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Abstract

Three-dimensional (3D) bioprinting is a rapidly developing technology that has potential to initiate 

a paradigm shift in the treatment of skin wounds arising from burns, ulcers, and genodermatoses. 

Recessive dystrophic epidermolysis bullosa (RDEB), a severe form of epidermolysis bullosa, 

is a rare genodermatosis that results in mechanically induced blistering of epithelial tissues 

that leads to chronic wounds. Currently, there is no cure for RDEB, and effective treatment is 

limited to protection from trauma and extensive bandaging. The care of chronic wounds and 

burns significantly burdens the healthcare system, further illustrating the dire need for more 

beneficial wound care.1 Although in its infancy, 3D bioprinting offers therapeutic potential for 

wound healing and could be a breakthrough technology for the treatment of rare, incurable 

genodermatoses like RDEB. This viewpoint essay outlines the promise of 3D bioprinting 

applications for treating RDEB, including skin regeneration, a delivery system for gene-edited 

cells and small molecules, and disease modeling. While the future of 3D bioprinting is 

encouraging, there are many technical challenges to overcome―including optimizing bioink and 

cell source―before this approach can be widely implemented in clinical practice.
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Introductory Overview

The lack of accessible and advanced skin wound management has resulted in a significant 

yet underappreciated crisis for individuals, healthcare systems, and society. It is estimated 

that over 11 million people per year require burn care, with burns being one of the most 
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common types of trauma throughout the world.2 Furthermore, the National Institutes of 

Health have estimated that in the United States alone around 6.5 million people are affected 

by slow-to-heal or chronic wounds, a statistic that is expected only to increase.3 The 

burden of chronic skin wounds has been referred to as a “silent epidemic,” since people 

at high risk for chronic wounds include older individuals and/or those with comorbidities 

including obesity and diabetes. Additionally, particularly rare and incurable genodermatoses, 

notably RDEB, that cause mechanical fragility of the skin and result in chronic wounding 

of epithelial tissues, require extensive, costly bandaging. Since chronic wounds are often 

complicated by an underlying condition, they are not identified as a disease per se. 

Consequently, the research funding specifically for chronic wound care is disproportionately 

low compared to the actual impact of chronic wounds on the healthcare system.4 The 

growing need for improved wound care options is reflected by the demand for wound care 

products. In 2014 the annual cost for wound care was estimated to be $2.8 billion with the 

cost expected to increase to $3.5 billion by 2021.5

Background

The significant burden skin wounds present to the individual and the healthcare system 

has encouraged researchers throughout the past decade to investigate a revolutionary wound-

healing solution, 3D bioprinted tissue engineering. Tissue engineering aims to generate 

biological structures―either in an in situ or in vitro fashion―that promote healing and 

initiate the body’s regenerative processes. 3D bioprinting is a promising tissue engineering 

application that utilizes a 3D printer to achieve precision, automation, and standardization 

of therapeutic delivery. In traditional 3D printing, a digital template of the desired object is 

created using computer-aided design programs. These digital templates are converted into a 

script containing many thin slices or layers that, when stacked vertically, combine to create 

the desired object. The script is then fed to the 3D printer where the applicator dispenses 

the printing substance or ink layer by layer, vertically, until the object is complete. 3D 

printing is referred to as 3D bioprinting when the ink used includes living cells (bioink). 

Recent reviews thoroughly outline the bioprinting process and optimization steps.6–8 In 

terms of the technology, 3D bioprinting can be divided into three categories including inkjet-

based, pressure-assisted, and laser-assisted bioprinting.9 Furthermore, the implementation of 

advanced technology is seen with freeform reversible embedding of suspended hydrogels 

(FRESH) bioprinting, which is designed to print bioinks within a yield-stress support bath.9 

The two applications utilized for skin 3D bioprinting (outlined in Figure 1) include in situ 
and in vitro. In situ 3D bioprinting delivers tissue engineered therapeutics such as cells, 

extracellular signaling molecules, or endogenous reprogramming components directly to the 

target area10 In vitro 3D bioprinting refers to the printing of regenerative tissue products 

onto a petri dish. From there, the printed product is transplanted onto the affected area of 

tissue. .11 The practice of 3D bioprinting skin grafts is continually being developed, and a 

multitude of bioinks and cell combinations have been reported.6

Though still in its infancy, this technology holds the promise to become an integral tool 

in the care of chronic wounds and burns. This is also an exciting opportunity to reshape 

the therapeutic outlook for rare genetic skin diseases like RDEB. RDEB, a severe form 

of epidermolysis bullosa, is a rare genetic disease associated with mechanical fragility of 
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the skin resulting in devastating chronic wounding of epithelial tissues. This disease is 

caused by mutations in the COL7A1 gene that prevent the production of functional type 

VII collagen (C7).12 C7 is a secreted protein vital for strengthening the dermal-epidermal 

junction and maintaining barrier integrity. Without functional C7, RDEB patients suffer 

from chronic skin wounds, pseudosyndactyly (mitten deformity), esophageal strictures, 

corneal abrasions, and joint contractures.13, 14 Limited treatment success was found using 

allogeneic hematopoietic cell transplantation (HCT) in RDEB patients.15 However, HCT 

has many risks such as graft vs host disease, graft failure, and the need to suppress the 

immune system.15, 16 Advancements in gene correction therapies―for example TALEN 

and CRISPR/Cas9 systems―offer a major avenue of approach as well.17, 18 Limitations 

of genetic therapies currently include extensive ethical concerns and lack of an effective 

treatment delivery system. Therefore, an innovative treatment for RDEB is necessary. As 

summarized in Fig. 2, this viewpoint essay outlines the applications in which 3D bioprinting 

could successfully be used to treat RDEB, including skin regeneration, as a delivery system 

for gene-edited cells and small molecules, and disease modeling.

3D bioprinting for skin regeneration

Human skin fabrication via 3D bioprinting technology is being investigated with the goal 

of providing skin replacement, restoring function, and promoting healing after injury. In the 

case of RDEB, 3D bioprinted skin is an intriguing therapeutic option to replace damaged, 

blistered skin and initiate healing. With its ability to provide precise cell placement in a 

layer-by-layer fashion, 3D bioprinting can potentially mimic skin structure and function. 

The skin’s complexity comes from the spatial organization of a multitude of cell types 

within the extracellular matrix.19 The foundational goal of designing a tissue-engineered 

graft is to mimic the physical properties of skin and mirror its normal architecture to 

provide a structural framework hospitable for the natural healing cascade.20 Because the 

skin functions primarily as a protective barrier, it deploys a sophisticated and dynamic 

regeneration program in response to injury or infection.21 Biological insights into this 

healing process have largely inspired the design of 3D bioprinted grafts to include cellular 

diversity along with molecules crucial for skin function.19 In the last five years, there has 

been a push to design “pro-regenerative” skin grafts that contain cell-instructive cues to 

restore damaged tissues.22 Adding in these cues in the form of growth factors, antimicrobial 

molecules, bioactive nano-particles, cell-binding peptides, and more to the graft to foster a 

suitable niche for healing has been a commonly explored method.23–28

The use of 3D bioprinted skin will also enable the inclusion of important skin components 

such as hair follicles, sweat glands, melanocytes, and sebaceous glands. Including these 

structures is key to the development of fully functional skin.29 Huang et al. bioprinted 

sweat glands with epidermal progenitor cells and demonstrated functional sweat glands 

within the extracellular matrix of the 3D graft following in vivo transplant onto murine 

wounds.30 Furthermore, Jorgensen et al. 3D bioprinted six different human cell phenotypes, 

including keratinocytes and melanocytes for the epidermis; fibroblasts, microvascular 

endothelial cells, and follicle dermal papilla cells for the dermis; and pre-adipocytes for the 

hypodermis.31 This full-thickness skin graft showed acute wound closure in a murine model 

after 21 days and represents a proof of concept for the inclusion of additional skin cell 
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phenotypes. Additionally, this study demonstrated that 3D bioprinted skin once placed onto 

a full-thickness murine wound, can integrate, form an epidermal barrier, and recapitulate 

normal collagen remodeling. These findings were supported by histological analysis. A few 

unexpected results occurred, however, including the observation of Lamin A+C staining 

for human nuclei only in the dermis. An explanation could be that human keratinocytes 

from the bioprinted skin made up the initial epidermis and then were replaced by murine 

keratinocytes. Also, by day 21 there was not significant staining for adiponectin to signal 

the presence of preadipocytes. The study speculates these cells may have differentiated 

toward fibroblasts considering the dense vimentin staining. Lastly, the bioprinted skin 

wound center showed an increased number of capillary lumens compared with the control 

hydrogel wounds, which could allow for improved delivery of endogenous immune calls 

as well as growth factors and cytokines. A limitation of this study is only having one time 

point at day 21, so in a future study it would be necessary to evaluate wounds following 

the first few days of treatment in addition to evaluating wound healing several months 

post wound closure. Apart from cellular and other bioactive additives, the mechanical 

stiffness and porosity of the 3D bioprinted skin graft is also key in modulating cellular 

events. Researchers can explore different inks to fine-tune the mechanical properties of 

the graft in order to control cellular behavior.22 For instance, in a 3D-bioprinted graft, 

the ability for printed mesenchymal stem cells (MSCs) to form into tubular structures 

was directly dependent on the stoichiometric ratio of ink components that changed graft 

stiffness.32 Furthermore, sufficient porosity of 3D grafts has been shown to be important 

for enabling spatial distribution of cells throughout the graft.30, 33–35 Porosity increases 

cell interconnectivity, which aids in coordinating numerous cell fate processes, such as 

angiogenesis and graft take.36, 37

As explained previously, there are two different approaches to 3D bioprinting, in situ and 

in vitro, both of which are being studied in the context of skin replication and wound 

healing.38, 39 An exciting device for in situ skin bioprinting is a handheld skin bioprinter, 

one of which is currently being developed by Hakimi et al.40 Additionally, a group at the 

Wake Forest Institute for Regenerative Medicine has also developed a state-of-the-art mobile 

bioprinter that allows bi-layered skin to be printed directly onto a patient’s wound.39 A 

handheld skin bioprinter would be a remarkable addition to the current wound management 

options for RDEB patients, as it could provide more immediate and precise care. This 

portable bedside bioprinter could also be utilized by the military, as it is estimated that 

10 to 30 percent of combat casualties in conventional warfare result from burn injuries.41 

Although in situ bioprinting for wound reconstruction provides several advantages, such 

as precise graft size onto wound surface and elimination of the cost and time for in vitro 
differentiation, studies using in vitro bioprinting have also demonstrated positive results.35 

While skin tissue engineering is an undoubtedly complex process that requires appropriate 

choice of cells, biomaterials, graft design, and print method, 3D bioprinting technology has 

the capacity to one day replicate skin’s architecture and function to revolutionize wound 

therapy. The use of this therapeutic advancement could significantly impact RDEB advanced 

wound care and provide a localized option that goes beyond bandaging for eligible cases.
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Gene-edited cell and small molecule delivery system

In addition to providing a skin replacement that promotes wound healing, 3D bioprinting 

technology can also be an efficient delivery system for gene-edited cells to help specifically 

correct the phenotype of RDEB along with other rare and incurable genodermatoses. The 

genetic etiology of RDEB is well defined, which makes it an obvious candidate for genome-

editing applications such as CRISPR/Cas9 and TALEN.42 RDEB primary patient-derived 

cells have been successfully gene-edited in several in vitro studies.17, 43–45 Optimizing 

the mechanism of delivery for these gene-edited cells is under investigation, with many 

researchers focusing on the use of bioengineered skin grafts. Compared to direct injection of 

cells in tissue, 3D bioengineered in situ scaffolds have been shown to enhance the delivery 

and retention of cells within the tissue.46 In 2016, a phase I clinical trial involved the 

delivery of autologous RDEB keratinocytes that had been transduced with a retroviral vector 

to correctly express the COL7A1 gene.47 These cells were assembled into epidermal sheet 

grafts and applied to patient wounds. Results showed that grafts were well tolerated and 

some, but not all, demonstrated improved wound healing in addition to C7 expression at 

the dermal-epidermal basement membrane. More recently, Jackow et al. reported a CRISPR/

Cas9-mediated correction of the COL7A1 gene in patient-derived induced pluripotent stem 

cells that were differentiated into fibroblasts and keratinocytes.48 These cells were then 

used to generate 3D human skin equivalents that were grafted onto murine wounds. Two 

months post grafting, normal C7 expression at the basement membrane zone and anchoring 

fibrils were reported. The use of skin grafts to deliver gene-edited cells is a promising 

systematic pathway to restore C7 expression to RDEB wounds. While laboratory-grown skin 

grafts have shown to be a viable cell delivery option, the automation and standardization 

of 3D bioprinting offers an advantage when it comes to cell placement. By 3D bioprinting 

the cells layer by layer, the arrangement of the gene-edited cells within the graft can be 

controlled and offer a more precise delivery to affected areas of the epidermis and dermis. 

The combination of genome editing and 3D bioprinting technologies has the potential to 

correct chronic skin wounds of genetic origin and must be further explored.

Additionally, 3D bioprinting has recently gained momentum as a small molecule delivery 

system, another hopeful application for treating RDEB. Specific to mitigating the RDEB 

phenotype, the therapeutic targets of these small molecules can include skin barrier 

restoration, infection control, immune response, and interference with epigenetic drivers of 

the disease. Small molecule-based therapies for RDEB that have been investigated in clinical 

studies and shown positive results include the use of gentamicin and botulin.49, 50 There are 

several ongoing clinical trials examining small molecules such as pregabalin and rigosertib 

as potential RDEB therapies.51, 52 The best delivery method for small molecule-based 

therapies has yet to be determined; however, 3D bioprinting is a realistic and innovative 

option that has the advantage of precise organization and placement of components. 

Importantly, 3D bioprinted matrices have been proven to be suitable for the delivery of 

bioactive molecules like growth factors, antibiotics, and other types of small molecules.53, 54 

Small molecules that have been shown to be therapeutic against RDEB, mentioned above, 

could be integrated into a 3D bioprinted matrix for delivery to wound sites. By using a 3D 

printer, the small molecules can be incorporated into the matrix in precise patterns based 

on the scaffold’s morphology as well as the small molecule’s release profile in order to 
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promote a targeted, efficacious delivery. In a study looking at bone tissue regeneration, 

released small molecules from a loaded 3D printed scaffold successfully enhanced the 

angiogenesis and targeted MSCs for osteogenic differentiation.55 In a similar study, growth 

factors were 3D bioprinted into spatiotemporally defined patterns, tightly controlling the 

release of the growth factors in order to enhance the bone tissue regeneration.56 The control 

over the placement and release of small molecules within a 3D printed scaffold cannot be 

obtained with other traditional delivery methods such as injected 3D in situ scaffolds. With 

encouraging and ongoing clinical studies examining small molecules to treat RDEB, 3D 

bioprinting should be considered as a delivery system.

Disease model

RDEB is a challenging disease to research due to the small patient cohort and limited 

access to patient specimens. An accurate and consistent method for generating an RDEB 

skin model is needed for disease modeling and drug testing, which could be accomplished 

with 3D bioprinting technology. Although RDEB mice have been generated to be used as 

an animal model, few wound healing studies have been successfully performed on these in 
vivo models because of short life expectancy due to the RDEB phenotype.57, 58 Additionally, 

the differences in skin physiology between humans and mice restrains the direct clinical 

translation of such experiments.59 Optimizing a 3D in vitro diseased skin model is necessary 

and should be prioritized. The lack of essential skin basement membrane zone structures 

results in increased tissue fragility and difficulty handling during wound closure studies.59 

Recently, an in vitro dermal-epidermal junction model was successfully developed using 

ECM proteins and seeded RDEB keratinocytes and fibroblasts.60 This model could be used 

to test mechanical adhesion between skin layers. A more physiologically relevant tissue 

could also be achieved by the addition of vasculature, which would be important for testing 

systemic delivery of drugs.61 While constructing a useful and intact in vitro model is 

not simple due to the nature of this disease, 3D bioprinting technology could allow for 

consistent generation of these tissues due to its standardization and automation. Beyond the 

devastating skin phenotype of RDEB, bioprinting allows for the modeling of the associated 

cutaneous squamous cell carcinoma (SCC) that develops at lesion sites. RDEB-associated 

SCC is the major cause of death in RDEB individuals, due to its high metastatic potential 

and therapy-resistant nature.62 3D in vitro RDEB models for drug testing and researching 

RDEB-associated SCC show promise but are not commonly used.63, 64 In studying SCC, 

3D spheroids have significant potential for modeling the pervasive cancer phenotype 

demonstrated in RDEB.57, 65, 66 However, the use of these organotypic technologies, despite 

their pervasiveness in wound-healing studies, remain notably underrepresented in RDEB 

research.67 This is most likely a result of the difficulty of producing and maintaining 

an in vitro 3D model using RDEB cells. The continued advancement of 3D bioprinting 

technology has the potential to transform current in vitro RDEB models and thus lead to 

new, advantageous therapies.

Important to add, other complicated and severe genodermatoses that bioengineered skin 

could be useful for include Kindler syndrome, Gorlin syndrome, Netherton syndrome, and 

mechanobullous diseases.68 Furthermore, skin models are beneficial for the modeling of 

many more common physiological and pathological conditions like ultraviolet irradiation 
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response, inflammation, psoriasis, and skin cancers, in addition to pharmaceutical screenings 

for potential therapies.69–71 In fact, a groundbreaking study used 3D bioprinting technology 

to produce skin tissue with pathophysiological signs of type 2 diabetes. The study 

found that the diseased skin tissue model displayed the characteristic insulin resistance, 

adipocyte hypertrophy, inflammatory reaction, and vascular dysfunction in a hyperglycemic 

environment. The model was also verified for future disease drug screening and represents a 

major step in the direction of modeling human diseases using 3D bioprinting technologies.72

Major Open Questions

While 3D bioprinting could radically change the study and treatment of skin wounds, there 

are many technical challenges to overcome before clinical practice of 3D bioprinting is 

a reality. One challenge is optimization of bioink to meet requirements for printability, 

reproducibility, and spatial organization of the graft. Further research investigating the 

molecular signaling molecules required for activation of innate healing mechanisms is 

needed to narrow the disparity between the in vitro and in vivo microenvironments. In 

order to have successful transplantation to the patient, immunological barriers such as the 

human leukocyte antigen (HLA) or ABO blood group must be matched or circumvented. 

Ideally, autologous cells such as iPSCs would be used. In the case of genetic disorders, this 

is challenging. The banking of allogenic cells is an idea that has been proposed to provide 

cellular therapy support. However, broad HLA diversity makes the idea of establishing 

haplobanks seem unrealistic. This can be circumvented by using immunomodulatory therapy 

as an adjunct to allogenic transplant.73 For clinical translation, active monitoring of cell 

yields and maintenance of quality parameters including purity, potency, and viability of the 

cell types during printing would be critical protocol measures.19 These intricate challenges 

must be addressed before 3D bioprinting technology can meet its full potential. Additionally, 

the field of 3D bioprinting for wound healing faces a unique challenge in regards to 

conducting clinical trials. In order to conduct a clinical trial, there must be genuine equipoise 

as to the efficacy of different treatments being considered.74, 75 Generally, it is thought that 

autografts, grafts harvested from the intended recipient, are the ideal for replacing damaged 

skin tissue.76 In the case of rare genetic diseases like RDEB, however, the generalized 

superiority of autografts is diminished, thus prompting researchers and practitioners to 

pursue alternative therapeutic technologies like 3D bioprinting.

Conclusions and Perspectives

The overwhelming amount of research focused on developing 3D bioprinting applications 

shows the transformative potential of this technology. Although in its early stages, 3D 

bioprinting is projected to transcend the accomplishments of current tissue engineering and 

lead to a shift in the treatment of skin injuries. The clinical burden, particularly of chronic 

wounds and burns, is significant and in need of more efficient and effective wound care 

options. In the case of RDEB, because of its rarity and complexity, both the treatment and 

study of this disease are limited. 3D bioprinting could offer several applications―namely 

skin regeneration, cell and molecule delivery systems, and disease modeling―to circumvent 

these limitations and improve patient outcomes. With continued research, these applications 

could revolutionize the outlook of skin wound healing.
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Figure 1. 
The two main methods for developing and applying 3D bioprinted therapies are in situ 
and in vitro. This figure displays both processes from initial cell culture to final patient 

application (created with BioRender.com).
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Figure 2. 
The future of 3D bioprinting shows promise for significantly impacting the study and 

treatment of RDEB skin wounds. This schematic displays 3D bioprinting’s possible 

applications for treating RDEB skin wounds including skin regeneration, a delivery system, 

and disease modeling (created with BioRender.com).
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