a′, W , S = 0)

r̂(Z | a′, M , W , S = 0)
.

Next, let q̂(z | a′, w, S = 0) be an initial estimate of q(z | a′, w, S = 0). We update this initial estimate
using covariate

Ĉq(a
′, W ) = û(1, W , S = 0) − û(0, W , S = 0)

ĝ(a′ | W , S = 0) × t̂



Efficiently transporting causal direct and indirect effects 797

in a logistic regression of Z with logit q̂(Z | a′, W , S = 0) as an offset, among the subset for which
A = a′, S = 0. Let ε̂q be the MLE fitted coefficient associated with Cq(A, W ). The targeted estimate is
given by

logit q̃(z | a′, w, S = 0) = logit q̂(z | a′, w, S = 0) + ε̂qĈq(a
′, w).

To potentially improve performance in finite samples, we can move {ĝ(a′ | W , S = 0) × t̂}−1 into the
weights of a weighted logistic regression model, leaving û(1, W , S = 0) − û(0, W , S = 0) as Ĉq(a′, W ).

Replacing b̂ and q̂ with b̃ and q̃, the above steps can be iterated until the score equation
n−1

∑
i{Dη̃,Y (Oi) + Dη̃,Z(Oi)} = 0 is solved up to a factor of (

√
n log(n))−1. This iterating process and

stopping criterion ensures that the efficient influence function is solved up to n−1/2 and mitigates risk of
overfitting.

Next, we marginalize out Z from b̃(a′, z, M , W ) using q̃(z | a′, W ) as predicted probabilities for each
z, and call the resulting quantity Q. This quantity is then regressed on (A, W ) among units with S = 0 and
A = a� to obtain an estimator v̂(W , S = 0). This estimate is updated using covariate

Ĉv(a
�, W ) = 1

ĝ(a� | W , S = 0) × t̂

in a logistic regression of Q with logit v̂(W , S = 0) as an offset, among the subset for which A = a∗, S = 0.
Let ε̂v denote the MLE fitted coefficient on Cv(a�, W ). The targeted estimate is given by

logit ṽ(w, S = 0) = logit v̂(w, S = 0) + ε̂vĈv(a
∗, w).

To potentially improve finite sample performance, Ĉv(a�, W ) may be moved into the weights of a weighted
logistic regression model with intercept only. The empirical mean of ṽ(Wi, S = 0) among those for whom
S = 0 is the TMLE estimate. Its variance can be estimated as the sample variance of the estimated EIF,
given in (3.4).

5. SIMULATION

We conducted a limited simulation study to examine and compare finite sample performance of these two
estimators. We consider the data-generating mechanism (DGM) as follows. All variables are Bernoulli
distributed with probabilities given by

P(W1 = 1) = 0.5

P(W2 = 1 | W1) = 0.4 + 0.2W1

P(	 = 1 | W ) = expit(−1 + log(4)W1 + log(4)W2)

P(S = 1 | 	, W ) = expit(log(1.2)W1 + log(1.2)W2 + log(1.2)W1W2)

P(A = 1 | S, 	, W ) = 0.5

P(Z = 1 | A, S, 	, W ) = expit(− log(2) + log(4)A + − log(2)W2 + log(1.4)S + log(1.43)A × S)

P(M = 1 | Z , A, S, 	, W ) = expit(− log(2) + log(4)Z − log(1.4)W2 + log(1.4)S)

P(Y = 1 | M , Z , A, S, 	, W ) = expit(− log(5) + log(8)Z + log(4)M − log(1.2)W2 + log(1.2)W2Z .

This DGM is formulated to align with features of the MTO study we use for the illustrative example.
For example, A is randomly assigned and adheres to the exclusion restriction (Angrist and others, 1996),
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aligned with its role as an instrumental variable. In addition, we consider a modification of the observed
data we have considered thus far: 	× O = 	× (S, W , A, Z , M , SY ), where 	 is an indicator of selection
into the survey sample. We assume the survey sampling weights are known or can be estimated as


̂i = 1

�i

∑n
i=1(1 − Si)∑n

i=1(1 − Si)�
−1
i

,

where � = P(	 = 1 | X ) and X represents unobserved variables used in the sampling design. Our
previous identification result, which can alternatively be written as θ = E[v(W , S = 0)], then becomes

θ	=1 = E
[

 v(W , S = 0)

∣∣∣∣ 	 = 1
]

,

where we have added an index 	 = 1 to emphasize that we are interested in parameters for the population
from which the sample was drawn. The EIF is modified to be DP,	=1(o) = 
DP(o), and the estimators of
the previous section can be applied by using the weights 
̂i for each subject in the sample.

We consider estimator performance in terms of absolute bias, absolute bias scaled by
√

n, influence
curve-based standard error relative to the Monte Carlo-based standard error, standard deviation of the
estimator relative to the efficiency bound scaled by

√
n, mean squared error relative to the efficiency

bound scaled by n, and 95% confidence interval (CI) coverage. We run 1000 simulations for sample sizes
N = 1000 and N = 10 000. We also consider several model specifications. One in which all nuisance
parameters in η are correctly specified, others that misspecify each nuisance parameter one at a time,
another in which g(a′ | w, S = 0), b(a′, z, m, w, S = 1), q(z | a′, w, S = 0) are correctly specified but
the rest are not; and last, correctly specifying b(a′, z, m, w, S = 1), q(z | a′, w, S = 0), v(w, S = 0) but
incorrectly specifying the rest. Under correct specification scenarios, we use HAL (Benkeser and van der
Laan, 2016; van der Laan, 2017) to fit each nuisance parameter. For incorrect specification, we use an
intercept-only model.

Table 1 shows simulation results for the transported interventional direct effect, and Table 2 shows
simulation results for the transported interventional indirect effect comparing the one-step and TML
estimators under correct specification of all nuisance parameters and various misspecifications. Given
the robustness results in Lemma 3.2, we expect consistent estimates for all specifications in Tables 1
and 2 except when q is misspecified. We see this reflected in the results. We see that when the q model
is misspecified, bias is more than an order of magnitude greater than any other specification for the
transported interventional direct effect in Table 1, and also greater, though to a lesser extent for the
transported interventional indirect effect in Table 2. 95% CI coverage using influence curve (IC)-based
inference is close to 95% in the correctly specified scenario but is poor when q is misspecified for the
transported interventional direct effect (Table 1), which is not unexpected given the biased estimates in
this scenario. Coverage is less than 95% in other misspecified scenarios for both the transported direct
and indirect effects (e.g., 68% when the b model is misspecified for the transported interventional indirect
effect, Table 2). This is not unexpected; the IC may not provide accurate inference when the IC at the
estimated distribution using misspecified models does not converge to the IC at the true distribution.
For robustness to extend to IC-based inference, further targeting of the nuisance parameters would be
necessary that would preserve asymptotic linearity with a known influence curve at the cost of some
efficiency (van der Laan, 2014; Benkeser and others, 2016). We note that under the smaller sample size of
N = 1000 we see some deterioration in performance, particularly for the indirect effect, which is expected
given that the true indirect effect is over five times smaller than the direct effect.

We also give simulation results in Table 3 comparing performance of the transport one-step and TML
estimators, assuming the outcome data are unobserved for S = 0, and the nontransported versions of
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Table 1. Simulation results for the transported interventional direct effect.

Nuisance parameters misspecified Estimator |bias| √
n|bias| relse relsd relrmse 95%CI Cov

Transported interventional direct effect

N = 10 000

None os 0.0005 0.0490 1.0200 0.9489 0.9488 0.9570
tmle 0.0004 0.0415 1.0040 0.9610 0.9608 0.9530

c os 0.0005 0.0519 1.0023 0.8226 0.8227 0.9570
tmle 0.0003 0.0312 0.9577 0.8579 0.8576 0.9460

g os 0.0005 0.0480 1.0213 0.9481 0.9480 0.9580
tmle 0.0004 0.0408 1.0055 0.9600 0.9598 0.9520

e os 0.0002 0.0156 1.0097 0.9431 0.9427 0.9520
tmle 0.0003 0.0301 0.9878 0.9602 0.9599 0.9460

q os 0.0885 8.8488 0.7750 1.4727 5.2339 0.0250
tmle 0.0348 3.4814 1.0656 1.0154 2.2215 0.5580

r os 0.0024 0.2382 1.0889 0.8724 0.8824 0.9640
tmle 0.0021 0.2134 1.0809 0.8788 0.8867 0.9640

b os 0.0047 0.4739 1.0460 0.9615 0.9979 0.9470
tmle 0.0107 1.0661 0.9908 1.0007 1.1690 0.9070

u os 0.0053 0.5285 0.9400 0.9405 0.9867 0.9230
tmle 0.0053 0.5262 0.9249 0.9530 0.9983 0.9150

v os 0.0005 0.0499 1.0213 0.9476 0.9476 0.9570
tmle 0.0004 0.0421 1.0028 0.9621 0.9619 0.9520

c, e, r, u, v os 0.0023 0.2293 0.8924 0.7159 0.7272 0.9140
tmle 0.0019 0.1889 0.8519 0.7465 0.7538 0.9020

c, g, e, r, u os 0.0023 0.2321 0.8914 0.7165 0.7281 0.9140
tmle 0.0019 0.1904 0.8548 0.7438 0.7513 0.9030

N = 1000

None os 0.0014 0.0454 1.0200 0.8925 0.8921 0.9591
tmle 0.0028 0.0880 0.9702 0.9309 0.9314 0.9414

c os 0.0003 0.0104 1.0340 0.7691 0.7683 0.9600
tmle 0.0021 0.0648 0.9648 0.8190 0.8190 0.9460

g os 0.0019 0.0617 1.0167 0.8958 0.8957 0.9520
tmle 0.0032 0.1009 0.9697 0.9317 0.9327 0.9424

e os 0.0036 0.1134 1.0131 0.8855 0.8871 0.9520
tmle 0.0049 0.1550 0.9611 0.9252 0.9286 0.9440

q os 0.0672 2.1252 0.7993 1.3098 1.7796 0.7560
tmle 0.0280 0.8862 1.0124 0.9771 1.0981 0.9300

r os 0.0073 0.2303 1.1242 0.8149 0.8245 0.9620
tmle 0.0070 0.2202 1.0994 0.8315 0.8400 0.9620

b os 0.0047 0.1499 1.0460 0.3041 0.3156 0.9470
tmle 0.0107 0.3371 0.9908 0.3164 0.3697 0.9070

u os 0.0106 0.3362 0.9735 0.8614 0.8814 0.9420
tmle 0.0101 0.3186 0.9234 0.8993 0.9164 0.9180

v os 0.0009 0.0295 1.0304 0.8827 0.8819 0.9589
tmle 0.0021 0.0668 0.9857 0.9152 0.9150 0.9498

c, e, r, u, v os 0.0030 0.0949 0.9553 0.6643 0.6657 0.9315
tmle 0.0013 0.0424 0.9141 0.6898 0.6895 0.9224

c, g, e, r, u os 0.0019 0.0591 0.9533 0.6663 0.6664 0.9291
tmle 0.0001 0.0034 0.9044 0.6981 0.6974 0.9222
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Table 2. Simulation results for the transported interventional indirect effect.

Nuisance parameters misspecified Estimator |bias| √
n|bias| relse relsd relrmse 95%CI Cov

Transported interventional indirect effect

N = 10 000

None os 0.0000 0.0030 0.9966 0.9760 0.9755 0.9420
tmle 0.0001 0.0065 0.9895 0.9778 0.9774 0.9400

c os 0.0003 0.0272 0.9864 0.9445 0.9456 0.9410
tmle 0.0001 0.0147 0.9734 0.9530 0.9529 0.9370

g os 0.0000 0.0004 0.9976 0.9749 0.9744 0.9430
tmle 0.0000 0.0044 0.9907 0.9768 0.9764 0.9430

e os 0.0006 0.0632 0.9610 0.8917 0.9003 0.9390
tmle 0.0007 0.0668 0.9603 0.8887 0.8983 0.9380

q os 0.0020 0.2035 0.9285 1.0709 1.1459 0.9070
tmle 0.0030 0.2951 0.8061 1.2396 1.3737 0.8410

r os 0.0003 0.0324 1.0081 1.0034 1.0051 0.9500
tmle 0.0001 0.0075 1.0429 0.9652 0.9648 0.9590

b os 0.0001 0.0067 0.4870 1.0879 1.0874 0.6850
tmle 0.0001 0.0099 0.4747 1.1763 1.1759 0.6700

u os 0.0000 0.0020 0.9997 0.9714 0.9709 0.9440
tmle 0.0000 0.0009 0.9919 0.9744 0.9739 0.9440

v os 0.0000 0.0026 1.0250 1.0114 1.0109 0.9550
tmle 0.0001 0.0058 1.0015 1.0259 1.0254 0.9480

c, e, r, u, v os 0.0006 0.0618 0.9375 0.9834 0.9907 0.9400
tmle 0.0007 0.0696 0.9168 0.9947 1.0040 0.9310

c, g, e, r, u os 0.0007 0.0676 0.9032 0.9399 0.9492 0.9150
tmle 0.0008 0.0767 0.8996 0.9387 0.9508 0.9150

N = 1000

None os 0.0007 0.0229 0.9010 1.0200 1.0201 0.9041
tmle 0.0006 0.0200 0.8900 1.0209 1.0207 0.8988

c os 0.0013 0.0407 0.8891 0.9901 0.9924 0.8900
tmle 0.0011 0.0337 0.8729 0.9970 0.9983 0.8880

g os 0.0009 0.0293 0.9092 1.0185 1.0194 0.9072
tmle 0.0008 0.0242 0.8974 1.0193 1.0197 0.8992

e os 0.0026 0.0818 0.9025 0.9447 0.9582 0.8992
tmle 0.0025 0.0797 0.8953 0.9415 0.9543 0.8976

q os 0.0017 0.0541 0.8405 1.0920 1.0963 0.8700
tmle 0.0017 0.0525 0.7671 1.1978 1.2012 0.8440

r os 0.0004 0.0120 0.8955 1.0476 1.0468 0.9080
tmle 0.0008 0.0263 0.9121 1.0109 1.0112 0.8980

b os 0.0001 0.0021 0.4870 0.3440 0.3439 0.6850
tmle 0.0001 0.0031 0.4747 0.3720 0.3719 0.6700

u os 0.0008 0.0264 0.8872 1.0328 1.0331 0.8900
tmle 0.0007 0.0215 0.8655 1.0424 1.0423 0.8800

v os 0.0004 0.0114 0.9605 1.0274 1.0265 0.9247
tmle 0.0003 0.0086 0.9279 1.0450 1.0440 0.9110

c, e, r, u, v os 0.0023 0.0733 0.8522 1.0237 1.0331 0.8973
tmle 0.0026 0.0831 0.8284 1.0286 1.0410 0.8881

c, g, e, r, u os 0.0020 0.0618 0.8595 0.9285 0.9358 0.8741
tmle 0.0022 0.0708 0.8492 0.9229 0.9328 0.8741
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Table 3. Simulation results comparing one-step (os) and TML (tmle) estimators for the transported
interventional indirect and direct effects with those for the nontransported interventional indirect
and direct effects.

Effect type Estimator |bias| √
n|bias| relse relsd relrmse 95%CI Cov

N = 10 000

Transported, indirect effect os 0.0000 0.0030 0.9966 0.9760 0.9755 0.9420
Transported, indirect effect tmle 0.0001 0.0065 0.9895 0.9778 0.9774 0.9400
Nontransported, indirect effect os 0.0000 0.0022 0.9413 1.1722 1.1717 0.9420
Nontransported, indirect effect tmle 0.0000 0.0035 0.9412 1.1690 1.1685 0.9420
Transported, direct effect os 0.0005 0.0490 1.0200 0.9489 0.9488 0.9570
Transported, direct effect tmle 0.0004 0.0415 1.0040 0.9610 0.9608 0.9530
Nontransported, direct effect os 0.0013 0.1344 1.0178 1.1003 1.1074 0.9620
Nontransported, direct effect tmle 0.0014 0.1397 1.0150 1.1033 1.1110 0.9640

N = 1000

Transported, indirect effect os 0.0007 0.0229 0.9010 1.0200 1.0201 0.9041
Transported, indirect effect tmle 0.0006 0.0200 0.8900 1.0209 1.0207 0.8988
Nontransported, indirect effect os 0.0001 0.0045 0.9134 1.1626 1.1622 0.9340
Nontransported, indirect effect tmle 0.0001 0.0042 0.9170 1.1495 1.1490 0.9300
Transported, direct effect os 0.0014 0.0454 1.0200 0.8925 0.8921 0.9591
Transported, direct effect tmle 0.0028 0.0880 0.9702 0.9309 0.9314 0.9414
Nontransported, direct effect os 0.0025 0.0802 1.0212 1.0854 1.0876 0.9540
Nontransported, direct effect tmle 0.0031 0.0968 1.0119 1.0949 1.0984 0.9540

the one-step and TML estimators developed previously (Díaz and others, 2020). These nontransported
estimators are approximately 3 times more efficient than their transported counterparts (e.g., the efficiency
bound of the transported TMLE of the indirect effect is 3 times greater than the efficiency bound of the
nontransported TMLE of the indirect effect), reflecting the advantage of observing the outcome data in
the target population.

6. ILLUSTRATIVE EXAMPLE

We apply the one-step and TML estimators proposed in Section 4 to estimate interventional indirect effects
transported across MTO sites, as described in Section 1. Specifically, we are interested in the extent to
which differences in: (i) the distribution of individual-level compositional factors between the sites, (ii)
take-up of the intervention (i.e., using the housing voucher to move), and (iii) distribution of school
environment mediating variables can explain the difference in the indirect effect estimates between MTO
sites.

For this example, we consider the indirect effect of randomized receipt of a Section 8 housing voucher
(A) and subsequent use (Z) on behavioral problems (Y ) (Zill, 1990) through aspects of the school environ-
ment (M ), (i) rank of the schools attended, (ii) whether ever attended a school in the top 50% of rankings,
(iii) number of schools attended, (iv) number of moves since baseline, (v) average proportion of students
receiving free or reduced lunch, (vi) ratio of students to teachers, (vii) proportion of schools attended
that were Title I, and (viii) whether or not the most recent school attended was in the same district as the
baseline school) among girls, comparing the Los Angeles (LA) and New York City (NYC) sites (S = 1,
N = 1000) to the Chicago site (S = 0, N = 600) (rounded sample sizes per Census Bureau requirements).
We do this in order to illustrate our methods: the outcomes in Chicago were actually observed, so we



802 K. E. RUDOLPH AND I. DÍAZ

can compared the transported estimate with estimates obtained using Chicago outcome data. Variables
W and A were measured at baseline, when the children were 0–10 years old. Mediating variables were
measured during the interval between baseline and the final follow-up timepoint 10–15 years later. The
outcome was measured at the final follow-up timepoint. We account for a large number of covariates at
the child and family levels: child age, race/ethnicity, history of behavioral problems, and gifted/talented
status; parental education, marital status, whether or not the parent was under 18 at the birth of the child,
employment, receipt of other public benefits, household size, feeling like the neighborhood was unsafe at
night, feeling very dissatisfied with the neighborhood, whether or not the family had previously moved
more than three times, wanting to move for better schools, whether or not the family had received a
Section 8 voucher before, and poverty level of the baseline neighborhood. For this research question,
randomization to receive a Section 8 housing voucher is an instrumental variable that affects M and Y
through the intermediate variable of using the voucher to move out of public housing and into a rental
on the private market (Z). We use the MTO sampling weights as described in Section 5. These weights
account for sampling of children within families, changing randomization ratios, and loss to follow-up
(Sanbonmatsu and others, 2011). We use data-adaptive methods for fitting the nuisance parameters, using
a cross-validated ensemble of machine learning algorithms (Van der Laan and others, 2007), that includes
generalized linear models, intercept-only models, and lasso (Tibshirani, 1996) that included all first and
second-order predictors. To estimate the observed, nontransported interventional indirect effects, we use
nontransported versions of the one-step and TML estimators (Díaz and others, 2020). Standard errors are
estimated using the sample variance of the influence curve.

Figure 1 shows the transported and observed indirect effect estimates and their 95% CIs. Looking at
the observed estimates, the indirect pathway from housing voucher receipt and use through the school
environment to behavioral problems is protective for girls in LA and NYC, resulting in a reduction
in behavioral problems at the final time point. However, the same pathway appears harmful for girls
in Chicago, resulting in an increase of behavioral problems. Comparing the transported interventional
indirect effect estimate (one-step estimator: 0.0043, 95% CI −0.0150 to 0.0237, risk difference scale;
TMLE: 0.0153, 95% CI −0.0150 to 0.0420) to the observed estimate for girls in Chicago (one-step
estimator: 0.0062, 95% CI 0.0027–0.0097; TMLE: 0.0089, 95% CI 0.0007–0.0171), we see that the two
are similar even though the outcome data from Chicago was not used in the transported estimates. Thus,
by taking the outcome model for LA and NYC and standardizing based on W , A, Z , M in Chicago, the
predicted effect for Chicago is close to the observed. In contrast if they were not close to each other, this
would suggest that the identification assumptions were not met.

In the context of MTO, identification assumption (iv) of a common outcome model (i.e., a common
relation of the voucher, moving, and mediators on behavioral problems among girls across the MTO sites)
is arguably the most tenuous. This assumption would not hold in the presence of any contextual-level effects
on the outcome model, such as the local economy, housing market conditions, segregation, etc. In the
presence of contextual-level effects on the conditional outcome distribution, we would be extrapolating
from the source population to the target population using an inaccurate outcome model. Although we
do not assume a common relation of voucher and moving on the mediators among girls across sites,
we do assume that all {m, z, a′, w} observed in the target population are also observed in the source
population.

7. CONCLUSIONS

We proposed estimators for transported interventional direct and indirect effects under intermediate con-
founding and allowing for multiple, possibly related mediating variables arising from a true, unknown
joint distribution. These estimators solve the efficient influence function; one that does so in one step
and the other that is a substitution estimator that incorporates a series of targeting steps to optimize the
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Fig. 1. Interventional indirect effects estimates of being randomized to the Section 8 voucher group on behavioral
problems score in adolescence, 10–15 years later, mediated through features of the school environment, among girls.
Estimates and 95% CIs for observed (nontransported) and transported predicted effects. All results were approved
for release by the U.S. Census Bureau, authorization numbers CBDRB-FY20-ERD002-023 and CBDRB-FY20-
ERD002-024.

bias-variance trade-off. We derived their multiple robustness properties and examined finite sample per-
formance in a simulation study. Lastly, we applied our proposed estimators to better understand why a
particular pathway from a housing intervention through changes in the school environment resulted in an
unintended harmful effect on behavioral problems among girls in Chicago,when it led to improvements
in behavioral problems among girls in other cities. However, in this illustrative example, the outcome
data were, in fact, measured in the target population. Our proposed approach is arguably more useful
in the scenario where outcome data are unobserved in the target population. An example of this could
be a vaccine trial conducted in one or multiple countries where data consists of treatment (assignment
to vaccine vs. placebo), intermediate variable (completion of treatment), mediators/surrogate outcomes
(antibody titers), and long-term outcome (viral illness). One could use our proposed methods to predict
the long-term effect of the same vaccine in a new target country where data on the treatment, intermediate
variable, and mediators/surrogate outcomes have already been collected, but the long-term outcome has
not yet had the opportunity to be observed.
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8. SOFTWARE

We provide the R code to implement the proposed estimators, freely available at https://github.com/kararud
olph/transport.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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