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Myeloid‑derived suppressor cells 
in hematologic malignancies: two sides 
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Abstract 

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow cells originating from 
immature myeloid cells. They exert potent immunosuppressive activity and are closely associated with the develop-
ment of various diseases such as malignancies, infections, and inflammation. In malignant tumors, MDSCs, one of the 
most dominant cellular components comprising the tumor microenvironment, play a crucial role in tumor growth, 
drug resistance, recurrence, and immune escape. Although the role of MDSCs in solid tumors is currently being 
extensively studied, little is known about their role in hematologic malignancies. In this review, we comprehensively 
summarized and reviewed the different roles of MDSCs in hematologic malignancies and hematopoietic stem cell 
transplantation, and finally discussed current targeted therapeutic strategies.
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Introduction
Since the discovery of myeloid-derived suppressor cells 
(MDSCs) in 2007 [1], scientists have been studying their 
biological properties, as well as their physiological and 
pathological roles, with increasing fervor. MDSCs are 
composed of two main classes of cells, namely monocytic 
MDSCs (M-MDSCs) and granulocytes or polymorpho-
nuclear MDSCs (PMN-MDSCs). The former is pheno-
typically and morphologically similar to monocytes, 
whereas the latter is closer to neutrophils [2]. A minor-
ity of bone marrow progenitor cells and precursor cells 
with colony-forming activity in humans, referred to as 
early MDSCs, has also been discovered in recent years 
(e-MDSCs) [3]. In pathological conditions such as infec-
tions, malignancies, and chronic inflammation, multiple 
growth factors and inflammatory mediators stimulate 

MDSCs to undergo expansion, further participating in 
immune regulation and disease development [4–6].

In patients with solid tumors, the number of MDSCs 
is positively correlated with cancer stage and tumor load 
[11, 12] and is a biological marker of treatment failure as 
well as poor prognosis [13–15]. Under the joint regula-
tion of the tumor microenvironment and tumor-derived 
factors secreted by cancer cells, MDSCs can be amplified 
and recruited to tumor primary and metastatic sites [16, 
17], while activated MDSCs can suppress the anti-tumor 
immune response of immune cells (e.g., NK cells, CD4+ 
T cells, and CD8+ T cells) through numerous mecha-
nisms (e.g., the release of nitric oxide or reactive oxygen 
species [7], depletion of essential metabolites [8], induc-
tion of other immunosuppressive cells [9], and expression 
of negative immune checkpoint molecules [10]) in the 
tumor microenvironment, thus promoting tumor cells 
immune tolerance and leading to their immune escape. 
Moreover, MDSCs can exacerbate immune dysfunc-
tion in the tumor microenvironment and form a feed-
back loop to further enhance their own accumulation 
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and expansion by secreting pro-inflammatory proteins 
such as S100A8/9 [18, 19]. Therefore, targeted thera-
pies against MDSCs to restore the effective anti-tumor 
response capacity of immune cells have emerged as an 
important goal in tumor therapy. However, although 
MDSCs can promote tumor progression and immuno-
suppression in hematologic malignancies, they do not 
exclusively have negative effects [20, 21], especially in 
allogeneic hematopoietic stem cell transplantation (allo-
HSCT) for the treatment of hematologic malignancies, 
where MDSCs play a positive role between graft-versus-
leukemia (GVL) effects and host immune tolerance [22, 
23].

In this review, we first described the main characteris-
tics of MDSCs and their immunosuppressive functions. 
Next, we elaborated on the role of MDSCs in hemato-
logic malignancies such as lymphoma, multiple myeloma, 
leukemia, and hematopoietic stem cell transplantation. 
Finally, we discussed and summarized the potential of 
targeting MDSCs as a treatment strategy for malignant 
hematologic diseases.

Phenotypic characteristics of MDSCs
MDSCs are defined as a heterogeneous population of 
bone marrow cells with potent immunosuppressive 
activity originating from immature myeloid common 
progenitor cells (CMP). They can be divided into two 
subpopulations in mice, M-MDSCs (CD11b+ Ly6Chi 
Ly6G-) and PMN-MDSCs (CD11b+ Ly6Clo Ly6G+ cells). 
In humans, the M-MDSCs and PMN-MDSCs (G-MDSC) 
subpopulations are labeled as Lin- (CD3, CD19, CD56) 
CD11b+ CD15- CD14+ HLA- DR lo/- and Lin- CD11b+ 
CD15+ CD14- CD66b+ HLA-DR lo/-, respectively. In 
humans, there are also immature and early MDSCs 
(e-MDSC) subpopulation labeled as Lin- HLA-DR lo/- 
CD11b+ CD14- CD15-CD33+ [3]. In addition, novel phe-
notypic markers of MDSCs have emerged in different 
contexts and environments, with M-MDSC and PMN-
MDSC phenotypes of CD11b+ Ly6G- Ly6Chi CD84+ 
and CD11b+ Ly6G+ CD84+ in mice, respectively. In 
humans, the phenotype of M-MDSC is CD14+/CD66b- 
CXCR1+ or CD14+/CD66b- CD84+ , while that of PMN-
MDSC is CD15+ /CD66b+ CD14- LOX1+ or CD15+/ 
CD66b+ CD14-CD84+ [24]. Interestingly, Je-In Youn 
et  al. uncovered that M-MDSCs could acquire the phe-
notypic, morphological, and functional characteristics 
of PMN-MDSCs through histone deacetylase 2 (HDAC-
2)-mediated epigenetic modifications and transcriptional 
silencing of the retinoblastoma (Rb) gene [25]. With the 
in-depth study of the origin and function of MDSCs, 
the phenotypic markers of MDSCs are continually being 
updated and developed, and the distinction between 
MDSCs may be more detailed and clear in the future.

Amplification and activation of MDSCs
Albeit MDSCs are morphologically and phenotypically 
similar to neutrophils and monocytes, their activation 
processes and signaling are distinct from those of neutro-
phils and monocytes. Classical myeloid activation is gen-
erated in response to pathogen invasion and tissue injury 
and is predominantly induced in the form of pathogen-
associated molecular patterns (PAMP), danger-associ-
ated molecular patterns (DAMP), and Toll-like receptors 
(TLR) [26], resulting in the rapid mobilization of mono-
cytes and neutrophils in the bone marrow, respiratory 
burst, markedly enhanced phagocytosis, and produc-
tion of large amounts of pro-inflammatory cytokines [27, 
28]. However, this response is primarily aimed at elimi-
nating foreign dangers and is of short duration. In con-
trast, pathological activation of myeloid cells occurs in 
the presence of chronic infections, cancers, autoimmune 
diseases, and persistent inflammatory environments. The 
first group of signals is generated in conditions such as 
infection, cancer, and inflammatory environments and 
includes granulocyte-macrophage colony-stimulating 
factor (GM-CSF), macrophage colony-stimulating fac-
tor (M-CSF), granulocyte colony-stimulating factor 
(G-CSF), vascular endothelial growth factor (VEGF), 
and prostaglandin E2 (PGE2) [5, 29, 30]. Under the reg-
ulation of transcriptional factors and regulators such as 
signal transducer and activator of transcription (STAT)-
3, STAT5, interferon regulatory factor 8 (IRF8), and C/
EBP-β [6], immature myeloid cells (IMCs) expand in 
large numbers, laying the quantitative foundation for 
the formation of a large number of MDSCs. Afterward, 
the second set of signals is generated by inflammatory 
cytokines and DAMP, including interleukin (IL)-1β, IL-4, 
IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF) 
[31]. The endoplasmic reticulum stress response has been 
recently discovered to promote the pathological activa-
tion of MDSCs [32]. At this stage, mononuclear/dendritic 
progenitor cells (MDP) and myeloblasts (MB) are trans-
formed into pathologically activated MDSCs. MDSCs 
formed under these pathological conditions differ from 
the gene expression profile of mature bone marrow cells 
in healthy humans, thus conferring their immunosup-
pressive capacity, the main marker to distinguish the two.

Recruitment of MDSCs
MDSCs can be recruited to the primary and metastatic 
tumor sites by chemokines released by the tumor. In 
ovarian cancer cells, the transcription factor Snail pro-
motes the recruitment of MDSCs by upregulating the 
expression of the CXCR2 ligand CXCL2 through the 
NF-κB pathway [33]. CXCL2 has also been demon-
strated to recruit MDSCs and promote tumor growth 
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in breast cancer, pancreatic ductal adenocarcinoma, 
oral cancer, and glioblastoma, whereas knockdown of 
CXCR2 in MDSCs and knockdown of CCL2 reduced 
the recruitment of MDSCs to tumor sites in mice 
[34–37]. In renal cell carcinoma, intra-tumor levels 
of CXCL5 and CXCL8 were significantly correlated 
with the degree of MDSC infiltration [38]. In hepato-
cellular carcinoma, M-MDSCs are recruited through 
CXCL10 and TLR4 and promote tumor recurrence 
following liver transplantation [39]. In addition, vari-
ous factors accumulated in the tumor microenviron-
ment contribute to the recruitment of MDSCs. In a 
hepatocellular carcinoma murine model, the hypoxic 
environment in the tumor caused hypoxia-inducible 
factor-1 (HIF-1) to activate CXCL26 transcription in 
cancer cells, thereby recruiting MDSCs expressing the 
CXCL26 receptor CX3CR1 into the primary tumor site 
[40]. Moreover, tumor cells can synthesize indoleamine 
2,3-dioxygenase (IDO) and rely on regulatory T cells 
(Treg) to deplete the essential amino acid tryptophan 
and recruit MDSCs [41]. Lastly, other chemokines such 
as CCL7 [42], CXCL4 [43], and CCL12 [44] have also 
been shown to mediate the recruitment of MDSCs in 
the tumor microenvironment. (Figure 1)

The immunosuppressive function of MDSCs
Suppressing the immune response capacity of immune 
cells is a fundamental feature of MDSCs, which can exert 
immunosuppressive effects mainly through the following 
mechanisms.

(1)	 Regulation of cellular metabolites: L-arginine is a 
key substance for T cell proliferation, and MDSCs 
exhibit high expression levels of inducible nitric 
oxide synthase (iNOS) and arginase-1 (ARG-1), 
which can degrade L-arginine, thus inhibiting 
the proliferation of activated T cells and reduc-
ing the expression of the TCR-ζ chain [8]. Besides, 
increased expression of ARG-1 in MDSCs can 
stimulate the production of extracellular matrix 
components, thereby promoting tissue remodeling 
and tumor growth [45]. Interestingly, it has recently 
been uncovered that soluble factors such as ARG-1 
merely play a minor role in inhibiting T cell prolif-
eration, and MDSCs are required to inhibit T cell 
proliferation through direct intercellular contacts 
[46]. Therefore, further studies are warranted to 
elucidate the role of ARG-1 in the immunosuppres-
sive process of MDSCs. A recent study found that 

Fig. 1  Schematic diagram of tumor microenvironment-mediated amplification, activation and recruitment of MDSCs. Figures were created 
in BioRender.com. HSPC hematopoietic stem progenitor cells, IMC immature myeloid cells, MDP mononuclear/dendritic progenitor cells, MB 
myeloblasts.
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accumulation of the dicarbonyl radical methylgly-
oxal led to the metabolic phenotype of MDSCs and 
MDSC-mediated exhaustion of CD8+ T cells [47]. 
Meanwhile, the increased uptake and consumption 
of glucose by M-MDSC in the tumor microenviron-
ment compromises immune cell metabolism and 
thus enables the immune escape of tumor cells [48]. 
Tumor cell glycolysis promotes liver-enriched acti-
vator protein (LAP) expression via AMP-activated 
protein kinase (AMPK)-ULK1 and autophagic 
pathways that mediate G-CSF and GM-CSF pro-
duction to promote the immunosuppressive effects 
of MDSCs [49].GM-CSF also activates the tran-
scription factor STAT5 in PMN-MDSCs to increase 
the expression of fatty acid transporter 2 (FATP2), 
which mediates the uptake of arachidonic acid (AA) 
and the synthesis of PGE2 to exert its immunosup-
pressive effects [50]. In addition, many lipid meta-
bolic pathways are also involved in the immunosup-
pression of MDSC, as reviewed in [51].

(2)	 Generation of reactive oxygen species (ROS) and 
nitric oxide (NO): MDSCs produce ROS that has 
a direct toxic effect on immune cells [52], while 
high levels of ROS also stimulate the expression of 
VEGF receptors on MDSCs, further contributing 
to their expansion and recruitment [53]. Addition-
ally, the clearance of ROS leads to the differentia-
tion of IMC isolated from tumor-bearing mice into 
DCs and macrophages in vitro, indicating that ROS 
could maintain the status of MDSCs [54]. ROS also 
induces TIPE2 (tumor necrosis factor-α–induced 
protein 8-like 2) to increase the expression of the 
pro-tumor mediator CCAAT/enhancer-binding 
protein-β, which regulates MDSC polarization 
[55]. In addition to ROS production, MDSCs also 
generate high levels of NO through the activation 
of iNOS and NO strongly induces the expression 
of cyclooxygenase 2 (COX-2) and HIF-1α [56], 
which is involved in PGE2 synthesis. This further 
upregulates the expression of IDO, IL-10, ARG-1, 
and other immunosuppressive markers [57], thus 
enhancing the suppressive effect of MDSCs on 
immune cells.

(3)	 Induction of other immunosuppressive cells: 
M-MDSC exerted direct immunosuppressive 
effects on effector T cells and triggered Foxp3+ 
regulatory T cell (Treg) production by secreting 
TGF-β and IL-10 in a tumor mouse model, while 
TGF-β also induced the expansion of M-MDSCs 
[9, 58]. Recently, it has been reported that MDSCs 
can convert normal B cells into a unique popula-
tion of programmed death receptor-1 negative, pro-
grammed death ligand-1 positive (PD-1- PD-L1+) 

regulatory B cells (PD-1- PD-L1+ Breg) in breast 
cancer and that this population has a stronger sup-
pressive effect on T cell immune responses [59]. 
Furthermore, MDSCs can convert macrophages 
to an M2-like phenotype with immunosuppressive 
features, thereby promoting tumor growth [60].

(4)	 Expression of negative immune checkpoint mol-
ecules: in patients with non-small cell lung can-
cer, MDSCs interact with T-cell immunoglobulin 
mucin 3 (TIM3) on T cells through the expression 
of Galectin-9 (Gal-9), which impairs the cytotoxic 
effect of CD8+ T cells and is closely associated with 
patient resistance to PD-1 monoclonal antibod-
ies [61]. Tumor-derived MDSCs activate the phos-
phatidylinositol 3-kinase (PI3K)/protein kinase 
B (AKT)/nuclear factor kappa B (NF-κB) signal-
ing pathway in PD-1- PD-L1+ Bregs via the PD-1/
PD-L1 axis, which mediates their immunosuppres-
sive function [62]. MDSCs have also been found 
to express PD-1, PD-L1, and T-cell immunoglobu-
lin and ITIM structural domain protein (TIGIT) 
ligands in human glioma tissues, thereby block-
ing TIGIT/PD1 to restore T-cell proliferation and 
immune function [63].

MDSCs in hematologic malignancies
MDSCs have received widespread attention from clini-
cians and scientists owing to their role in suppressing 
immunity and stimulating tumor development. A large 
number of studies have now established that the num-
ber of MDSCs in the peripheral blood, bone marrow, and 
tumor infiltration sites is positively correlated with high 
tumor load, tumor stage, and poor prognosis. MDSCs are 
considered prognostic markers for hematologic malig-
nancies as well, but do they only have detrimental effects 
in hematologic malignancies?

Lymphoma
Serafini et al. first identified a population of cells express-
ing Gr1, F4/80, and IL-4Rα, low in MHC class I and II 
molecules and high in CD11b in a murine A20 B-cell 
lymphoma model, and further studies validated that this 
population of cells was MDSCs. Notably, this population 
of cells inhibited CD8+ T-cell proliferation and induced 
the recruitment and expansion of Tregs by ARG [64]. 
In a 2014 study, lenalidomide was reported to promote 
tumor regression and improve immunosuppressive status 
by reducing the frequency of MDSCs in A20 lymphoma 
mice; however, the exact mechanism has not been eluci-
dated [65]. In another study conducted in 2016, Abedi-
Valugerdi et  al. observed a large infiltration of MDSCs 
in the spleen of EL4-luc2 lymphoma model mice as well 
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as an elevated number of blood neutrophils, implying 
that tumors alter normal myelopoiesis and stimulate 
the production of MDSCs during tumor development 
[66]. In 2017, Zhen Xu et  al. described that B-cell lym-
phoma model mice manifested an increased expression 
level of microRNA (miR)-30a in MDSCs. miR-30a acti-
vates the JAK2/STAT3 signaling pathway by decreas-
ing the expression of suppressor of cytokine signaling-3 
(SOCS3), thereby promoting MDSC differentiation and 
increasing the expression of their major immunosuppres-
sive factors ARG-1, IL-10, and ROS [67]. In 2020, Lu Fei 
et al. noted an increased expression of PD-L1 and a sig-
nificantly higher frequency of MDSCs in tumor tissues 
of patients with diffuse large B-cell lymphoma (DLBCL), 
which was evidently correlated with the immunosuppres-
sive state of the patients. They used the NLRP3 inhibitor 
MCC950 to intervene in A20 B-cell lymphoma model 
mice and found that the proportion of MDSCs and other 
immunosuppressive cells (e.g., Treg) in the tumor tissue 
and spleen of the mice declined after treatment. How-
ever, the proportion of tumor-infiltrating MDSCs was 
increased after combined anti-PD-L1 treatment, sug-
gesting that blockade of PD-L1 could affect the immune 
recovery function of MCC950 [68]. A study identified 
calmodulin kinase kinase 2 (Camkk2) as a target for the 
accumulation of MDSCs in E.G7-OVA tumor-bearing 
mice. Indeed, knockdown of Camkk2 in mice resulted 
in an enhanced anti-tumor immune response of T cells 
and reduced accumulation of MDSCs, slowing down the 
growth of tumor cells. In contrast, the ability to restore 
tumor growth was restored by the overtransplantation of 
MDSCs into Camkk2-/- mice, suggesting the critical role 
of MDSCs in the tumor immunosuppressive process and 
a possible role of Camkk2 as a target to inhibit MDSC 
expansion [69].

In clinical terms, Romano et al. found an increased pro-
portion of M-MDSC, PMN-MDSC, and CD34+ MDSC 
subpopulations in the peripheral blood of 60 newly diag-
nosed Hodgkin’s lymphoma (HL) patients compared to 
healthy controls. The number of MDSCs was lower in 
patients who achieved CR compared to those who did 
not achieve complete remission (CR) after chemotherapy 
[70]. In contrast, Amini RM et al. reported a higher num-
ber of PMN-MDSCs in the peripheral blood of 19 HL 
patients compared to healthy controls, while there was 
no significant difference in M-MDSCs [71], likely due to 
differences in the number of patients in the study, the 
stage of the disease and differences in phenotypic mark-
ers for MDSCs. Similarly, Marini et  al. found a higher 
proportion of PMN-MDSCs (CD66b+ CD33dim HLA-
DR-) in 124 patients with B-cell lymphoma (both HL and 
B-NHL) and that this was correlated with international 
prognostic index and disease status, while depletion of 

CD66b+ MDSCs restored T-cell proliferation [72]. A sig-
nificant increase in the number of MDSCs in the periph-
eral blood of DLBCL patients has also been reported, 
but only the number of M-MDSCs correlated with the 
international prognostic index, event-free survival, and 
the number of circulating Tregs, and IL-10, S100A12, and 
PD-L1, which are associated with the immunosuppres-
sive effects of MDSCs, were expressed at an increased 
level in DLBCL patients, while inhibition of these mol-
ecules could increase T cell proliferation [73]. Accord-
ing to a recent study, the number of M-MDSCs in newly 
diagnosed and relapsed DLBCL patients was positively 
correlated with tumor progression and negatively corre-
lated with overall survival (OS), while IL-35 mediated the 
accumulation of M-MDSCs in DLBCL patients and anti-
IL-35 treatment significantly reduced M-MDSC levels in 
a Ly8 DLBCL murine model [74]. Furthermore, a clinical 
trial using lenalidomide combined with R-GDP (rituxi-
mab plus gemcitabine, cisplatin, and dexamethasone) 
for relapsed/refractory DLBCL demonstrated that both 
MDSCs and Tregs were elevated in circulating num-
bers in DLBCL patients, were reduced and approached 
healthy control levels in patients with overall survival 
>  24  months after treatment, and determined that vita-
min D-deficient DLBCL patients had higher levels of 
MDSCs and Tregs; these results signal that vitamin D 
supplementation may result in enhanced treatment out-
comes in these patients [75, 76]. In other recent studies, 
an increased number of MDSCs was also detected in 
DLBCL patients at diagnosis and was associated with a 
poorer disease prognosis [77, 78].

Furthermore, in patients with extranodal NK/T-cell 
lymphoma (ENKL), total MDSCs (CD33+ CD11b+ HLA-
DR-) and M-MDSCs were independent prognostic fac-
tors for patient disease-free survival (DFS) and OS, and 
studies have also found that the inflammatory cytokine 
IL-17 produced by CD4+ Th17 cells in ENKL patients 
may promote the effect of MDSCs on the inhibition of T 
cell proliferation [79]. There are no literature reports on 
other types of NHL, such as set cell lymphoma or follicu-
lar lymphoma, associated with MDSCs.

Multiple myeloma
Veirman’s team discovered an accumulation of MDSCs 
in the bone marrow during the early stages of MM pro-
gression in a 5TMM mouse model, and MDSCs could 
appear in the peripheral blood at later stages of the dis-
ease. Moreover, soluble factors from MM cells could 
promote the survival of MDSCs by increasing the expres-
sion of the anti-apoptotic protein Mcl-1. In in  vitro 
studies, bone marrow mesenchymal stem cell (BMSC)-
derived exosomes could directly induce the survival of 
MM MDSCs and increase NO release from MDSCs by 
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activating the STAT3 and STAT1 pathways and increas-
ing the expression of anti-apoptotic proteins Bcl-xL 
and Mcl-1, thereby enhancing their suppressive func-
tion against T cells. Conversely, MDSCs also promoted 
MM cell survival via Mcl-1 and Bcl-2 and contributed 
to their resistance to bortezomib and melphalan [80–
82]. Another study also established that co-culture of 
MM-derived but not healthy donor-derived MSCs with 
PMN-MDSCs resulted in PMN-MDSCs with immu-
nosuppressive functions [83]. Besides, the presence of 
S100A9 and its receptor TLR4 was detected in MDSCs 
of MM model mice, and the former served as a chemoat-
tractant for MM cells to trigger MDSCs to express and 
secrete inflammatory factors such as TNF-α, IL-6, and 
IL-10. Blocking S100A9 did not directly influence MDSC 
accumulation but rather decreased the expression of 
inflammatory cytokines in MDSCs [84]. Furthermore, 
MM-derived Galectin-1 mediates the pro-tumorigenic 
effects of M-MDSCs by interacting with CD304 on 
M-MDSCs and facilitates MM progression follow-
ing autologous stem cell transplantation (ASCT) [85]. 
These results suggest that in the MM microenvironment, 
various cells and factors interact with each other and 
together influence the development of MM.

In humans, Brimnes et  al. first reported an increased 
number of M-MDSCs in the peripheral blood of MM 
patients compared to healthy controls in 2010 [86]. Later, 
Wang et al. showed that M-MDSC levels were positively 
correlated with MM recurrence and negatively correlated 
with treatment outcomes [87]. Meanwhile, a study found 
that bone marrow neutrophils from MM patients exhib-
ited MDSC activity [88], and further immunogenomic 
identification suggested that CD11b+ CD13+ CD16+ 
neutrophils in MM are G-MDSCs [89]. G-MDSCs have 
been reported to be highly accumulated in the bone 
marrow and peripheral blood of MM patients com-
pared to healthy donors, and this abundance has also 
been positively correlated with disease activity [83, 90, 
91]. In terms of treatment, there are conflicting reports 
on the impact of the proteasome inhibitor bortezomib, 
the immunomodulatory agent lenalidomide (LEN), and 
DC vaccination on MDSCs in the treatment of MM 
(reviewed in [92]). The immunomodulatory drugs LEN 
and pomalidomide reduce CCL5 and macrophage migra-
tion inhibitory factor (MIF) expression in myeloma cells, 
thereby suppressing the generation of MDSCs [93]. The 
combined use of LEN and PD-1 monoclonal antibodies 
can further curtail the number of MDSCs [94]. In addi-
tion, large numbers of M-MDSCs can reduce the cyto-
toxicity of pre-ASCT melphalan and are associated with 
a poorer clinical prognosis [95]. A recent study illustrated 
that the demethylating agent decitabine (DAC) inhib-
ited MM cell proliferation and enhanced the immune 

response of autologous T cells by depleting M-MDSCs 
[96]. The CD38 antibody daratumumab also improved 
the antitumor immunity of MM patients by diminishing 
the number of immunosuppressive cells such as Tregs, 
Bregs, and MDSCs [97]. In addition, estrogen has been 
associated with promoting MM progression by enhanc-
ing the immunosuppressive function of bone marrow 
MDSCs [98]. High levels of IL-18 in the MM bone mar-
row microenvironment increase the immunosuppres-
sive capacity of MDSCs via C/EBPβ, and elevated IL-18 
levels in the bone marrow of MM patients are conse-
quently associated with poor patient prognosis [99]. MIF 
in the MM microenvironment induces CD84 expression 
in bone marrow cells, leads to elevated expression of 
genes related to differentiation of MSDCs, and upregu-
lates PD-L1 expression on MDSCs, thereby suppressing 
T-cell function [100]. These newly identified molecules 
are anticipated to be utilized to target MDSCs in order to 
treat MM.

Leukemia
In acute leukemia, a study using the leukemic cell line 
TIB-49 implanted in mice resulted in the expansion 
and accumulation of MDSCs in the bone marrow and 
spleen, and the oncoprotein MUC1 was found to be a 
key driver of extracellular vesicle (EV)-mediated expan-
sion of MDSCs [101]. Additionally, Tohumeken et  al. 
determined that palmitoylated proteins on acute myeloid 
leukemia (AML)-derived EVs promote the differentiation 
of monocytes toward MDSCs through TLR2/Akt/mTOR 
signaling [102]. Sun et al. found a significant increase in 
MDSCs (CD33+ CD11b+ HLA-DRlo/-) in the bone mar-
row of adult AML patients with high minimal residual 
disease (MRD). Indeed, the patients had significantly 
higher levels of bone marrow MDSCs than those in the 
medium and low MRD groups [103]. In another instance, 
higher amounts of M-MDSCs and e-MDSCs were iden-
tified in the peripheral blood of AML patients [104], 
and the elevated circulating MDSCs were significantly 
correlated with lower CR and higher relapse/refrac-
tory rates and lower long-term survival in these patients 
[105]. It has been found that intervention of AML cells 
with the AML chemotherapeutic drug agranulocyte 
(Ara-C) increases TNF-α production, which in turn acti-
vates the IL-6/STAT3 and NF-κB pathways to amplify 
MDSCs and enhance their immunosuppressive function 
[106]. Hwang et  al. demonstrated that the combination 
of Ara-C, the CXCR4 inhibitor Plerixafor, and a PD-L1 
monoclonal antibody in an AML murine model resulted 
in a decrease in the number of Tregs and MDSCs in the 
peripheral blood as well as in bone marrow leukemic 
cells, inferring that the treatment of AML by modulat-
ing the leukemic microenvironment is a very promising 
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strategy [107]. In addition, the number of MDSCs was 
significantly increased in the peripheral blood of patients 
with B-cell acute lymphoblastic leukemia (B-ALL) [108]. 
Hotari et  al. noted a decrease in M1-type macrophages 
and effector T cells and an increase in M2-type mac-
rophages and MDSCs in bone marrow samples of ALL 
patients compared to healthy controls, and that negative 
immune checkpoint molecules of MDSCs (such as PD-1 
and CTLA-4) expression were increased in association 
with immunosuppression [109]. In patients with acute 
promyelocytic leukemia (APL), tumor-activated intrinsic 
lymphocytes (ILC2) secrete IL-13 to induce M-MDSC 
production and support tumor growth, whereas all-
trans retinoic acid (ATRA) treatment reverses the ILC2-
induced increase in MDSCs [110].

In chronic granulocytic leukemia (CML), MDSCs and 
the levels of their immunosuppressive markers IL-10 
and ARG1 are elevated, and the tyrosine kinase inhibi-
tor (TKI) imatinib and dasatinib treatments can reduce 
MDSC levels to within the normal range [111, 112]. Fur-
ther studies established that TKI treatment reduced the 
proportion of G-MDSCs, but only patients treated with 
dasatinib had a significant reduction in the number of 
M-MDSCs. Therefore, M-MDSCs may act as a prognos-
tic factor in CML patients treated with dasatinib [113]. In 
a study regarding chronic lymphocytic leukemia (CLL), 
elevated M-MDSC levels were observed in the peripheral 
blood of 50 newly diagnosed patients and were associ-
ated with poorer survival [114]. Tregs and MDSCs can 
revert to normal levels in CLL patients within 1–2 years 
after ibrutinib treatment [115]. Through further studies, 
PMN-MDSCs were found to have a greater impact on 
immunosuppression than M-MDSCs in CLL patients, 
while ibrutinib further lowered the number of PMN-
MDSCs and altered the differentiation of MDSCs, induc-
ing naïve T cells toward Th1 cells and away from Th2 
cells, thus improving the tumor microenvironment in 
leukemia [116].

Myelodysplastic syndromes
In myelodysplastic syndromes (MDS), MDSCs sup-
press the immune response of T cells by inducing Treg 
proliferation in the MDS bone marrow microenviron-
ment, preventing T cells from clearing malignant clonal 
cells [117]. Meanwhile, the high expression of PD-L1 in 
MDSCs triggers hematopoietic cell death by binding to 
PD-1 of hematopoietic stem progenitor cells (HSPCs), 
resulting in ineffective bone marrow hematopoiesis [118]. 
Furthermore, MDSCs can also secrete large amounts of 
S100A9 in MDS, which on the one hand, can interact 
with TLR-4 on HSPCs to activate downstream inflam-
matory signaling pathways, and on the other hand, bind 
to their cellular surface CD33 to trigger the production 

of immunosuppressive cytokines IL-10 and TGF-β to 
directly inhibit hematopoiesis through their immune 
receptor tyrosine-based inhibitory motifs [119]. Our 
previous also study identified that Gal-9, a ligand of the 
immune checkpoint molecule TIM3 highly expressed in 
the MDSCs of MDS patients, can bind to the TIM3 that 
is highly expressed on CD8+ T cells to suppress their 
immune function, leading to CD8+ T cell exhaustion 
[120]. It was also established that MDSCs can govern the 
expression of the immunosuppressive molecule ARG1 
through the STAT3 pathway, which in turn impacts 
the antitumor immune response of CD8+ T cells [121]. 
Hence, exploring the role of negative immune checkpoint 
molecules highly expressed by MDSCs in MDS patients 
will aid in exploring approaches to suppress MDSCs for 
the treatment of MDS.

Since most malignant hematologic diseases originate 
from malignant clonal proliferation of bone marrow 
cells, whether MDSCs originate from the same lineage 
or population as malignant clonal cells necessitate fur-
ther in-depth investigations. Many drugs or targeted 
therapies for hematologic tumors have been found to 
inhibit MDSCs as well, raising the question of whether 
these drugs have common or similar therapeutic mech-
anisms for tumor cells and MDSCs. Moreover, recent 
studies have also established that epigenetic and meta-
bolic regulation are closely related to the generation of 
immunosuppressive functions in MDSCs, and hence the 
combination of epigenetic-related therapeutic agents 
(e.g., azacitidine and chidamide) with traditional chem-
otherapeutic agents or novel drugs for the treatment of 
malignant hematological diseases may yield superior 
therapeutic outcomes.

MDSCs in hematopoietic stem cell transplantation
In the tumor microenvironment of the hematologic 
malignancies described above, MDSCs mostly play the 
role of “villains”, suppressing the anti-tumor immune 
response of immune cells and disrupting the immune 
microenvironment, thus promoting tumorigenesis and 
progression. In HSCT for hematologic malignancies, the 
relationship between GVL effects, graft-versus-host dis-
ease (GVHD), and MDSCs is more intricate.

MDSCs have been detected in peripheral blood 
hematopoietic stem cells (G-PBSC) after mobilization 
with G-CSF [122]. A multicenter study determined that 
bone marrow hematopoietic stem cell (G-BM) trans-
plantation after G-CSF mobilization enhanced relapse-
free survival with a lower incidence of GVHD compared 
to G-PBSC transplantation, which was associated 
with a higher number of MDSCs in the grafts [123]. 
A real-world study also found that allo-HSCT mobi-
lized with pegylated granulocyte colony-stimulating 
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factor alleviates severe acute graft-versus-host disease 
by enriching M-MDSCs in the graft and is a feasible 
and safe treatment modality [124]. Using transcrip-
tome sequencing, Andrea et al. identified a substantial 
upregulation of genes that promote DNA replication, 
cell cycle, and cell division in G-CSF mobilized PMN-
MDSCs, such as the marker of cell proliferation Ki-67 
(MKI67), topoisomerase II alpha (TOP2A) and cyclin 
B (CCNB2) [125]. This study revealed the underlying 
mechanism for the marked increase in the number of 
MDSCs after G-CSF mobilization. Encouragingly, a ret-
rospective study discovered an improved anti-leukemic 
effect of DLI after administration of G-CSF compared 
to conventional donor lymphocyte infusion (DLI) in 
patients who relapsed after allo-HCT, given that it was 
enriched in MDSCs and did not increase the cumula-
tive GVHD incidence [126]. Furthermore, umbilical 
cord mesenchymal stem cells promote MDSCs enrich-
ment and prevent GVHD after HSCT by secreting 
CXCL1 [127] and HLA-G [128]. Zhang et  al. investi-
gated the inhibition of GVHD by MDSCs while pre-
serving the GVL effect and noted that MDSCs induced 
NKG2D expression on T cells and simultaneously sup-
pressed GVHD by upregulating Tregs [129]. Delayed 
recovery of M-MDSC and invariant natural killer T 
cell (iNKT) numbers after transplantation was related 
to an increased incidence of grade III–IV acute GVHD, 
but the combination of lower levels of M-MDSCs 
and higher levels of iNKT cells was associated with 
enhanced GVL effects and reduced leukemic relapse 
[130]. This demonstrates that MDSCs need to be bal-
anced with other types of immune cells in order to play 
a positive regulatory role in HSCT.

Furthermore, a major obstacle facing the field of 
GVHD mitigation by transfusion of immunosuppressive 
cells is the disruption of the immune system, the delayed 
growth of immune cells, and the risk of infection. Pre-
treatment regimens combined with stem cell infusion 
and the subsequent occurrence of tissue damage create 
an inflammatory environment that may lead to excessive 
M-MDSC expansion, in which case increased M-MDSC 
levels predict higher non-relapse mortality [131]. In con-
trast, it is challenging to extract large amounts of MDSCs 
from humans in a short period of time owing to their low 
numbers in humans, which may take too long for their 
use as a treatment for severe acute GVHD, and the ideal 
method for in vitro culture expansion of MDSCs has not 
been determined so far [132]. Interestingly, recent stud-
ies have found that the use of the immunosuppressant 
cyclophosphamide following allo-HSCT resulted in early 
recovery of MDSCs and a reduction in the incidence 
of GVHD [23] and that cyclosporine A, another drug, 
inhibited the opening of the mitochondrial permeability 

transition pore (MPTP) in PMN-MDSCs, thereby reduc-
ing MDSC damage in the inflammatory environment of 
GVHD [133].

As is well documented, to maintain the GVL effect 
and prevent and treat GVHD after HSCT, the timing, 
dose, and discontinuation of immunosuppressive drug 
interventions are critical. According to some studies, 
immunosuppressive drugs can enhance the function of 
MDSCs and hence anti-GVHD. However, MDSCs also 
exert a pro-tumor effect, and therefore further studies are 
required to confirm whether MDSC levels should be reg-
ularly monitored in vivo and whether MDSCs can cause 
MRD or tumor recurrence.

Targeting MDSCs
MDSCs play diverse roles in hematologic malignancies 
and HSCT. Inhibiting the differentiation of MDSCs in the 
bone marrow microenvironment, minimizing recruit-
ment, and removing MDSCs from the microenviron-
ment may be effective approaches in targeting MDSCs 
to treat the disease, and numerous therapeutic drugs for 
hematologic diseases have also been found to be effec-
tive in influencing MDSCs (Table 1). That being said, the 
development of MDSC-associated cell therapies for the 
prevention and treatment of GVHD following HSCT is a 
very promising direction.

Inhibiting the differentiation and function of MDSCs
Blocking the differentiation of other cells to MDSCs 
and attenuating the immunosuppressive function of 
MDSCs are also valid methods of targeting MDSCs. 
ATRA is a well-known inducer of differentiation, and a 
study reported that it reversed ILC2-induced MDSC 
generation in APL [110]. Noonan et  al. demonstrated 
that the phosphodiesterase 5 (PDE5) inhibitor tadala-
fil reduced the expression of ROS, ARG-1, and iNOS in 
the MDSCs of MM patients and restored the antitumor 
immune response of T cells [134]. In addition, Grau-
ers et  al. utilized histamine hydrochloride (HDC) to 
inhibit NOX2, lower ROS production in MDSCs, and 
impair tumor growth in lymphoma mice. Moreover, a 
subsequent phase IV clinical trial (NCT01347996) fur-
ther demonstrated a significant reduction in M-MDSCs 
in AML patients treated with HDC and low-dose IL-2, 
resulting in favorable therapeutic outcomes [135]. In 
addition, pharmacological blockade of FATP2 expres-
sion in MDSCs reduced lipid accumulation, decreased 
ROS levels, attenuated the immunosuppressive activity of 
MDSCs, and reduced PD-L1 expression on immune cells, 
thereby enhancing the effect of tumor immunotherapy 
[136]. A recent study found that metabolic reprogram-
ming of the immunosurveillance-activating nanodrug-
assembled doxorubicin (MRIAN-Dox) inhibited M2-type 



Page 9 of 15Yu et al. Experimental Hematology & Oncology           (2022) 11:43 	

pyruvate kinase (PKM2) activity and reduced ROS lev-
els in MDSCs in a T-cell acute lymphoblastic leukemia 
(T-ALL) mouse model, thereby interfering with their 
immunosuppressive function and increasing their differ-
entiation to normal bone marrow cells [137].

Reducing MDSC recruitment
Another therapeutic approach is to prevent the migra-
tion of MDSCs to tumor sites, and chemokine receptors 
play a critical role in recruiting MDSCs to tumor sites 
(as previously described). Clinical trials have been con-
ducted in MM using the CXCR4 antibody Ulocuplumab 
combined with LEN or bortezomib plus dexamethasone 
and have shown satisfactory efficacy [138]. Colony-
stimulating factor receptor (CSF-1R) is essential for the 
survival and recruitment of MDSCs, and treatment with 
CSF-1R inhibitors has shown promising results. Kumar 
et  al. exposed that inhibition of CSF-1R and CXCR2 
reduced G-MDSC levels and improved efficacy against 
PD-1 antibodies in a mouse lymphoma model [139]. 
Tyner et al. employed the CSF-1R inhibitor GW-2580 to 
reduce CD33+ MDSC recruitment in the bone marrow 
of AML patients [140]. Likewise, imatinib targets GSF1R 
to reduce the number of circulating G-MDSCs in CML 
patients [113]. Lu et  al. supplemented epigenetic treat-
ment with a low-dose DNA methyltransferase inhibi-
tor (5-azacytidine) and a histone deacetylase inhibitor 
(entinostat) in a mouse model of lung metastasis, which 
disrupts the formation of the pre-metastatic micro-
environment by suppressing the migration of MDSCs 
through the downregulation of CCR2 and CXCR2, and 
by promoting MDSC differentiation into an interstitial 

macrophage-like phenotype [141]. Entinostat also 
inhibits the VEGF, ErbB, and mTOR pathways in PMN-
MDSCs, thereby suppressing STAT3 activity and conse-
quently reducing Arg-1, iNOS, and COX2 activity [142]. 
In addition, HDAC inhibitors upregulate PD-1 or PD-L1 
expression on tumor or immune cells, sensitizing tumor-
bearing mice to anti-PD-1/PD-L1 antibodies [143].

Depletion of MDSCs
Qin et al. were able to deplete MDSCs in blood, spleen, 
and tumor and slow tumor growth in  vivo in various 
lymphoma model mice (A20, EG7, EL4) by screening 
candidate peptides that specifically bind MDSCs and 
synthesizing peptide-Fc fusion proteins (peptidomes), 
which were administered intravenously without influ-
encing other immune cells [144]. More importantly, 
Fultang et  al. uncovered that a CD33 monoclonal anti-
body (Gemtuzumab) increased the death of CD33+ 
MDSCs, restored T cell proliferation, and showed sat-
isfactory results in subsequent clinical trials [145–147]. 
Cheng et  al. developed a CD33/CD3 bispecific T cell 
splice agent, AMV564, which effectively depleted CD33hi 
MDSCs in MDS and improved T-cell antitumor activity, 
and its combination with immune checkpoint inhibi-
tors improved patient resistance to AMV564 [148]. In 
addition, similar T cell binding bispecific antibodies 
in MM are capable of redirecting host T cell cytotoxic-
ity to malignant clonal MM cells as well as MDSCs in an 
MHC-independent manner [149]. Masoud F et al. found 
that activation of LXR/ApoE/LRP8 inhibited MDSC sur-
vival. Besides, in a human dose-escalation phase 1 trial 
(NCT02922764), an LXR agonist (RGX-104) reduced 

Table 1  Studies targeting MDSCs in malignant hematologic diseases and HSCT

APL acute promyelocytic leukemia, R/R MM relapsed/refractory multiple myeloma, CML chronic myeloid leukemia, CLL chronic lymphocytic leukemia, PGD2 
prostaglandin D2, ILC2 Group 2 innate lymphoid cells, ARG​-1 arginase 1, ROS reactive oxygen species, MPO myeloperoxidase, HSCT hematopoietic stem cell 
transplantation, GVHD graft-versus-host disease

Therapeutic drugs Targeting process Disease Action effect References

Daratumumab Reduction in the number of MDSCs MM Reduces the number of CD38+ MDSCs. [97]

All-trans retinoic acid Inhibition of M-MDSC production APL Induces APL primitive cell differentiation and 
death and inhibits PGD2/ILC2/IL-13 axis-induced 
MDSC generation.

[110]

Imatinib/dasatinib Reduction in the number and immunosuppressive 
effect of MDSCs

CML Reduces the number of MDSCs and their ARG-1, 
MPO, and IL-10 levels.

[111]

Ibrutinib Reduction in the number of MDSCs CLL Reduces MDSC numbers and alters the differentia-
tion of MDSCs, inducing naïve T cells towards Th1 
cells and away from Th2 cells.

[116]

Tadalafil Inhibition of immunosuppressive effects of MDSCs R/R MM Reduces the levels of ROS, ARG-1, and iNOS in 
MDSCs and restores the anti-tumor immune 
response of T cells.

[134]

Bisphosphonates Reduction in the number of MDSCs MM Reduces the number of MDSCs and decreases 
their ability to differentiate into osteoblasts.

[153]

Bendamustine Enhancement of immunosuppressive function of 
MDSCs

HSCT Enhances immunosuppression in MDSCs and 
reduces GVHD.

[154]
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MDSC abundance in patients. Lastly, LXR/ApoE activa-
tion therapy triggered antitumor immune responses in 
cytotoxic T lymphocytes and enhanced T cell activation 
in various immune-based therapies [150].

MDSC implantation
In contrast to MDSCs in hematologic malignancies, 
MDSCs have been found to be beneficial in preventing 
the development of GVHD in HSCT and preserving the 
GVL effects of grafts [126, 129]. Wang et al. transplanted 
G-CSF-stimulated generated e-MDSCs into acute GVHD 
xenogeneic model mice and observed that these cells 
prevented the occurrence of GVHD and that e-MDSCs 
inhibited T cell proliferation in a TGF-β-dependent man-
ner, modulated Th cell differentiation from Th1 to Th2 
and promoted Treg production. Collectively, these effects 
facilitated the establishment of immune tolerance in 
HSCT [151]. Drujont et  al. showed that repeated injec-
tions of MDSCs or a single injection of lipopolysaccha-
ride-activated MDSCs in a skin graft model significantly 
prolonged the survival time of allografts [152], indicating 
a potential therapeutic strategy for the clinical applica-
tion of MDSC transplantation. However, the timing and 
number of transplanted MDSCs need to be considered in 
the context of the patient’s condition and the possibility 
of GVHD recurrence, and therefore, this approach is still 
being explored.

Conclusions
Although MDSCs inhibit the anti-tumor capacity of 
immune cells and exhibit pro-tumor characteristics, they 
also offer new hope for the prevention or alleviation of 
GVHD after HSCT in patients with malignant hemato-
logical diseases (Figure  2). We now have a clear under-
standing of the origin and development of MDSCs, but 
their genomic and metabolic differentiation mechanisms 
remain elusive, and the intricate relationship between 
MDSCs and other cells in the tumor microenvironment 
warrants further investigation. Multi-omics technologies 
such as single-cell sequencing and spatial transcriptome 
may be an important approach to unravel the deeper 
mechanisms underlying the dual action of MDSCs in the 
future. Moreover, the treatment of malignant hematolog-
ical diseases has entered the era of cellular immunother-
apy, and MDSCs have been demonstrated to inhibit the 
anti-tumor capacity of CAR-T cells through their immu-
nosuppressive activity [155, 156]. There are already ways 
to inhibit or remove MDSCs by altering their differentia-
tion direction [157], pattern recognition receptor agonist 
delivery [158], and developing NK cells expressing chi-
meric activated receptors, thus enhancing the anti-tumor 
effects of CAR-T cells [159]. In the future, the construc-
tion of immune cells into CAR-T or CAR-NK cells with 
common targets against tumor cells and MDSCs may be 
an important direction.

Fig. 2  The different roles of MDSCs in hematologic malignancies and HSCT. Figures were created in BioRender.com.
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