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Abstract

Localized disease heterogeneity on imaging extracted via radiomics approaches have recently 

been associated with disease prognosis and treatment response. Traditionally, radiomics analyses 

leverage texture operators to derive voxel- or region-wise feature values towards quantifying 

subtle variations in image appearance within a region-of-interest (ROI). With the goal of mining 

additional voxel-wise texture patterns from radiomic “expression maps”, we introduce a new 

RADIomic Spatial TexturAl descripTor (RADISTAT). This was driven by the hypothesis that 

quantifying spatial organization of texture patterns within an ROI could allow for better capturing 

interactions between different tissue classes present in a given region; thus enabling more accurate 

characterization of disease or response phenotypes. RADISTAT involves: (a) robustly identifying 

sub-compartments of low, intermediate, and high radiomic expression (i.e. heterogeneity) in a 

feature map and (b) quantifying spatial organization of sub-compartments via graph interactions. 

RADISTAT was evaluated in two clinically challenging problems: (1) discriminating nodal/distant 

metastasis from metastasis-free rectal cancer patients on post-chemoradiation T2w MRI, and 

(2) distinguishing tumor progression from pseudo-progression in glioblastoma multiforme using 

post-chemoradiation T1w MRI. Across over 800 experiments, RADISTAT yielded a consistent 

discriminatory signature for tumor progression (GBM) and disease metastasis (RCa); where its 

sub-compartments were associated with pathologic tissue types (fibrosis or tumor, determined 

via fusion of MRI and pathology). In a multi-institutional setting for both clinical problems, 

RADISTAT resulted in higher classifier performance (11% improvement in AUC, on average) 

compared to radiomic descriptors. Furthermore, combining RADISTAT with radiomic descriptors 

resulted in significantly improved performance compared to using radiomic descriptors alone.
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I. Introduction

Radiomics, or the computerized extraction of subvisual appearance characteristics from 

radiographic images [1], has demonstrated great promise for capturing subtle differences 

between disease subtypes [2], as well as predicting patient outcomes [3] or treatment 

response [4], [5]. Radiomic features work by quantifying the texture or shape of the tumor 

and its surrounding environment, either by using region-wise [6], [7] or voxel-wise statistics 

[8], [9]. These features are then subsequently used as an input to machine learning classifiers 

to distinguish between disease or response phenotypes [5], [8], [10], [11].

One of the most popular radiomic operators are gray level co-occurrence matrix (GLCM) 

features [12], which capture image heterogeneity within a target region-of-interest (ROI) by 

quantifying higher-order derivatives in voxel-wise intensities within local neighborhoods. 

GLCM texture patterns on imaging have been linked to treatment response [5], [13] as 

well as tumor aggressiveness [14], [15]; and can be visualized as radiomic “expression 

maps”. However, a lesion ROI may comprise multiple pathologic tissue types, such as in 

rectal cancer (RCa) patients who develop a mixture of residual disease and benign treatment 

effects (fibrosis, ulceration) [16] in response to neoadjuvant chemoradiation therapy (CRT). 

This is illustrated in Figure 1 for two rectal cancer patients with different responses to 

CRT, whose ex vivo rectal pathology specimens (annotated for presence of residual tumor, 

fibrosis, and other treatment effects in different colors) show differences in organization and 

interactions between tissue types in Figures 1(c) and (f) [17]. Interestingly, the voxel-wise 

GLCM radiomic expression maps in Figures 1(b) and (e) on pre-operative in vivo MRIs 

for these patients also exhibit unique arrangements of red and blue sub-regions (red being 

over-expression and blue corresponding to under-expression of image heterogeneity), where 

these heterogeneity differences are likely driven by differences in the underlying pathologic 

sub-compartments [18].

However, traditional radiomic analysis would involve using region-wise statistics to simply 

categorize a lesion as “more heterogeneous” or “less heterogeneous”. This suggests an 

opportunity to exploit organizational differences within radiomic expression maps in order 

to capture a surrogate of pathologic tissue organization and interactions within diseased 

lesions on the radiographic scale.

II. Previous Work and Novel Contributions

There has been some related work with regards to quantitative characterization of imaging-

based sub-regions within the tumor environment [19]–[23]. Typically, these sub-regions 

have been defined based on clustering PET/CT/MR intensities or contrast-enhancement 

parameters (via dynamic contrast enhanced MRI). Following this, volumetric [19], [21] 

or texture [20], [22], [23] features of these sub-regions have yielded relatively good 
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performance in distinguishing patients based on survival or response to therapy in different 

cancers. In other words, these studies have primarily attempted to capture clustering-based 

composition of the tumor environment on imaging alone.

Gallego-Ortiz and Martel [24] utilized an Artificial Neural Network to quantify graph 

connectivity of intra-lesion subclusters defined using spatial and temporal enhancement in 

breast MRI. Incorporating these graph descriptors was found to improve the performance of 

the diagnostic classifier in identifying non-mass like breast lesions by 21%, compared to the 

original feature space. Similarly, Wu et al [25] quantified spatial interactions of intratumoral 

sub-regions (defined by clustering breast MR perfusion parameters) and used network 

analysis to predict response to chemotherapy while also interrogating related perfusion 

characteristics of breast tumor subtypes. While these studies have shown the potential for 

capturing spatial interactions between perfusion patterns on functional imaging, we are not 

aware of any studies that have specifically examined spatial organization differences in 

texture patterns between disease or response phenotypes.

In this work, we present a new RADIomic Spatial TexturAl descripTor (RADISTAT) to 

capture the relative spatial organization between compartments of radiomic over- or under-

expression within a lesion ROI. This will be done by discretizing the radiomic heatmap 

into more stratified expression levels (or “sub-compartments”) and using graph-based 

constructs to analyze the relationships between these radiomic sub-compartments. Figure 2 

depicts an overview of the steps involved in computing RADISTAT. The motivation behind 

RADISTAT originates from digital pathology, where graph-based features are commonly 

used for capturing the spatial arrangement of primitives (e.g. glands or nuclei) or tissue 

sub-compartments (e.g. stroma or epithelium); which have been shown to differ based on 

disease phenotypes and aggressiveness [26]. RADISTAT seeks to similarly characterize 

tissue heterogeneity on radiographic imaging by measuring the density and arrangement 

of radiomic expression sub-compartments, which may in turn be related to the underlying 

pathologic organization of tissue regions within the lesion environment. A preliminary 

implementation of 2D RADISTAT was previously presented in [27], and this work includes 

a more detailed examination of its performance in additional clinical settings, algorithmic 

parameter sensitivity, as well as evaluating the pathologic basis for RADISTAT. The specific 

novel contributions of this work are as follows:

• RADISTAT represents one of the first efforts to capture the spatial organization 

of radiomic patterns within the lesion environment on structural imaging, using 

a unique superpixel clustering scheme. The latter approach incorporates both 

spatial and size constraints, rather than the conventional K equally sized clusters 

[28]. Additionally, clustering is performed on radiomic expression values, rather 

than the original imaging intensities.

• RADISTAT uniquely re-quantizes the resulting superpixel organization by 

binning the resulting clusters into partitions of radiomic expression, enabling 

comparison of radiomic organization across datasets.

• RADISTAT ultimately quantifies this organization of radiomic expression 

by measuring the relationships between distinct partitions via explicit graph 
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construction and adjacency measures, and can be mined for an imaging-based 

surrogate of the spatial arrangement of underlying pathologic compartments.

• RADISTAT will be uniquely evaluated for capturing spatial organization of 

radiomic expression in the context of two challenging clinical problems 

involving characterizing treatment response on post-treatment MR imaging: 

(a) discriminating metastastic from non-metastatic rectal cancers (RCa) 

after chemoradiation, and (b) distinguishing tumor progression from pseudo-

progression (PsP) in chemoradiated glioblastoma multiforme (GBM) tumors. 

Both of these problems pose significant challenges for expert assessment due to 

significant tissue heterogeneity and overlapping appearance of tissue pathologies 

present after treatment (fibrosis, ulceration, edema confound residual disease in 

RCa [29], radiation necrosis in PsP appears similar to recurrent disease [30]). 

Capturing organizational differences in the post-treatment lesion environment in 

both these diseases offers a unique solution to the clinically relevant problem 

of accurately differentiating these confounding pathologies via radiographic 

imaging.

The rest of the paper is organized as follows. In Section III, algorithmic details for extracting 

the RADISTAT descriptor (both in 2D and 3D) are provided. The experimental design to 

demonstrate the utility of RADISTAT in the context of two problems, rectal tumors and 

brain lesions, is described in Section IV. Subsequently we present the results and discussion 

in Section V, followed by concluding remarks (Section VI).

III. Methodology

A. Notation

We denote a radiomic feature expression map ℐ = (C, f), where C is a spatial grid of pixels 

c, in ℝ2 or ℝ3. Every pixel, c ∈ C, is considered to be associated with a radiomic feature 

value f(c).

B. Superpixel Clustering of Radiomic Feature Expression Maps:

Superpixel clustering of ℐ is performed using a modified version of the simple linear 

iterative clustering (SLIC) algorithm [28], to generate K clusters, Ck ⊂ C, k ∈ {1, …, K}. 

The goal is to robustly identify (in an unsupervised fashion) spatially contiguous regions in 

the radiomic expression map based on similar-valued pixels. In our SLIC implementation, 

K is implicitly defined based on 2 user-specified parameters: (1) the minimum number of 

pixels in a cluster (α), and (2) the distance between initial cluster seeds (β). Thus for each 

combination of α and β, different clusterings of ℐ will be obtained. Based on superpixel 

clustering, ℐ is quantized to obtain a cluster map ℐ = (C, g), where for every c ∈ Ck ⊂ C, 

g(c) is the average radiomic feature value within cluster Ck.

C. Re-partitioning of Superpixel Clusters into Expression Levels:

The desired number of expression levels across a cohort is set via a user-defined parameter 

B. Note that the number of superpixel clusters (K) resulting from the previous step can vary 
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as a function of how many unique expression values there are in each ℐ (as well as α and 

β). The choice of B rebins the range of radiomic features to be consistent across a cohort and 

merges superpixel clusters accordingly.

Using the input parameter B, the range of all ℐ (across a cohort) is split into B equally 

spaced bins, yielding B + 1 thresholds θj, j ∈ {0, …, B}. These thresholds are used to 

re-quantize ℐ into an expression map, ℐ = (C, ℎ), where ∀c ∈ C, h(c) = θj, if θj−1 < g(c) 

< θj. As each ℐ can only have up to B unique values, any adjacent clusters which exhibit 

the same expression value are merged to yield M distinct partitions. A partition is defined as 

Cm = c ∣ ℎ(c) = θj , where m ∈ {1, …, M}, and Cm ⊂ C. For ease of notation, we also define 

the expression value of a partition Cm as H Cm = θj, if ∀c ∈ Cm, h(c) = θj. Note that for 

ease of visualization, this step has been depicted in Figure 2 for B = 3. Each patient within 

a cohort may therefore have a different M (number of partitions) associated with it, but each 

distinct partition within each ℐ will only be assigned one of B expression values.

D. Constructing RADISTAT descriptor:

In this work, RADISTAT is based on quantifying the adjacency of each pairwise 

combination of B expression levels in ℐ, in order to capture the spatial interactions between 

them. Considering the case of low (L), medium (M), and high (H) expression (i.e. B = 

3), there are 3 pairwise combinations: L-M, L-H, M-H. The adjacency of L-M is obtained 

by counting the number of times that ℐ has partitions with low and medium expression 

adjacent to each other (similarly for L-H and M-H). For this, an adjacency graph G = (V, E) 

is defined, where V = {vm}, m ∈ {1, …, M}, comprises the centroids of each of M partitions 

obtained in Step 2; and E = {emn}, m, n ∈ {1, …, M}, is a set of edges. An edge in E is 

defined when,

emn = 1, if Cm adjacent to Cn, m ≠ n
0, otherwise

(1)

For every pair of expression levels θi and θj, i, j ∈ {1, …, B}, the spatial component is 

calculated as,

ϱmn = ∑emn, where H Cm = θi and H Cn = θj . (2)

The resulting feature, RADISTAT, is a 1 × N vector ϱ = [ϱ1, …, ϱN], where N = B
2  is the 

total number of expression level pairs in ℐ. Complete methodological details for computing 

RADISTAT are summarized in Algorithm 1.
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IV. Experimental Design

RADISTAT was evaluated within 2 clinical problems: (a) distinguishing which patients 

with RCa had metastatic disease on post-chemoradiation T2-weighted (T2w) MRI following 

neoadjuvant therapy, and (b) identifying tumor progression in glioblastoma multiforme 

(GBM) patients via Gadolinium-enhanced T1-weighted (T1w) MRI after chemoradiation.

A. Data description

1) Rectal cancer cohort: A total of 73 RCa patient datasets were de-identified 

and retrospectively included in this institutional review board approved study (University 

Hospitals IRB #07-16-40, approval date: 12/03/2020) from two different institutions. All 

patients had been treated for a clinically staged cT2-T4 or cN+ locally advanced rectal 

carcinoma between August 2007 and January 2019 with standard-of-care neoadjuvant 

chemoradiation. For all included patients, a T2w MRI was available which had been 

acquired after treatment (and prior to surgery) together with pathology reports of surgically 

excised rectal specimens. Annotations of the rectal wall on post-chemoradiation T2w 
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MRIs on sections suspected of containing residual tumor were obtained from expert 

radiologists for the two sites independently, which was considered the ROI for radiomic 

analysis. Patients were assigned to one of two treatment outcome groups based on 

pathologically confirmed metastatic disease (ypN+/ypM+ vs ypN0M0) after chemoradiation 

[31]; summarized in Table I.

2) Brain tumor cohort: A total of 100 GBM patients were de-identified and 

retrospectively included in this institutional review board exempted study (University 

Hospitals IRB #STUDY20180757, exempt determination: 1/8/2019) from two different 

institutions. Patients had been identified by a review of all brain tumor patients who 

received chemoradiation treatment using Stupp protocol [32] at the respective institutions 

and who had an enhancing lesion within 3 months of treatment. All patients had a routine 

Gadolinium-enhanced T1w MRI after chemoradiation available together with histologic or 

imaging reports. To correct for known intensity differences, brain T1w MRI scans had 

undergone bias field correction, skull-stripping, and intensity standardization. Annotations 

of the enhancing lesion were obtained for every MRI slice with more than 5-mm of rim 

enhancement by an expert radiologist. Treatment outcomes were assigned based on labeling 

the enhancing lesion on follow-up scans as either pseudo-progression (PsP, a radiation-

induced treatment effect) or tumor progression based on histologic analysis or follow-up 

imaging, as summarized in Table I.

B. Pre-processing and Radiomic feature map extraction

All imaging data and their respective annotations were resampled to 1 × 1 × 1 mm3 isotropic 

resolution in x-,y-, and z-directions. A total of 13 GLCM features [12] were extracted on 

a voxel-wise basis from each ROI, while considering intensity co-occurrences in all spatial 

directions within local 3 × 3 × 3 sliding-window neighborhoods. GLCM features were 

selected based on their wide usage in radiomic analyses, especially in the context of GBM 

[8] and RCa [4]. This resulted in 13 voxel-wise GLCM radiomic feature maps associated 

with each ROI, denoted ℐ1, …, 13. A single 2D section in the middle of the annotated ROI 

volume was identified and utilized for 2D analysis, while the entire volumetric ROI was 

used for 3D analysis.

C. Extraction of RADISTAT and parameter sensitivity analysis

Algorithm 1 was implemented in MATLAB (Mathworks, MA) to compute RADISTAT (ϱ); 

for each ℐ1, …, 13. The number of expression levels was set at B = 3 in all experiments, to 

correspond intuitively to low, medium, and high expression.

The RADISTAT partition map (Figure 2, Module 3) is dependent on superpixel parameters: 

(1) the minimum number of pixels in a cluster (α), and (2) the distance between initial 

cluster seeds (β). A range of parameters was considered for α ∈ {5, 10, 15, 20}, β ∈ {3, 

5, 7, 9} in 2D, and α ∈ {10, 25, 50, 100}, β ∈ {3, 5, 7, 9} in 3D. This range of clustering 

hyperparameters was selected based on the size of ROIs being analyzed. These 16 possible 

α-β parameter combinations were evaluated for each of ℐ1, …, 13 resulting in a total of 208 

possible parameter variations of RADISTAT being evaluated in each of the 2D and 3D 

settings.
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D. Extraction of radiomic descriptors for comparative assessment

As an alternative strategy, commonly utilized radiomic descriptors were extracted, including 

voxel-wise statistics [5], [33] and region-wise (“whole tumor”) features [6]. For each 

of the 13 voxel-wise GLCM features, 4 statistical descriptors (mean, variance, kurtosis, 

skewness) were computed from the radiomic distribution across the ROI (totaling 52 voxel-

wise descriptors). Additionally, 22 region-wise GLCM descriptors were computed from 

pyRadiomics [6] while ensuring parameters aligned with those used in Section IV-B. Based 

on the number of datasets avaiable and to reduce the risk of overfitting, four top-ranked 

features were selected from 52 voxel-wise (denoted ς) as well as from 22 region-wise 

(denoted ξ) descriptors, based on a bootstrapped wilcoxon-based feature selection scheme 

[5].

E. Experimental evaluation

Both disease cohorts were segregated into discovery and validation sets on an institution-

wise basis, as summarized in Table I. Classification performance for each of ϱ (RADISTAT 

for each ℐ1, …, 13, in 2D and 3D, separately), ς (best 4 region-wise), and ξ (best 4 voxel-

wise) was evaluated via a binary linear discriminant analysis (LDA) classifier that was 

trained to distinguish between the 2 classes in each task (metastatic vs non-metastatic 

RCa, progression vs PsP in GBM). Additionally, the combination of RADISTAT with 

radiomic descriptors ([ς,ϱ] and [ξ,ϱ]) was also evaluated. An LDA classifier was specifically 

chosen to enable more fair comparisons between singleton and non-singleton descriptors by 

projecting each into a lower dimensional space [34]. In all experiments, the classifier was 

trained and optimized on the discovery cohort (using 50 runs of 3-fold cross-validation) and 

later evaluated in hold-out fashion on the validation cohort; with the area-under-the-receiver-

operator-characteristic curve (AUC) used as a measure of performance.

To identify the optimal GLCM descriptor to use in conjunction with RADISTAT, the average 

cross-validated AUC for ϱ across all α − β parameters was computed for each ℐ1, …, 13. 

This was done separately for each classification task, in both 2D and 3D. The parameter 

sensitivity of this top-performing GLCM descriptor was further visualized via a surface plot 

of AUC against changes in α and β. Next, in the context of each clinical problem, the AUC 

achieved by the top-ranked ϱ was compared against corresponding AUCs achieved via (a) 

ς, (b) ξ, (c) [ς,ϱ], and (d) [ξ,ϱ]. A nonparametric Wilcoxon rank sum test was employed to 

assess statistical differences in AUC values in pairwise fashion, with the p-value adjusted via 

the Bonferroni correction.

To evaluate the pathologic basis of RADISTAT, a subset of 6 RCa patients were identified 

for whom digitized ex vivo pathology sections were available together with corresponding in 
vivo pre-operative, post-chemoradiation MRIs. Using a published co-registration technique 

[35], pathology sections were spatially aligned onto corresponding 2D T2w MRI sections 

which allowed for expert annotations of different tissue types (fibrosis, residual disease, 

ulceration) to be mapped onto MRI. This allowed for identifying which pathologic tissue 

types were present within different expression levels (low, medium, high), and thus the 

potential histopathologic tissue organization being reflected via RADISTAT.
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V. Results and Discussion

A. Experiment 1: Evaluating RADISTAT for identifying metastatic disease in rectal 
cancers

Figure 3 illustrates representative 2D GLCM inertia feature heatmaps together with their 

corresponding RADISTAT partition maps, for rectal cancer patients with no metastatic 

disease (right half) and as well as patients who suffered metastatic disease (left half); after 

chemoradiation. Supplementary Figure S1 similarly depicts representative results in 3D for 

GLCM difference variance. RADISTAT partition maps and descriptors in both 2D (Figures 

3(c)–(f)) and 3D (Supplementary Figures S1(c)–(f)) are seen to exhibit similar trends that 

are distinctly different between outcome groups. In patients with poor outcomes after 

chemoradiation, the rectal wall comprises 2 major expression levels (high and intermediate), 

while all 3 major expression levels appear in patients with favorable outcomes. Thus, the 

interactions between low, medium, and high expression in the RADISTAT map appear 

correspondingly skewed when comparing ϱ via histogram visualizations. Notably, these 

distinctive RADISTAT signatures were consistently associated with poor and favorable RCa 

outcomes across all α-β parameter combinations; illustrated by the outcome-wise median 

histograms for ϱ in Supplementary Figures S2 and S3. RADISTAT descriptors are also 

seen to maintain their distinctive signatures across both discovery (top row) and hold-out 

validation (bottom row).

Based on the co-registered radiology-pathology cohort, Figure 4 shows that partitions 

with high radiomic expression (red regions) primarily overlap with pathologically mapped 

residual tumor annotations while low radiomic expression partitions (cyan regions) 

primarily appear within pathologically confirmed fibrotic tissue. This difference in radiomic 

expression levels was found to be significantly higher in residual tumor compared to 

fibrosis (p ≤ 0.001, Figure 4(f)). Thus, the 3-compartment organization associated with 

metastatic-free outcomes (Figure 3) may be the result of distinctive fibrotic stroma regions 

developing within the chemoradiated rectal wall, which appear as sub-regions of lower 

radiomic expression on rectal MRIs. Such morphologic alterations occur within the rectum 

as a result of chemoradiation-induced fibro-inflammatory changes that replace cancerous 

neoplastic glands, and have been associated with improved outcomes and longer disease-free 

survival [36]. Conversely, post-chemoradiated rectal tumors where fibrotic tissue regions 

may not be as distinctively present tend to be more biologically aggressive with a higher 

likelihood of metastasis [37]); reflected via a 2-compartment organization in RADISTAT. 

Our observations also resonate with recent radiomics studies of post-chemoradiation rectal 

MRIs [4], [13], which have observed more variation in GLCM inertia and other GLCM 

features in rectal cancer patients with favorable outcomes after therapy.

Figure 5(a) depicts bar plots of RADISTAT classifier performance for each of the 13 GLCM 

features (classifier AUC averaged across all α-β combinations), with bars shaded differently 

for 2D and 3D analysis. Intuitively, RADISTAT performance is seen to vary depending on 

the GLCM feature it is being computed on. Features indicated via asterisks were selected 

for detailed analysis in Figure 3 and Table II. In Figures 5(b) and (c), RADISTAT is seen to 

perform relatively consistently in 62.5% (10/16) of the 16 hyperparameter combinations in 
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2D (within 1.5 times the standard deviation of the highest AUC, visualized as gray stripes on 

the surface plots), and in 43.75% (7/16) of hyperparameter combinations in 3D. RADISTAT 

performance appears to decline markedly for extreme parameter combinations (β ≪ α). This 

is likely because the initial seed spacing or the ROI being evaluated is too small to reach the 

minumum bumber of voxels to be considered a superpixel cluster; this could be resolved by 

limiting the parameter space to larger β and smaller α values.

When compared to radiomic descriptors, RADISTAT resulted in a markedly higher 

classification performance on the discovery set (ϱ AUCs = 0.78–0.81 vs ς or ξ AUCs = 

0.50–0.72; Table II) for discriminating RCa patients with and without metastatic disease 

after chemoradiation. In hold-out validation, RADISTAT maintained this performance 

(AUCs = 0.72), while significantly outperforming radiomic descriptors (AUCs = 0.48–0.56). 

Interestingly, combining radiomic features with RADISTAT (i.e. [ς,ϱ] or [ξ,ϱ]) resulted 

in significantly higher AUCs compared to ς or ξ alone, and only marginally worse than 

RADISTAT alone. RADISTAT performance showed no difference between differently sized 

RCa lesions in 2D (AUCsmall = 0.82 ± 0.04 vs AUClarge = 0.83 ± 0.04, p > 0.05). In 

3D, smaller RCa lesions were associated with higher RADISTAT performance (AUCsmall = 

0.85 ± 0.03 vs AUClarge = 0.72 ± 0.10, p ≤ 0.05), although these trends were reversed in 

validation. One other work to-date has also demonstrated that radiomic feature heterogeneity 

in the rectal lesion is discriminant of lymph node metastasis alone [38] using region-wise 

multi-parametric radiomic features within the suspected tumor boundary and achieving 

AUCs of 0.79 in discovery and 0.78 in validation within a single institution. By contrast, 

RADISTAT demonstrates the presence of a distinctive spatial organization signature for 

metastatic disease within the entire rectal wall, while also achieving comparable AUCs in 

multi-institutional validation.

B. Experiment 2: Evaluating RADISTAT for distinguishing pseudo-progression from 
tumor progression in GBMs

Figure 7 depicts representative 2D GLCM energy feature maps together with their 

corresponding RADISTAT partition maps, for GBM patients with lesions exhibiting tumor 

progression (left half) and those exhibiting PsP (right half). RADISTAT partition maps and 

descriptors in Figures 7(c)–(f) and (k)–(n) capture distinctive spatial organizations of low, 

medium, and high expression clusters from the corresponding radiomic heatmaps. Lesions 

with PsP were seen to exhibit a markedly elevated interactions between medium and high 

(M-H) expression clusters, compared to tumor progression (elevated interactions of low and 

medium (L-M) expression clusters). These trends in ϱ were consistently associated with PsP 

and tumor progression across all α-β combinations as shown in Supplementary Figures S4 

(for 2D) and S6 (for 3D), as well as between discovery and validation cohorts (top and 

bottom rows in Figure 7).

While all GBM tumors showed a 3-compartment organization via RADISTAT, cases 

with pseudo-progression were found to be associated with interactions between higher 

expression values (high and medium) within the lesion while tumor progression cases 

primarily exhibited interactions between lower radiomic expression values. As RADISTAT 

is designed to capture disease-specific heterogeneity on MRI, the elevated RADISTAT 
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M-H component associated with pseudo-progression may arise from presence of radiation-

induced necrosis; with the opposite trend observed in tumor progression cases. These 

organizational differences in texture patterns [39] may be driven by hemorrhagic changes 

associated with tumor recurrence compared to diffuse periventricular white matter changes 

associated with radiation necrosis [40].

Figure 6 depicts bar plots of RADISTAT classifier performance for each of the 13 GLCM 

features (classifier AUC averaged across all α-β combinations), with bars shaded differently 

for 2D and 3D analysis. Intuitively, RADISTAT performance is seen to vary depending 

on the GLCM feature it is being computed on. while features indicated via asterisks 

were selected for detailed analysis in Figure 7 and Table II. Parameter sensitivity of the 

top-performing RADISTAT descriptors (bars denoted by asterisks) can be further analyzed 

via surface plots in Figures 6(b) and (c). 2D GBM classification yielded very consistent 

performance via RADISTAT across all hyperparameter combinations (81.25%, or 13/16, 

Figure 6(b)). However, RADISTAT performance is relatively inconsistent across a majority 

of hyperparameter combinations for the 3D GBM experiments, likely due to clustering 

non-convergence (only 1 short green-yellow ridge in Figure 6(c)).

In comparative analysis (summarized in Table II), RADISTAT resulted in marginally higher 

classification performance in both 2D and 3D (AUCs = 0.62–0.68) for distinguishing 

PsP from tumor progression than either of ς or ξ (AUCs=0.49–0.63); a trend that was 

maintained in hold-out validation (AUCs = 0.63–0.68) When considering [ς,ϱ] or [ξ,ϱ], 

both discovery and validation performance were significantly improved compared ς or ξ 
alone; as well as achieving the highest overall validation performance when combined 

with RADISTAT. RADISTAT performance showed no difference between differently sized 

GBM lesions in 2D (AUCsmall = 0.62 ± 0.05 vs AUClarge = 0.63 ± 0.04, p > 0.05). In 

3D, smaller GBM lesions were associated with lower RADISTAT performance (AUCsmall 

= 0.37 ± 0.09 vs AUClarge = 0.52 ± 0.08, p ≤ 0.05), although these trends were reversed 

in validation. While the cohort used in our study is similar to that of Ismail et al [41], 

the lower classifier performance indicates the mixed ability of texture-based features in 

identifying pseudoprogression in GBM [42]. Our results are nevertheless comparable to 

several previous studies which have evaluated the ability of texture alone [39], [43], [44] in 

distinguishing pseudoprogression in GBM; albeit while utilizing a single MR sequence (GD 

T1w MRI) to define a spatial organization signature which was validated in a comparably 

sized multi-institutional cohort.

VI. Concluding Remarks

We have presented a new RADIomic Spatial TexturAl descripTor (RADISTAT) for 

quantifying the spatial arrangement of radiomic feature expression to distinguish disease 

and response phenotypes on imaging. We evaluated the discriminative ability of RADISTAT 

in the context of 2 challenging clinical problems in a multi-institutional setting: (a) 

discriminating metastastic from non-metastatic rectal cancers via post-chemoradiation T2w 

MRI, and (b) distinguishing tumor progression from pseudo-progression in chemoradiated 

glioblastoma multiforme on Gadolinium-enhanced T1w MRI. RADISTAT revealed 

distinctive spatial organization signatures to be associated with each disease condition, 
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suggesting it may be able to accurately capture and exploit a surrogate of underlying 

interactions between tissue sub-compartments associated with these lesions.

RADISTAT was evaluated in conjunction with 13 different GLCM features popularly used 

in radiomic analysis [5], [8], [10], [11], in both 2D and 3D. The performance of RADISTAT 

was found to vary between GLCM features, suggesting that the differences in texture 

patterns captured by each feature results in differences in radiomic sub-compartments as 

well as in terms of organization and discriminability. However, mathematically related 

GLCM features yielded the highest AUC values for RADISTAT in both clinical problems 

(2D inertia for RCa, 2D energy for GBM, 3D difference variance for RCa, 3D correlation for 

GBM), indicating a common underlying organization phenotype in image texture patterns 

may exist for a specific disease. This is further confirmed by the similarity in the spatial 

organization phenotypes between 2D and 3D in both problems, suggesting similarities 

in the underlying tissue morphology and organization being captured via RADISTAT. 

While all of these top-ranked GLCM features are intended to capture intensity variability 

or dispersion in local pixel neighborhoods [12], both voxel- and region-wise radiomic 

descriptors of these distributions yielded subpar performance in all our experiments. 

In addition to the RADISTAT descriptor independently yielding relative high classifier 

performance in distinguishing between patient groups, combining RADISTAT with radiomic 

descriptors resulted in significantly improved AUCs comapred to using radiomic features 

alone. This suggests our approach may be capturing complementary new information 

related to spatial organization from radiomic texture feature maps compared to conventional 

radiomic descriptors, thus enabling more accurate disease sub-typing via MRI. The intuitive 

construction of the RADISTAT descriptor amay also be used to identify which aspects of the 

underlying disease heterogeneity are being captured; an intuition that may be “lost” when 

computing statistics from voxel-wise maps or region-wise features directly.

We do acknowledge some limitations to our study. While being multi-institutional, our 

individual cohorts for the 2 experiments may still be considered limited in size. In total, we 

evaluated over 170 patient datasets across 2 different tumor types, and performed over 800 

experimental combinations to fully benchmark RADISTAT performance across feature types 

and parameter choices. Our comprehensive benchmarking of RADISTAT was primarily 

based on one class of radiomic features: GLCM-based feature maps, generated using a 

single window size. However, this class of features is also the most popularly employed in 

radiomic analysis, and we chose to focus on it based on demonstrated success in multiple 

disease classification problems including RCa and GBMs [5], [8], [10], [11]. Additional 

classes of radiomic and texture features could be explored in future work. We also opted to 

compute RADISTAT descriptors based on defining 3 “levels” for the radiomic expression 

map (intuitively corresponding to low (L), medium (M), and high (H) expression of texture 

patterns) as well as for a specific range of clustering hyperparameters (based on lesion 

size). These parameters may be specified differently based on the clinical question at hand, 

making it important to ensure these parameters appropriately tuned for a specific task as 

well as confirming that the superpixel clustering algorithm converges while still capturing 

informative sub-compartments within the ROI. In our 2D experiments, 5 ≤ α ≤ 15; 3 ≤ β 
≤ 9 was found to yield the most stable results, while in 3D, 10 ≤ α ≤ 25; 3 ≤ β ≤ 9 was 

found to be most stable; across both classification tasks. Across the 4 major experiments 
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in 2D and 3D, RADISTAT performed poorest in 3D when evaluated on the GBM cohort. 

The latter was mostly likely due to introduction of artifacts in the mask across the multiple 

post-processing steps applied to account for the significant imaging heterogeneity between 

institutions; which also negatively impacted voxel- and region-wise radiomic performance. 

Additionally, we had to restrict our 3D superpixel clustering algorithm to converge in 

a reasonable amount of time (< 24 hours per case), which meant that a few parameter 

combinations in the 3D GBM analysis were not evaluated by us. However, our parameter 

sensitivity analysis across 2D and 3D suggests robust performance for RADISTAT in a 

majority of the evaluations performed. While we did not specifically evaluate the sensitivity 

of RADISTAT to variations in ROI segmentation, previous studies of these cohorts [13], 

[41] have demonstrated excellent expert agreement in annotations as well as robustness of 

radiomic features to any minor annotation differences.

In the future, we plan to further examine the utility of RADISTAT across an expanded set of 

radiomic features as well as for other tumor and disease types, including to interrogate 

sex differences and race differences in tumor phenotypes [45]. Additionally, we plan 

to explore the value of performing superpixel partitioning and computing RADISTAT 

using the original signal intensity data rather than the radiomic features. This may be 

advantageous in a multi-parametric setting [46]. We will also seek to develop more 

advanced spatial correlation and graph construction approaches to combining radiology 

and pathology datasets for improved disease characterization. Open-source implementations 

of RADISTAT with sample data have been made available via GitHub (https://github.com/

ccipd/RADISTAT-py).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a)(d) Pre-operative, post-CRT T2w MRIs for 2 rectal cancer patients (yellow box 

corresponds to rectal ROI). (b)(e) Radiomic expression maps corresponding to ROIs in 

(b), (e) which are in rough spatial correspondence to (c), (f) ex vivo pathology sections 

from post-CRT excised rectal cancer specimens from these patients. When comparing poor 

response (top row) to favorable response (bottom row), differential organization of tissue 

compartments can be observed within and around the tumor region (different pathologic 

tissue types delineated in different colors by an expert pathologist in (c), (f)). Note that 

regions of high (red) and low (blue) heterogeneity within radiomic expression maps in 

(b), (e) appear to be organized in a manner reflective of underlying pathologic tissue 

compartments in (c), (f).
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Fig. 2. 
Overall workflow for extracting RADISTAT descriptor. Module 1 involves extracting 

radiomic features on a per-pixel basis within the region of interest (outlined in green), 

visualized here as a heatmap where red and blue correspond to high and low radiomic 

feature expression, respectively. In Module 2, superpixel-based clusters are computed from 

the radiomic expression map. The superpixel clusters are re-partitioned into a fixed number 

of binned expression levels in Module 3. The cutoff values for these binned radiomic 

expression levels is determined from population-based radiomic distributions (shown via 

connected light-green module blocks at the top). For ease of understanding, a representative 

re-partitioning of the radiomic map into 3 levels is shown alongside, e.g. low (L), medium 

(M), high (H)). Note that the number of levels in the RADISTAT partition map may be 

determined based on the application at hand. The final RADISTAT descriptor quantifies 

spatial adjacencies between pairwise combinations of expression levels (shown in Module 

4). The RADISTAT descriptor can then be passed as a vector into a machine learning 

classifier for predicting different underlying pathologies (Module 5).
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Fig. 3. 
(a)(h),(i),(p) Expert-annotated rectal wall ROI delineated in green in representative patients 

suffering from metastasis (left half) as well as free of nodal or distant metastasis (right 

half) after chemoradiation. Note that the top row corresponds to discovery cohort while the 

bottom row corresponds to hold-out validation cohort (different institution). (b)(g),(j),(o) 

Heatmaps for GLCM inertia quantifying differential radiomic expression within the rectal 

wall on MRI; red corresponds to over-expression and blue to under-expression. (c)(f)(k),

(n) RADISTAT partition maps accurately reflect distinct regions of radiomic over- and 

under-expression, which result in marked differences in ϱ (shown as histograms) between 

metastatic and non-metastatic RCa patients.
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Fig. 4. 
(a),(d) Fused image overlays of pre-operative in vivo T2w MRIs with corresponding ex 
vivo pathologic specimens for two representative patients, via a published co-registration 

approach [35]. (b),(e) Expert annotations of different tissue types (in different colors) 

spatially mapped onto the MRI sections. (c),(f) RADISTAT expression maps overlaid with 

pathologic annotations demonstrate overlap of different expression levels with different 

tissue types. (g) Histograms of optimal RADISTAT signature with colors denoting 

expression level pairs within each bar; note elevated interactions with over-expression 

(red) in metastatic disease compared to non-metastatic disease (more interactions with blue 

or under-expression). (h) Barplot shows significantly elevated radiomic expression within 

pathologically mapped residual tumor (red regions) compared to fibrosis (cyan regions), 

suggesting potential pathologic basis for interactions quantified via RADISTAT. **: p ≤ 

0.001
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Fig. 5. 
Bar plot summarizing mean AUCs achieved by RADISTAT in conjunction with each GLCM 

descriptor (ℐ1, …, 13, X-axis) averaged over all α-β combinations for the RCa classification 

task; for both 2D and 3D respectively. Error bars correspond to standard deviation in AUC 

over all α-β combinations. Asterisks denote the top-performing RADISTAT feature for each 

classification task. (b), (c) surface plots of AUC values of RADISTAT in 2D (top row) and 

3D (bottom), for each classification task. Black call-out box in each subfigure corresponds 

to highest cross-validated AUC achieved in the discovery set, corresponding to different 

GLCM descriptors. Patterned gray lines indicate most stable performance of RADISTAT 

(within 1.5 times the standard deviation of the highest AUC).

Antunes et al. Page 21

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Bar plot summarizing mean AUCs achieved by RADISTAT in conjunction with each GLCM 

descriptor (ℐ1, …, 13, X-axis) averaged over all α-β combinations for the GBM classification 

task; for both 2D and 3D respectively. Error bars correspond to standard deviation in AUC 

over all α-β combinations. Asterisks denote the top-performing RADISTAT feature for each 

classification task. (b), (c) surface plots of AUC values of RADISTAT in 2D (top row) and 

3D (bottom), for each classification task. Black call-out box in each subfigure corresponds 

to highest cross-validated AUC achieved in the discovery set, corresponding to different 

GLCM descriptors. Patterned gray lines indicate most stable performance of RADISTAT 

(within 1.5 times the standard deviation of the highest AUC).
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Fig. 7. 
(a),(h) Radiologist annotations of tumor ROI in green for GBM patients from the training 

cohort with tumor progression (left half) and PsP (right half), after chemoradiation. (b),(g) 

2D radiomic heatmaps for GLCM energy showing distinctive radiomic expression between 

the two groupings. (c),(f) Resulting RADISTAT partition maps reveal markedly different 

(d),(e) histograms for ϱ; reflecting underlying organizattional differences in regions with low 

(cyan), intermediate (yellow), and high (red) expression. These differential phenotypes are 

also maintained in (k)-(n) hold-out validation (different institution).
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TABLE I

Summary of patient characteristics, imaging parameters, and outcome groups in discovery and validation 

cohorts for each clinical use case.

Rectal Cancer (RCa) Glioblastoma Multiforme (GBM)

Discovery (n=44) Validation (n=29) Discovery (n=56) Validation (n=44)

Patient Characteristics

 Sex, men:women 25:19 19:10 39:20 30:16

 Age, mean (range), years 62.8 (30–83) 58.2 (37–78) 60.6 (26–74) 55.6 (25–76)

Imaging Parameters

  MRI Protocol T2w TSE T2w TSE Gd-T1w Gd-T1w

  In-plane resolution (mm) 0.0256–0.97 0.313–0.898 1.000 1.000

  Slice thickness (mm) 3.0–5.0 3.0–6.0 1.000 1.000

  Repetition time (msec) 3253–12690 3400–13333 263–764 263–850

  Echo time (msec) 67–110 84–166 5–20 5–20

  3T 44 1 0 0

  1.5T 0 28 56 44

Pathologic groupings

Mets: 13 Mets: 13 Prog: 36 Prog: 32

Non-mets: 31 Non-mets: 16 PsP: 20 PsP: 12
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