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Abstract

Pancreatic cancer is a significant cause of cancer-related deaths in the United States with an 

abysmal five-year overall survival rate that is under 9%. Reasons for this mortality include the lack 

of late-stage treatment options and the immunosuppressive tumor microenvironment. Histotripsy 

is an ultrasound-guided, noninvasive, nonthermal tumor ablation therapy that mechanically 

lyses targeted cells. To study the effects of histotripsy on pancreatic cancer, we utilized an 

in vitro model of pancreatic adenocarcinoma and compared the release of potential antigens 

following histotripsy treatment to other ablation modalities. Histotripsy was found to release 

immune-stimulating molecules at magnitudes similar to other nonthermal ablation modalities and 

superior to thermal ablation modalities, which corresponded to increased innate immune system 

activation in vivo. In subsequent in vivo studies, murine Pan02 tumors were grown in mice and 

treated with histotripsy. Flow cytometry and rtPCR were used to determine changes in the tumor 

microenvironment over time compared to untreated animals. In mice with pancreatic tumors, 

we observed significantly increased tumor-progression-freeand general survival, with increased 

activation of the innate immune system 24 h posttreatment and decreased tumor-associated 

immune cell populations within 14 days of treatment. This study demonstrates the feasibility 

of using histotripsy for pancreatic cancer ablation and provides mechanistic insight into the initial 

innate immune system activation following treatment. Further work is needed to establish the 

mechanisms behind the immunomodulation of the tumor microenvironment and immune effects.

Keywords

Biological effects & dosimetry; therapeutics

I. Introduction

PANCREATIC cancer is the fourth leading cause of cancer-related deaths, with a 9% 

survival rate due to its late diagnosis and lack of curative treatment options [1], [2]. 

Standard treatment options are limited and include surgery, chemotherapy, and radiation 
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[3]. Only 20% of patients have tumors that can be surgically removed, and of those patients, 

the cure rate is less than 25% [4]. Ablation procedures can act as a replacement for, 

or as an adjuvant to, surgery. The most commonly used ablation modalities for treating 

cancers in abdominal organs are radio frequency ablation (RFA), microwave ablation, 

high-intensity focused ultrasound (HIFU), and cryoablation. RFA is a thermal, minimally 

invasive ablation modality that utilizes high-frequency alternating currents to thermally 

induce thermal necrosis [5]. Microwave ablation, also thermal and minimally invasive, 

induces cell death through electromagnetic microwaves that produce friction and heat [6]. 

HIFU ablates cells by depositing ultrasound energy at a focal point to rapidly increase tissue 

temperature [7]. Cryoablation results in tumor cell destruction through icecrystal formation 

as a result of liquid nitrogen or argon gas delivered to the tissue and does not result in 

protein denaturation, which has led to increased reports of immunological effects compared 

to RFA and microwave ablation [5]. The thermal ablation modalities, although efficacious 

in treating certain malignancies, have not yet been ubiquitously accepted into clinics for 

pancreatic cancer therapy due to the risk of thermal damage to healthy pancreatic tissue, 

vasculature, and other critical structures.

Recent advancements have established nonthermal therapies that have the potential to 

treat pancreatic cancer. For example, irreversible electroporation (IRE) utilizes short, high-

voltage electrical pulses that nonthermally open micropores in cell plasma membranes, 

inducing cell death [8]. Clinical trials have shown that IRE can ablate pancreatic 

tumors without damaging nearby critical structures and have had dramatic effects on 

patient survival that may be due to the induction of immunomodulatory mechanisms 

[9]-[14]. Given IRE’s controlled cell death mechanisms, the procedure has been found to 

release immunostimulatory molecules and lead to a more immunologically active tumor 

microenvironment after treatment [15]. Furthermore, recent studies comparing the thermal 

ablation modalities, cryoablation, and IRE have found that the nonthermal modalities are 

more potent at stimulating an antitumor microenvironment [16]. These procedures still 

involve surgical incisions that increase the possibility of surgery-related injury or infection.

To address the clinical limitations of IRE and other ablation modalities, new focused 

ultrasound ablation methods have been studied as a completely noninvasive, nonthermal 

alternative. Histotripsy is a nonthermal, nonionizing, imageguided ablation modality that 

uses focused ultrasound to initiate acoustic cavitation, which leads to the lysis of cells 

contained in the targeted area [17], [18]. Ablation of internal targets with histotripsy is 

effective with little to no off-target effects [19]-[21]. Early studies with histotripsy ablation 

of melanoma, hepatocellular carcinoma, renal cell carcinomas, colorectal carcinomas, and 

neuroblastomas established that there is an activation of local, cellular, and systemic immune 

responses [22]-[27].

In this study, we assess the ability of histotripsy to ablate subcutaneous pancreatic tumors 

and determine the immunological changes within the treated tumors over time. First, we 

compared the release of damage-associated molecular patterns (DAMPs) known to activate 

the innate immune system and neoantigen generation following histotripsy against other 

tumor ablation modalities. We extended these in vitro findings using the in vivo Pan02 

murine pancreatic cancer model. This mouse model was chosen given its well-characterized 
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progression and described immune effects to cancer therapies [15], [28], [29]. Using 

this model, we demonstrate effective tumor ablation and proinflammatory changes in the 

tumor microenvironment and identify critical immune signaling mechanisms associated with 

histotripsy treatment.

II. Procedures

A. Tumor Injections and Monitoring

All in vivo experiments were conducted under institutional IACUC approval and following 

the NIH Guide for the Care and Use of Laboratory Animals. For these studies, male and 

female mice were equally utilized in the 7–10-week age range. Once the entire cohort of 

C57/Bl6 mice reached a minimum weight of 20 g, 100 μL of Pan02 cells (DTP and DCTD 

tumor repository) at a concentration of 6.0 × 107 cells/mL of Matrigel (Corning) were 

injected into the right flank of the mice that were anesthetized with vaporized isoflurane (1.5 

L/min oxygen flow with 1%–3% isoflurane). Control animals were injected with the same 

amount of Matrigel that did not contain Pan02 cells. The mice were then monitored three 

times a week until the end of the study. Tumor diameters were measured with calipers and 

calculated as the square root of two perpendicular measurements, as previously described 

[24]. The weights and tumor sizes were recorded along with the general health of the mice.

B. Histotripsy Setup

In vivo studies used a custom 1-MHz, eight-element small animal histotripsy transducer 

with a geometric focus of 36 mm, an aperture size of 52.7 mm, and an f-number of 

0.68. The full-width at half-maximum (FWHM) dimensions at a geometric focus of this 

transducer were 0.98, 0.93, and 3.9 mm in transverse, elevational, and axial, respectively. 

The transducer was driven via a custom high-voltage pulser designed to generate short 

therapy pulses of <2 cycles controlled by a field-programmable gate array (FPGA) board 

(Altera DE0-Nano Terasic Technology, Dover, DE, USA) programed for histotripsy therapy 

pulsing. The transducer was positioned in a tank of degassed water heated to 37 + 4 °C 

beneath a custom-designed mouse surgical stage [see Fig. 1(a)] and attached to a computer-

guided 3-D positioning system with a 0.05-mm motor resolution to control the automated 

volumetric treatments. A linear ultrasound imaging probe with a frequency range of 10–18 

MHz (L18-10L30H-4, Telemed, Lithuania, EU) was coaxially aligned inside the transducer 

for treatment guidance and monitoring [20], [24]. The transducer was powered by a high-

voltage dc power supply (GENH750W, TDK-Lambda), and the system was controlled using 

a custom user interface operated through MATLAB (MathWorks).

C. In Vitro Ablation Treatment Parameters

Pan02 cells transfected with a plasmid that produces the influenza antigen hemagglutinin 

(Pan02-HA) were used for these in vitro experiments. HA is a common surrogate used in 

tumor-specific antigen studies. Pan02-HA cells were ablated in four treatments and two 

levels of ablation [see Fig. 2(a)]. Cells were collected and centrifuged to pellet and were 

resuspended in PBS at a concentration of 10 × 106 cells/mL; 1 mL of cell suspension was 

used for each treatment. All samples were kept on ice until treatment. For all treatments, 

the partial ablation dosages were determined to be a successful ablation with >30% viability, 

Hendricks-Wenger et al. Page 4

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the full ablation dosages had <10% viability for all samples. For each ablation modality, 

the prefix “f-” is added before the modality name within the text to refer to the full ablation, 

and “p-” is added to refer to the partial ablation. For example, f-histotripsy is full ablation 

histotripsy and p-Histotripsy is partial ablation histotripsy.

Histotripsy treatments were done in a custom holder [see Fig. 2(b)], utilizing the same 1-

MHz transducer from the in vivo work at a PRF of 250 Hz at a single spot for 0.5 or 5 min. 

The movement of the transducer during treatment was not necessary given the circulation of 

the cell suspension caused by histotripsy that was observed during treatment and in previous 

studies [30]. For cryoablation, cells were placed in liquid nitrogen (approximately −160 °C) 

for 30 min. No lower dose was used given that any drop to therapeutically low temperatures 

(−20 °C to −190 °C) resulted in high levels of cell death [31]. Thermal ablation consisted of 

cells being kept at 80 °C on a heating block for 1 or 30 min. The protocols for cryoablation 

and thermal ablation were based upon a previous study [16]. For samples not included 

in the analysis, the temperatures of the thermally treated samples were confirmed with a 

thermometer to reach 45 °C, minimum temperature to be considered thermal ablation, within 

the first half of a minute and 80 °C by 3 min [32]. Samples frozen with liquid nitrogen 

were assumed to surpass the therapeutic temperature threshold. Given the extensive prior 

studies showing no temperature change with IRE at the prescribed dosages or histotripsy, no 

temperature measurements were done for these therapies [17], [33]-[35]. For experimental 

sham, untreated control samples of cells were prepared and handled identically to treated 

samples but, instead of receiving treatment, remained on wet ice during the treatment of 

other cells.

For IRE treatments, cells were suspended in a sucrose solution, described previously to 

improve the quality of electrical transduction [36], and placed into 4 mm cuvettes. A 

generator (BTX ECM 830, Harvard Apparatus, Holliston, MA, USA) was used to apply 100 

pulses with widths of 100 μs at a frequency of 1 Hz and an electric field of either 500 or 

2000 V/cm. Cells were then cultured for 24 h before supernatant collection to allow for the 

controlled cell death of IRE to take place [15]. Additional controls were collected at this 

point to accommodate for the extra downstream processing of the IRE samples. In these 

cases, the media that was used to culture the IRE samples overnight was also run through 

BCA and nanodrop. The resulting values from the controls were subtracted from the IRE 

samples to accommodate for the excess signaling caused by the media in culturing.

Viability for all modalities was determined shortly after treatment with standard Trypan Blue 

counting with a 1:40 dilution due to the high concentration of cells and calculated as a 

percentage of cells remaining viable after treatment. Postablation samples were centrifuged 

at 1000xg for 5 min, and supernatants were collected. Supernatants for cryoablation, thermal 

ablation, and histotripsy were collected immediately after treatment and IRE 24 h after 

incubation at 37 °C.

D. In Vivo Histotripsy Treatment

Mice were treated when the average tumor diameter of the cohort was approximately 0.6 

cm, to ensure that the smallest tumors were large enough for targeting [see Fig. 1(b)]. 

Animals were euthanized 24 h after treatment, referred to as the acute group (n = 7 treated, 
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n = 7 untreated controls, and n = 3 tumor-free untreated controls), or at survival time points, 

referred to as the chronic group (n = 7 treated, n = 7 untreated controls, and n = 3 tumor-free 

untreated controls) (see Table I). Euthanasia of chronic group animals, the point determined 

as their general survival, was determined as either: 1) when clinical health evaluations found 

deleterious symptoms including hunching, irregular respiratory rate and rhythm, decreased 

alertness and socialization, or poor extremity utilization or 2) when the tumor diameter 

exceeded 1.4 cm. At necropsy, the immediate group (n = 3) mice that were treated and 

untreated (see Table I) were euthanized, and tumors were formalin fixed for histopathology 

to determine the efficacy of treatment. For the acute and chronic group mice, serum was 

collected, and the tumors were sectioned with a portion formalin-fixed for histopathology 

and another portion flash-frozen for mRNA analysis [see Fig. 1(b)].

Prior to each treatment, each mouse had fur removed over the tumors using the depilatory 

cream Nair (Naircare, Ewing, NJ, USA). Mice were anesthetized with vaporized 2%–4% 

isoflurane with an oxygen flow rate of 1.5 L/min. The mice were then placed on the subject 

stage with their tumor submerged in the degassed water in the subject stage’s window. The 

tumor was located using the ultrasound imaging probe that was coaxially aligned to the 

histotripsy transducer and then targeted using an automated volumetric ablation algorithm 

that controlled the treatment following manual targeting.

For each tumor, a 3-D ellipsoidal volume was targeted using conservative margins of 

approximately 0.5–2 mm from the skin and underlying tissues (muscle, intestines, and so 

on). Since our automated treatment is a perfect ellipsoid and tumors are not, there was some 

small amount of variation between subjects. Using these margins, we intentionally targeted 

a partial ablation of approximately 60%–75% of the tumor volume. This volume consisted 

of multiple, concentric 2-D elliptical slices. Each treatment slice was separated 0.75 mm 

apart. Within each slice, the area was populated with grid points separated 0.75 mm apart 

in the transverse direction and 1.25 mm apart in the axial direction [see Fig. 1(c)]. At each 

treatment point, histotripsy was applied at a pulse repetition frequency (PRF) of 250 Hz 

and a dwell time of 1 s, consequently sending 250 pulses to each point. For each slice, 

the automated treatment first generated a histotripsy bubble cloud at the center point of the 

slice and then scanned in a raster pattern to cover one half of the slice area. The transducer 

was then returned to the center of the ellipse and scanned in a raster pattern to cover the 

other half of the slice. Once a slice was scanned through completely, the system proceeds to 

the next slice, which is repeated until the entire ellipsoidal volume was treated. Throughout 

treatment, ultrasound guidance confirmed the location of the bubble cloud for the duration of 

the volumetric ablation [see Fig. 1(d)]. After treatment, the tumor volume was again imaged 

with ultrasound imaging in order to assess for tissue ablation.

E. Determining DNA Release and Quality

Each collected sample for each treatment group (n = 5 for the no treatment group and n 
= 9-11/treatment group) was analyzed with a nanodrop drop, and the DNA concentrations 

(ng/μL) and the 260/280 absorbance ratios were recorded. Samples were then run on an 

ethidium bromide gel to visualize DNA strand sizes present in the samples utilizing a 100bp 

HyperLadder (Bioline) and following standard protocol.
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F. Determining Protein Release and Quality

The protein released was quantified using a BCA assay (Thermo Scientific) following the 

manufacturer’s protocol. Western blots were run using premade gels (Thermo Scientific) 

following standard protocols with 5 μg of protein/sample and transferred with the iBlot 2 

Dry Blotting System (Thermo Scientific). HA antigen release was determined using an HA 

antibody (Cell Signaling) as per the manufacturer’s protocols. The protein’s band area was 

quantified using iBright Analysis Software (n = 5/treatment group).

G. Histopathology

Tissues were harvested from animals and fixed in 10% formalin. Paraffin-embedded 

formalin-fixed tissues were stained with hematoxylin and eosin (H&E) following standard 

protocols. Evaluations were performed by trained individuals and independently verified by 

a blinded, board-certified veterinary pathologist (S.C.O.).

H. Profiling Gene Expression and Pathway Analysis

Using tumors flash-frozen from in vivo experiments, total RNAs are isolated from tumor 

samples using the RNeasy Mini Kit (250) (Qiagen), where the manufacturer’s standard 

protocol was followed. RNA levels were quantified with a nanodrop, converted to cDNA, 

and were then pooled (n = 7/tumor group and n = 3/control group). Pooled cDNA 

was placed into the commercially available pathway-focused array “Cancer Inflammation 

and Immunity Crosstalk” (SuperArrayTM platform; Qiagen) following the manufacture’s 

protocol (1/pooled groups). Fold change was determined using standard ΔΔCT calculations. 

Gene expression was analyzed using integrated pathway analysis (IPA, Qiagen) software to 

model changes in complex pathways [36].

I. Flow Cytometry Panel Staining

For immune cell profiling, additional mice were injected with tumors and taken down one, 

seven, and 14 days after treatment [see Fig. 1(b)] with an n = 4 per treated and untreated 

control group at each time point (see Table I).

After removal of the tumor, avoiding skin and fur, the tumor was placed into 8 mL of 

cold RPMI. Even though Pan02 tumors have microvasculature [37] because they are not 

very bloody due to total blood removal via heart stick, we did not perfuse the tissue before 

harvest or processing. The tissue was then mechanically digested and strained into a 50-mL 

conical tube. After centrifuging at 300xg for 10 min at 4 °C, the supernatant was discarded 

and the pellet resuspended in 10 mL of RPMI and was plated onto a 96-well V-bottom 

plate at a density of 1.0 × 106 cells/well. A 1:200 dilution of FACS buffer, sterile PBS with 

2% FBS, 0.1% sodium azide, and anti-CD16/32 was added to the plate at a concentration 

of 50 μL/well. Antibodies were diluted with FACS buffer and added directly to the wells. 

The following antibodies were used: anti-CD8 SuperBright 645, anti-CD45 SuperBright 

645, anti-CD11c APC, anti-CD45 PE, anti-F4/80 FITC, anti-CD4 PE.Cy5, anti-CD8 A488, 

anti-CD3 APC, anti-Ly6C APC Cy5, anti-Ly6G PE, and anti-FOXP3 PerCP Cy. Cells were 

washed with PBS and evaluated with FACS (BD Biosciences). Gating for specific immune 

cell populations is listed in Table II. It should be noted that the population “granulocytes” 

is likely to contain both granulocytic myeloid-derived suppresser cells and neutrophils [38], 
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[39]. In addition, by gating macrophages as both CD11c and F4/80 that we are most likely 

focusing on a subpopulation of macrophages, more extensive panels would be necessary to 

confirm the ratio of subpopulations.

J. HMGB1 Serum ELISA

Serum levels of high mobility group protein (HMGB1) in acute and survival group mice 

were determined utilizing an ELISA assay kit (ABclonal) following the manufactures 

suggested protocol.

K. Statistics

Data were analyzed using GraphPad Prism, version 8. Statistical significance was defined as 

p ≤ 0.05, where values were not significant, but p < 0.20, where the value is noted in the text. 

All data are represented as the mean ± SEM. A student’s two-tailed t-test was used when 

comparing two experimental groups. When many t-tests were performed for one graph, 

group letter designations were used. Lowercase letters on top of bars indicate significance; 

bars with the sample letter designation are not significant, while those that do not share a 

letter are significant (p < 0.05). Multiple comparisons were done using one- or two-way 

ANOVA where appropriate and then followed by the Tukey posttest for multiple pairwise 

examinations.

III. Results

A. Different Ablation Modalities Show Differential Release of Damage Associated 
Molecular Patterns (DAMPs) and Potential Antigens

Pan02-HA cells were treated with thermal ablation, cryoablation, IRE, and histotripsy at full 

(f-) and partial (p-) doses and were chosen based on previous literature [see Fig. 2(a)] [16]. 

Treatments that lead to less than 10% viability in all samples were considered fully ablated, 

and those that were greater than 30% in all samples were considered partially ablated [see 

Fig. 3(a)]. All samples’ lysates were analyzed for peptide and DNA nucleotide release (n = 5 

for no treatment and n = 9-11 for treatment groups).

Extracellular DNA is a DAMP and often correlates with extracellular nuclear proteins, such 

as HMGB1, which also acts as robust damage signaling. Here, we observed increased levels 

of DNA for all treatments compared to untreated samples [see Fig. 3(b)]. DNA release was 

evaluated by nucleotide quantification, which showed f-IRE (470.73 ± 283.34 ng/ml) to 

have a significantly (p < 0.05) higher concentration than most other modalities, excluding 

f-cryoablation (262.49 ± 159.00 ng/ml) and f-histotripsy (315.71 ± 175.28 ng/ml). P-thermal 

(177.33 ± 113.15 ng/ml), f-thermal (170.48 ± 72.20 ng/ml), p-IRE (179.82 ± 141.98 ng/ml), 

and p-histotripsy (165.03+83.09 ng/ml) were all similar to each other. Only f-IRE and 

f-histotripsy were significantly greater than the untreated control samples (20.35 ± 10.11 

ng/ml). Gel electrophoresis showed that cryoablation and both dosages of histotripsy left 

large segments of detectable DNA, while untreated, IRE, and thermally ablated samples 

produced no visible bands [see Fig. 3(c)].
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Peptide release, which correlates with potential antigens, was observed to be released 

significantly in nonthermal ablation modalities [see Fig. 3(d)]. There was no significant 

difference between p-thermal (383.8 ± 345.4 μ/ml) or f-thermal (443.3 ± 255.8 μ/ml) 

ablation’s peptide release from samples that were not treated (194.5 ± 50.7 μ/ml). On 

the other hand, f-IRE (2113 ± 409.1 μ/ml) and f-histotripsy (2208 ± 751.8 μ/ml) were 

significantly (p < 0.05) higher levels of release compared to all other modalities, except for 

p-IRE (1869 ± 431.3 μ/ml). F-cryoablation (1512 ± 415.4 μg/ml) and p-histotripsy (1300 

± 490.0 μg/ml) were significantly different from the low (significance group “a”) and high 

release clusters (significance group “c”).

Release of HA was confirmed on western blot for all treated samples, regardless of ablation 

treatment (see Fig. 1 in the Supplementary Material). The average area of the various 

treatments HA bands was not significantly different between any therapies compared to each 

other nor the untreated samples (297.6 ± 39.3 units) [see Fig. 3(e)]. The highest detection of 

HA was found in p-thermal treated samples (367.8 ± 24.25 units), followed by p-histotripsy 

(344.3 ± 38.5 units) and f-histotripsy (340.0 ± 35.2 units). F-cryoablation (332.0 ± 56.4 

units), f-thermal (320.3 ± 33.1 units), p-IRE (322.0 ± 26.4 units), and f-IRE (317.2 ± 24.2 

units) were all found to have larger bands than no treatment and smaller than p-thermal, 

p-histotripsy, and f-histotripsy.

B. Histotripsy Is an Effective Tumor Ablation Modality in the Subcutaneous Pan02 Model

The schematic shows the custom histotripsy rig and automated ablation procedure that was 

used for in vivo treatments (see Fig. 1). Coaxial ultrasound imaging confirmed the presence 

of a bubble cloud within the tumors during treatment [see Fig. 1(e)]. Mice were treated when 

tumors reached 0.6 cm in diameter on average and harvested in groups, as depicted in Fig. 

1(b). Ablation of tumors was confirmed with ultrasound, with increased hypoechoic regions 

and histopathology, where a partial ablation of tumors with viable tumor tissue on margins 

and in islands within the ablation zone was observed (see Fig. 4). On ultrasound images, the 

center of the treated region had a more notable decrease in ultrasound reflection, while the 

dermal margin maintained a comparable hyperechocity after treatment compared to before 

[see Fig. 4(a) and (b)]. This pattern was also noted in histopathology. The center of untreated 

tumors has a characteristic necrotic core [see Fig. 4(c)], and the treated tumors appeared to 

have a larger region of cell death that extends nearly to the margins of the tumor [see Fig. 

4(d)].

Calculated tumor diameters decreased for a few days after the partial ablation with 

histotripsy and maintained size for two weeks before resuming tumor growth [see Fig. 5(a)]. 

The average tumor size of untreated tumors continued to increase in size at a relatively 

steady rate [see Fig. 5(a)]. The greatest difference between the treated and untreated 

groups was reached on day 15, eight days posttreatment when the treated tumors were 

43% of the size of the untreated tumors on average. Compared to the untreated mice, 

histotripsy treatment increased tumor-progression-free survival by 19 days from ten to 29 

days posttreatment [see Fig. 5(b)] and general survival by eight days from 43 to 51 days 

posttreatment [see Fig. 5(c)].
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C. Histotripsy Ablation Results in Increased Acute Cellular Immune Response

These tumors even without treatment tend to develop a central area of necrosis as they 

progress. These necrotic cores are often characterized by accumulations of cell debris 

with variable numbers of infiltrating degenerate and nondegenerate neutrophils. Otherwise, 

appreciable numbers of immune cells are relatively absent microscopically throughout the 

tumor tissue [see Fig. 6(a)]. Treated tumors also exhibited a core of cell death following 

ablation with variable infiltration by predominantly degenerate neutrophils. However, in 

addition to cellular debris, these cores also often contain ghost cells and acute hemorrhage 

[see Fig. 6(b)]. In both treated and untreated tumors, small to moderate numbers of 

neutrophils, macrophages, lymphocytes, and/or plasma cells are present at the tumor 

periphery. There is no appreciable difference between the two [see Fig. 6(c) and (d)].

Despite the lack of appreciable differences in immune cell populations microscopically, we 

investigated immune cell signaling through gene expression. Superarray rtPCR showed that 

many genes associated with cancer inflammation and immunity crosstalk were significantly 

regulated after histotripsy treatment (see Table 1 in the Supplementary Material). The IPA 

analysis comparing treated animals to untreated in acute and survival groups found multiple 

canonical immune pathways regulated by histotripsy treatment [see Fig. 6(a)]. As a trend, 

the proinflammatory pathways are upregulated 24-h treatment, but the majority of these 

pathways become downregulated and were replaced with more anti-inflammatory pathways 

at survival points. Many of the upregulated pathways (HMGB1, NF-κB, IL-6, and TLR 

signaling pathways) are interconnected and are self-regulated to decrease in function over 

time [see Fig. 6(b)]. The schematic in Fig. 5 illustrates the interactions and mechanisms 

identified by IPA that is upregulated in the acute treatment group and downregulated in 

the survival group. Some of these proteins and pathways were not directly analyzed but 

are predicted to be modulated based upon molecules that are upstream and downstream by 

IPA. Together, these data indicate a significant upregulation of pathways associated with the 

activation of the innate immune system associated with DAMP signaling.

HMGB1 signaling was identified by IPA and is a potent DAMP. To verify this aspect of our 

pathway analysis, we evaluated the protein levels of HMGB1 in the serum with and without 

histotripsy treatment. Consistent with the IPA results, HMGB1 levels were increased in the 

sera of treated mice at the acute time point compared to untreated and control animals, while 

both treated and untreated mice saw a significant (p < 0.05) decrease in serum HMGB1 

levels at survival endpoints [see Fig. 6(c)]. Although there was a notable increase, due to the 

significantly higher variance (p = 0.0032), there was no significance in the average serum 

HMGB1 level in the treated acute group compared to the untreated and control groups.

D. Histotripsy Alters Immune Cell Composition in the Tumor Microenvironment

To quantify changes in immune cell populations within tumors zovertime after histotripsy 

treatment, tumors were collected 24 h and seven and 14 days after treatment for flow 

cytometry. Although there were no significant changes at the 24-h time point, there was an 

appreciable decrease in inflammatory dendritic cells (iDCs, p = 0.19), classical dendritic 

cells (cDCs, p = 0.18), granulocytes, Th cells, CD4+ T cells, and CD8+ T cell populations 

after treatment (see Figs. 6 and 7). The relative reduction of iDCs (p = 0.13) and cDCs (p 
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= 0.07) continued to day 7 along with a decrease in M-MDSCs; at this point, the remaining 

cells that appeared reduced at 24 h were more comparable to the untreated (see Fig. 7). At 

14 days after treatment, macrophages and Treg cells were found to be significantly reduced, 

while cDCs were found to be significantly increased, and neutrophils (p = 0.19) notably 

increased in treated tumors compared to the untreated (see Fig. 7 and 8). While there were 

no changes in the ratios of CD4+/CD8+ T cells in the treated tumors compared to the 

untreated, there were significant increases in CD4+ and a notable increase in CD8+ T cells 

within the treated tumors at seven days after treatment (see Fig. 8).

IV. Discussion

This study investigated the treatment of pancreatic tumors with histotripsy and the resultant 

immunological responses, with a focus on the innate immune system. To optimize our 

immune system assessments, we established conservative margins with the expectation that 

some tumors would not be treated. This allowed cells within the untreated margins to 

respond to the effects of our treatment and provided specimens for subsequent analysis. For 

in vivo ablations, histotripsy treatment was confirmed via bubble-cloud formation, while 

H&E showed complete ablation within targeted regions. Overall, we achieved a partial 

ablation of all treated tumors. There was an average reduction of 43% in the tumor diameters 

of the remaining tumor tissue after treatment, comparable to tumor retardation compared 

to previous histotripsy subcutaneous tumor treatments [20], [23], [24]. Based upon the 

fully ablated tissue found within the targeted regions on H&E, the remaining tissue can be 

assumed to have been untreated based upon the margins set. This led to tumors that were 

fully ablated in certain regions and completely untreated in others. More complete ablation 

of tumors with histotripsy has been achieved in de novo and in situ studies where margins 

include surrounding healthy tissues, but these tumors still recurred [40]-[43]. In this study, 

the progression of tumor growth was improved with treatment [see Fig. 5(b)]. However, in 

line with previous studies, tumor recurrence occurred and minimized the improvement of the 

general survival for animals that received treatment [see Fig. 5(c)].

The release of DAMPs is a consistent feature of focal ablation modalities, and the 

established modalities have been compared to each other in previous work [16]. Histotripsy 

has not been previously, directly compared to nonultrasonic ablation modalities. The effects 

of histotripsy compared to other ablation modalities for producing immune-stimulating 

molecules are of interest given that the response to the histotripsy treatment of pancreatic 

tumors in vivo yielded an inflammatory response that is turned off over time while showing 

relatively large variations of immune cell proportions within treated tumors. Looking at the 

release of DNA and peptides as potential DAMPs showed that histotripsy is comparable to 

the nonthermal ablations cryoablation and IRE (see Fig. 3).

Extracellular DNA is recognized by innate immune system receptors as a DAMP and is not 

typically found in the absence of damage [44]. In addition, the presence of released proteins 

increases the probability of the immune system being recruited by damage associated 

cytokines and antigens. Our hypothesized expectations for the in vitro studies were that 

cryoablation and histotripsy should have similar, more intact DNA, in larger fragments, and 

more protein released from cells after ablation given that they both ablate cells through 
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immediate lysis [17], [45]. On the other hand, no cell death was observed in untreated cells, 

also as expected, and therefore, had low levels of protein and DNA. However, IRE induces 

a delayed cell death, defined as either apoptosis or pyroptosis [15]. DNA fragmentation 

and protein release or damage are hallmark features of programmed cell death. Similarly, 

thermal ablation is known to directly denature DNA and protein [16], [46]. Thus, in both 

these cases, we predicted that the DNA released following ablation would be significantly 

more fragmented, including significantly smaller and undetectable fragments. Even though 

IRE does use a delayed cell death mechanism, we did expect to find the higher level of 

detectable proteins, given that programed cell death does not denature all of the released 

proteins and previous studies that also showed that IRE can release a significant magnitude 

of intact proteins [15], [16].

In addition, results from the in vitro experiments provide important comparisons between 

different ablation methods and demonstrate that nonthermal ablation approaches, including 

histotripsy, lead to significantly increased release of DAMPs and potential antigens in 

comparison to thermal ablation methods. In comparing the clinical relevance of the 

differential release of DAMPs and potential antigens that was observed between the ablation 

modalities in vitro, it is important to note that additional in vivo studies will be needed 

to further study the differences between each ablation modality. Similarly, additional in 
vivo studies will be needed to further investigate the role of treatment dose in immune 

system activation for each of the ablation modalities. For instance, it is not clear whether 

the partial ablations generated in our in vitro studies will be representative of a partial 

or incomplete ablation in a clinical setting. For the thermal ablation, cryoablation, and 

IRE samples treated at partial-ablation doses in this study in vitro, all of the cells in 

suspension were treated at a reduced magnitude. In contrast, since histotripsy is a binary 

treatment that requires a bubble cloud to be formed, once a distinct pressure threshold has 

been exceeded [47]-[50], the histotripsy partial ablation resulted in only a portion of the 

cells being exposed to a full amplitude histotripsy bubble cloud, whereas the remaining 

cells received no treatment. When comparing these in vitro results from cell suspensions 

to in vivo ablations, it is important to remember that these differences in how a partial 

ablation versus a full ablation is acquired may result in different responses. As a result, 

controlled in vivo studies comparing the effects of different ablation modalities and different 

treatment doses on the potential immunological benefits should be conducted. In addition to 

comparing the differences between partial and complete ablation, these future studies should 

investigate the potential risks of overtreatment that could potentially reduce immunological 

benefits. For instance, in prior work designing IRE protocols, users have outlined specific 

treatment guidelines to avoid excessive Joule heating to capitalize on the therapeutic benefits 

of the nonthermal IRE ablation [34]. Similarly, samples overtreated with thermal ablation 

modalities and cryoablation face an increased rate of macromolecule breakdown and protein 

denaturation compared to nonthermal [16]. Future studies are needed to determine any 

effects of overtreatment with histotripsy and to determine the optimal histotripsy treatment 

strategies for maximizing immunological benefits.

Given that histotripsy’s mechanism of ablation is the mechanical lysis of cells and 

that, in vitro, we found the increased release of DNA and proteins (see Fig. 3), the 

determination that DAMP signaling pathways [see Fig. 5(f)] were activated in vivo was 
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not surprising. Although we did not appreciate histological changes in immune cell 

infiltration on a microscopic level, gene expression analysis suggested changes in immune 

cell signaling pathways, which led us to assess immune cell populations via flow cytometry, 

a more sensitive indicator. Here, we were able to identify specific pathways modulated 

by histotripsy, including HMGB1, IL-6, Interferon, TEC Kinase, JAK/STAT, and PPAR 

pathway signaling. These pathways are consistent with responses to trauma or physical 

damage [51]-[53]. As time passes after trauma, these signaling pathways become repressed 

to control the immune response. One way by which this is done is through the PPAR 

pathway, which can inhibit the downstream production of cytokines from the HMGB1 and 

NF-κB pathways [54]. The activation of the PPAR pathway can also increase healing effects 

by stimulating the production of VEGF [55], found in our study to be significantly increased 

in treated survival group tumors (see Fig. 5(f), and see Table I in the Supplementary 

Material). For healing, the production of VEGF is needed to reestablish healthy vasculature; 

however, high levels of VEGF within a tumor have been established to be tumorigenic and 

correlates with poor patient outcomes [56]. Histotripsy increasing the activation of the PPAR 

pathway and increasing the levels of VEGF expression did not promote negative outcomes 

for the animals in our study but could be targets of future adjuvants to extend the early 

inflammatory tumor microenvironment.

At two weeks posthistotripsy ablation, there was a significant decrease in macrophages (see 

Fig. 6) and Treg cells (see Fig. 7). Significant decreases in the expression of cytokines 

are associated with tumor-associated macrophages (TAMs), including IL-4, IL-10 CCL-2, 

CCL-22, and CXCl-12 (see Table I in the Supplementary Material), and suggest that the 

reduction in macrophages within the treated tumors could be indicative of a decrease in 

TAMs [57], [58]. A decrease in Treg cells with a potential decrease in TAMs could indicate 

additional access of histotripsy immunomodulation of the tumor microenvironment to being 

less anti-inflammatory. This could be a potential target for enhancement with adjuvant 

therapies [57], [59]. Overall, these changes to immune cell populations should be further 

analyzed in future studies to determine the full extent of changes to subpopulations, such as 

changes to M1/M2/TAM macrophages instead of basic populations shown here.

Early studies investigating the immunological effects of histotripsy compared the effects of 

acoustic cavitation to acoustic heating with thermal HIFU. One study using a subcutaneous 

colon adenocarcinoma mouse model showed that histotripsy is capable of stimulating 

CD11c+ cells within the tumors more than thermal HIFU [26]. It has also been shown 

that histotripsy of murine melanoma can better stimulate an immune response with a 

decrease in metastasis in the weeks following treatment compared to HIFU, suggesting 

the involvement of antitumor lymphocytes [27]. More recent studies have further established 

the proinflammatory local and systemic effects of histotripsy on the immune response in 

melanoma, neuroblastoma, hepatocellular carcinoma, and renal cell carcinoma [22]-[24]. 

This study adds to this knowledge by establishing a framework for the immune response to 

histotripsy ablation of pancreatic cancer. The response reestablished here is similar to other 

studies. However, given that the Pan02 tumors are known to be poorly immunogenic [60], 

it was not surprising that the local changes in immune cell populations, while significant 

at points (see Figs. 7 and 8) were not as prominent of a profile shift as what has been 

reported in other tumors types. Using the Pan02 model, a prior study with IRE showed 
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that subcutaneous tumors did not have a strong change in immune cell populations within 

the tumor as orthotopic tumors [61]. Similar to the current work, this prior study showed 

data that the non-thermal ablation of the subcutaneous pancreatic tumors can shift the tumor 

microenvironment to being more pro-inflammatory [61].

The results of this study provide evidence that histotripsy can ablate subcutaneous pancreatic 

tumors and stimulate a local immune response. This study builds upon previous studies 

utilizing histotripsy for other tumor types [20], [22]-[24] and shows a potential immune 

profile for pancreatic tumors after histotripsy ablation. Overall, the results of this work 

provide a baseline expectation of the response of pancreatic tumors to histotripsy, which will 

help for planning future orthotopic studies.

V. Conclusion

This study demonstrates the feasibility of using histotripsy for pancreatic cancer 

ablation and defines mechanisms associated with innate immune system activation 

following treatment. Further work is needed to establish the mechanisms behind the 

immunomodulation of the tumor microenvironment and its systemic effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
In vivo experimental setup. (a) Murine histotripsy experiments were conducted using a 

1-MHz transducer. (b) Timing for treatment, euthanasia, and data collection were set as 

diagramed. Days with histology collection are noted by cassettes, flash-frozen tumors noted 

by tubes with tumors, and serum noted by tubes with serum, and flow cytometry is noted by 

flow charts. Tumors located with ultrasound imaging were used for (c) planning automated 

ablation disks and (d) raster scan plots. (e) Therapy was guided by coaxially aligned 

ultrasound imaging. The red arrow indicates a bubble cloud that was generated during 

treatment.
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Fig. 2. 
(a) Treatment flow and dosages for various ablation modalities. (b) Histotripsy experiments 

on cell suspensions were conducted using a 1-MHz transducer.
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Fig. 3. 
(a) Cell suspension ablations resulted in partial and full ablations. DNA release was (b) 

quantified and (c) visualized. (d) Protein release was quantified, and (e) relative release of 

the antigen HA was quantified from western blot bands. Lowercase letters on top of bars 

indicate significance; bars with the sample letter designation are not significant, while those 

that do not share a letter are significant (p < 0.05).
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Fig. 4. 
Ultrasound images of tumor (a) before and (b) after treatment, exhibiting more hypoechoic 

central region posthistotripsy. Orange shapes on ultrasound indicate the location of tumors. 

Green circles indicate the location of bubble cloud determined in water prior to treatment 

and were utilized for treatment planning. Histology to tumors (c) without and (d) with 

treatment shows decreased cellular detail after treatment. The dotted black line outlines the 

necrotic core of the tissue. Scale bar on H&E images = 500 μm.
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Fig. 5. 
After treatment of tumors on day 8, as indicated by the black arrow, the reduction of 

tumor volume was indicated by (a) caliper measurements. Changes in health observed in (b) 

tumor-progression-free survival and (c) general survival.
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Fig. 6. 
We initially chose to investigate changes in immune cell infiltration following histotripsy 

treatment by evaluating the tissues microscopically, (a) Untreated tumors exhibit necrotic 

cores as part of the natural progression of the tumor. These are characterized by 

predominantly lytic cellular debris but also often contain variable numbers of degenerate 

and non degenerate neutrophils (asterisk). (b) Treated tumors likewise develop similar foci 

of necrosis with lytic debris and variable neutrophilic infiltration. In addition, they also 

exhibit ghost cells which are eosinophilic (pink) remnants of dead cells (arrows) as well 

as hemorrhage (not shown). In addition, both untreated (c) and treated (d) tumors exhibit a 

mixture of inflammatory cells at the periphery of the tumor. Microscopically there are no 

appreciable differences between infiltration of these inflammatory cells between untreated 

and treated tumors. Analysis of mRNA expression in treated tumors showed regulation of 

immune pathways (e). Regulated pathways interact with each other and are up regulated 

in the acute group and downregulated in the chronic group (f). Serum HMBG-1 levels (g) 

correlate with the mRNA upregulation of HMGB-1 associated pathways.

Hendricks-Wenger et al. Page 26

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Single-cell suspension from treated and untreated tumors were collected at 24 h and seven 

and 14 days after treatment and were stained as described for flow cytometry to identify 

innate immune cells. The percentage of each innate immune cell population analyzed was 

calculated as part of the total CD45+ cells stained. Example flow cytometry plots from 

treated and untreated tumors at 14 days after treatment.
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Fig. 8. 
Single-cell suspension from treated and untreated tumors were collected at 24 h and seven 

and 14 days after treatment and were stained as described for flow cytometry to identify 

adaptive immune cells. The percentage of each adaptive immune cell population analyzed 

was calculated as part of the total viable cells stained (gated as singlets). The ratio of CD4+/

CD8+ T cells was calculated as a simple ratio. Example flow cytometry plots from treated 

and untreated tumors at 14 days after treatment.
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TABLE I

Subject Numbers per Experimental Group

Immediate
Group

Acute
Group

Chronic
Group

Flow
Cytometry

No Treatment
No Tumor - 3 3 -

Tumor 3 7 7 4/time point

Histotripsy Treated Tumors 3 7 7 4/time point
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TABLE II

Flow Cytometry Immune Cell Markers

IMMUNE CELL TYPE IDENTIFYING MARKERS

Macrophages (MO) CD45+ CD11c+ F4/80+ Ly6C−

Inflammatory Dendritic Cells (iDCs) CD45+ CD11c+ F4/80− Ly6C+

Classic Dendritic Cells (cDCs) CD45+ CD11c+ F4/80− Ly6C−

Monocytic Myeloid Derived Suppressor Cells (M-MDSC) CD45+ CD11c− Ly6C+ Ly6G−

Granulocytes CD45+ CD11c− Ly6C− Ly6G+

CD8+ T cells CD45+ CD3+ CD4− CD8+

CD4+ T cells CD45+ CD3+ CD4+ CD8−

T Regulatory Cells (Treg cells) CD45+ CD3+ CD4+ CD8− FoxP3+

T Helper Cells (Th cells) CD45+ CD3+ CD4+ CD8− FoxP3−
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