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Abstract

Objective: Deliverable proton spots are subject to the minimum monitor-unit (MMU) constraint. 

The MMU optimization problem with relatively large MMU threshold remains mathematically 

challenging due to its strong nonconvexity. However, the MMU optimization is fundamental to 

proton radiotherapy (RT), including efficient IMPT and proton arc delivery (ARC). This work 

aims to develop a new optimization algorithm that is effective in solving the MMU problem.

Approach: Our new algorithm is primarily based on stochastic coordinate decent (SCD) method. 

It involves three major steps: first to decouple the determination of active sets for dose-volume-

histogram (DVH) planning constraints from the MMU problem via iterative convex relaxation 

method; second to handle the nonconvexity of the MMU constraint via SCD to localize the index 

set of nonzero spots; third to solve convex subproblems projected to this convex set of nonzero 

spots via projected gradient descent method.

Main results: Our new method SCD is validated and compared with alternating direction 

method of multipliers (ADMM) for IMPT and ARC. The results suggest SCD had better plan 

quality than ADMM, e.g., the improvement of conformal index (CI) from 0.56 to 0.69 during 

IMPT, and from 0.28 to 0.80 during ARC for the lung case. Moreover, SCD successfully handled 

the nonconvexity from large MMU threshold that ADMM failed to handle, in the sense that (1) the 

plan quality from ARC was worse than IMPT (e.g., CI was 0.28 with IMPT and 0.56 with ARC 

for the lung case), when ADMM was used; (2) in contrast, with SCD, ARC achieved better plan 

quality than IMPT (e.g., CI was 0.69 with IMPT and 0.80 with ARC for the lung case), which is 

compatible with more optimization degrees of freedom from ARC compared to IMPT.

Significance: To the best of our knowledge, our new MMU optimization method via SCD can 

effectively handle the nonconvexity from large MMU threshold that none of the current methods 

can solve. Therefore, we have developed a unique MMU optimization algorithm via SCD that can 

be used for efficient IMPT, proton ARC, and other particle RT applications where large MMU 

threshold is desirable (e.g., for the delivery of high dose rates or/and a large number of spots).
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1. Introduction

During pencil beam scanning (PBS) proton radiotherapy (RT), there exists a minimum 

threshold to the number of protons delivered per spot, which is measured in monitor 

unit (MU). The intensity modulated proton therapy (IMPT) subject to the minimum MU 

constraint is called the minimum-MU (MMU) optimization problem, i.e.,

min 
x

F (x)

s.t. x ∈ 0 ∪ [g, + ∞)
, (1)

where x denotes the spot weight (unit: number of protons or MU) to be optimized, g is the 

planning MMU, and F is the sum of planning objectives. The MMU constraint in Eq. (1) 

states that each entry of spot weight vector x is nonnegative, and no less than g if positive.

The MMU constraint in Eq. (1) reflects the physical limit that there exists a machine-specific 

MMU threshold Gmin. The purpose of Gmin is to control the machine delivery uncertainty 

within a desirable level, considering noise level of the monitor chamber, stability of the 

beam current and other factors [1]. Once Gmin is calibrated and set, the MU per spot must be 

at least Gmin in order for the spot to be deliverable on the machine.

Various methods have been developed to enforce the MMU constraint for deliverable PBS 

plans, including postprocessing methods [2–4] and optimization methods [5–9, 25].

However, instead of the physical MMU limit Gmin, a planning MMU threshold g with larger 

value than Gmin, i.e., g≥Gmin, is considered in the general MMU optimization problem Eq. 

(1), which is important for efficient IMPT [9], FLASH [10] and proton arc delivery [11].

The relevance of MMU optimization to efficient IMPT is owing to the proton physics that 

g is approximately proportional to the dose rate, and thus the IMPT plan optimized with 

larger MMU threshold g can be delivered more efficiently. However, MMU optimization 

with larger g is harder to optimize, and it is a tradeoff between plan quality and 

delivery efficiency for the MMU optimization. This tradeoff can be mitigated by increased 

optimization degrees of freedom from a constant MMU threshold (a scalar) for all energy 

layers to per-energy-layer MMU threshold (a vector) [9], in which g was optimized based on 

both delivery-time and plan-quality objective.

Besides the consideration of plan delivery efficiency, another important application of MMU 

optimization is for the FLASH RT, which requires the ultra-high dose rate for achieving 

biological dose sparing for normal tissues [10]. A new FLASH treatment planning method 

with MMU optimization, called Simultaneous Dose and Dose Rate Optimization (SDDRO), 

was proposed to maximize the dose rate and optimize the plan quality at the same time for 

FLASH [12]. However, the MMU optimization in SDDRO is to be improved, in the sense 

that the plan quality should not be worse, if more spots are included (e.g., with more beam 

angles).

The PBS delivery of proton arcs (ARC) is a new development that capitalizes more 

optimization degrees of freedom for better dose shaping and plan robustness [11]. Compared 
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to IMPT with a set of a few beams (e.g., 2 to 4), the MMU optimization is especially 

important to ARC with a large number of spots from many beams. This is because ARC 

often involves much more optimization degrees of freedom, which results in generally much 

lower MU per spot. Consequently the optimization with the same MMU threshold can be 

much harder for ARC than IMPT, in terms of plan quality, especially when plan delivery 

efficiency is also of priority.

The MMU optimization remains challenging, because the MMU constraint and thus MMU 

optimization problem is nonconvex. And the nonconvexity increases as g increases, which 

occurs for efficient IMPT, FLASH, and ARC as discussed previously. To the best of 

our knowledge, current methods can only deal with the MMU problem with relatively 

small g, and none of them can provide a meaningful solution to the MMU problem with 

relatively large g, e.g., worse plan quality with more spots for optimization. Here we 

propose a stochastic coordinate descent (SCD) method for solving MMU optimization, and 

demonstrate its effectiveness for efficient IMPT and ARC, e.g., better plan quality with more 

spots.

2. Methods and Materials

Our MMU optimization algorithm consists of three components: (1) iterative convex 

relaxation (ICR) method to split out nonconvex dose-volume-histogram (DVH) constraints 

(Section 2.1) and nonconvex active spot set (Section 2.2); (2) stochastic coordinate descent 

(SCD) method to localize nonzero spots (Section 2.2); (3) projected gradient descent (PGD) 

method to solve the convex subproblem with respect to these nonzero spots (Section 2.3). 

The entire algorithm is summarized in Section 2.4.

2.1. Iterative Convex Relaxation (ICR)

The planning objective considered here is based on clinically used DVH constraints, which 

are nonconvex and handled by ICR [8,9,12].

We start with the notations: x the spot weight (unit: MU) and Nx the number of proton spots, 

d the dose distribution (unit: Gy) and Nd the number of dose voxels, D the dose influence 

matrix (unit: Gy/MU) and Dij the contributing dose from a unit jth spot to the ith voxel. That 

is,

di = ∑
j = 1

Nx
Dijxj, i ≤ Nd . (2)

Here Nx consists of spots on all energy layers from all beams, and the 3D dose distribution d 
is concentrated into a vector.

The general form of DVH constraints [13,14] consists of DVH max constraints (e.g., for 

organs-at-risk (OAR)) Eq. (3) and DVH min constraints (e.g., for planning target volume 

(PTV)) Eq. (4), where the region of interest (ROI) can be either OAR or PTV.
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Dp% ≤ c:   ≤  p% of ROI receives  ≥ c dose .   (3)

Dp% ≥ c:   ≥  p% of ROI receives  ≥ c dose .   (4)

Given M constraints of constraint value c and weight w, the planning objective is

f(d) = ∑
i = 1

M
wi ∑

j ∈ Ωi
dj − ci

2 . (5)

In Eq. (5), Ω is the active set of each constraint, which will be specified next. For each 

constraint, the least-square penalty will be active only in the subset Ω of the ROI.

To determine Ω of the ROI for a particular constraint, the dose d for this ROI needs to be 

first sorted to d′ in the descending order, i.e.,

d′ = S (d) . (6)

This is because the DVH constraints Eq. (3) and (4) are specified in the form of “≥c dose”, 

which can be mathematically quantified based on d′ instead of d.

Then Ω can be determined for a DVH max constraint via Eq. (7) and a DVH min constraint 

via Eq. (8).

Ω = j ∣ dj ∈ c, dp′ , (7)

Ω = j ∣ dj ∈ dp′ , c , (8)

Where d′p is the dose (after sorting) corresponding to the volume p%, i.e., the minimum 

dose for the p% volume that receives the highest dose.

Note that Eq. (7) and (8) are analytic formulas that exactly solve the DVH constraints. 

Take a DVH max constraint for example: since the objective Eq. (5) is to minimize the 

least-square difference between d and c, Eq. (7) picks up the indexes of the least violation in 

d with respect to the constrained value c. Examples are provided in Appendix A to further 

illustrate DVH constraints and their solutions via Eq. (7) and (8).

On the other hand, Eq. (5) is general and also applies to other constraints [8,9]. For example, 

when applied to least-square and max/min/mean dose constraints, Ω is constant and includes 

the entire ROI.

For the convenience of method description, we rewrite the MMU problem Eq. (1) here

min 
x ∈ I0

F (x)

s.t. x ∈ 0 ∪ [g, + ∞)
.  (9)
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Here we define I0 as the set of all spots, since we will refer to subsets of I0 later.

F(x) in Eq. (9) is exactly specified by Eq. (5), which is formally denoted by

F (x) = f(d) = ∥ Ax − b ∥2 . (10)

In Eq. (10), A consists of D, w, and Ω, and b consists of c, w, and Ω.

Once Ω is fixed, A linearly depends on D and w, b linearly depends on c and w, and Eq. 

(9) is a convex least-square problem, which can be conveniently solved. Here we use ICR 

[8,9,12] to deal with the nonconvexity coming from Ω owing to DVH constraints.

To simplify the presentation, we formally denote the determination of Ω from the dose 

d=Dx via Eq. (6)–(8) by Ω=H(d). Then the MMU optimization Eq. (9) via ICR contains 

two iterative steps (indexed by k): first to solve the MMU problem Eq. (11) with convex 

optimization objective as Ω is fixed in this step, and then update active sets Ω via Eq. (12) 

and subsequently the least-square term, i.e., Ak=A(Ωk) and bk=b(Ωk).

xk + 1 = arg min
x ∈ I0

A Ωk x − b Ωk 2

s.t. x ∈ 0 ∪ [g, + ∞)
. (11)

Ωk + 1 = H Dxk + 1 . (12)

2.2. Stochastic Coordinate Descent (SCD)

Here we consider the MMU optimization subproblem Eq. (11), which is recapped here as

min
x ∈ I0

  Ax − b 2

s.t. x ∈ 0 ∪ [g, + ∞)
. (13)

The MMU optimization Eq. (13) is nonconvex, because the MMU constraint is nonconvex. 

Because of nonconvexity, the iterative solutions from a straightforward optimization 

algorithm for solving Eq. (13), such as alternating direction method of multipliers (ADMM) 

[15–17], may not converge, especially with relatively large value of g.

To solve Eq. (13), we apply ICR one more time to split the MMU optimization into two 

iterative steps (indexed by m): first to select nonzero spot set I via SCD Eq. (14), and then to 

solve the convex subproblem restricted to I via Eq. (15).

Im + 1 = SCD xm . (14)
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xm + 1 = arg min
x ∈ Im + 1

Ax − b 2

s.t. x ≥ g
. (15)

The solution algorithm for Eq. (15) will be provided in the next section. In the following, we 

will describe the SCD method Eq. (14) for selecting nonzero spot set I.

To ensure that the optimization objective is monotonically decreasing during iterations, Eq. 

(14) is based on the SCD method. That is, we sweep over x in Nx iterations, and during 

each iteration, only a single spot x is optimized with the MMU constraint, while others 

are fixed. During the sweeping, each spot is solved only once, and the order of sweeping 

is randomized. Two benefits of SCD are: first it ensures the monotonic decreasing of 

optimization objective, and second each iterative step of solving a single spot has an analytic 

solution.

Moreover, due to the convexity of Eq. (15), the optimization objective is also monotonically 

decreasing during iterations, for a suitable optimization algorithm such as PGD in Section 

2.3. Therefore, our optimization method with SCD and PGD together ensures the monotonic 

decreasing of optimization objective when solving Eq. (13).

For SCD, we denote aj as the jth column vector of A corresponding to xj, and then for a 

certain spot xn, we reformulate the least-square objective of Eq. (13) as

fn(x) = anxn + ∑
j ≠ n

ajxj − b
2

= anxn − bn
2 . (16)

Then each SCD step (indexed by n) is the following MMU optimization with respect to a 

single spot xn′

xn = arg min 
xn′

fn(x)

s.t. xn′ ∈ 0 ∪ [g, + ∞)
.  (17)

Note that Eq. (17) has an analytic formula

S xn =

0,  if t < g/2

g,  if g/2 ≤ t < g, t = anTbn
anTan

t,  if t ≥ g

. (18)

That is, during the nth iteration, only the spot xn′ is updated via Eq. (18), while the rest spots 

are fixed, i.e.,

xn + 1 = x1
n ⋯ S xn′

n ⋯ xNx
n . (19)
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Here, to distinguish from n, n′ denotes the randomized index of the spot to be updated 

during the nth iteration.

After the sweeping through all spots (i.e., in Nx iterations), the index set of nonzero spots of 

the final iterate of Eq. (19) is taken to be the nonzero spot set I in Eq. (14), i.e.,

I = j ∣ xj
Nx > 0, j ≤ Nx . (20)

To summarize, the SCD algorithm solves for I in Eq. (14) using Eq. (19) and (20).

2.3. Projected Gradient Descent (PGD)

This section describes the PGD method [18] for solving the convex subproblem Eq. (15), 

which is rewritten as

min 
x ∈ C

f(x), (21)

with f(x)=‖Ax-b‖2 and admissible solution set C defined as

C = x ∣ x ≥ g . (22)

The solution algorithm to Eq. (21) via PGD is based on

xn + 1 = P xn − μ∇f xn , (23)

where μ is the step size along the gradient of f and P is the projection operator onto the 

convex set C.

Note that the projection onto C via P is to solve the following optimization problem

min
x ∈ C

∥ x − y ∥2 , (24)

which has an analytic solution

P (y) = max(y, g) . (25)

To summarize the PGD method, first a one-step gradient descent is calculated at current 

iterate xn, and then this is projected to C so that xn+1 remains admissible.

Here we also utilize a so-called momentum method [19] to accelerate PGD. In the 

momentum method, an auxiliary variable y is introduced, and a fraction γ from the current 

iterate yn carries over to the next iterate yn+1.

The accelerated PGD replaces Eq. (23) with two following steps
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yn + 1 = ∇f xn + γyn, (26)

xn + 1 = P xn − μyn + 1 . (27)

2.4. Overall Solution Algorithm

The overall solution algorithm for solving the original MMU problem Eq. (9) is summarized 

here for the convenience of implementation.

1. Algorithm parameters: K, γ, μ, and N.

2. Initialization: x0=0

3. for k=0 to K-1

4. Ωk+1 = H(Dxk),

5. Ik+1 = SCD(xk, Ωk+1)

6. xk+1 = PGD(Ik+1, Ωk+1, μ, γ, N)

7. end for

The above algorithm has three major steps: (1) nonconvex DVH constraints are handled by 

ICR in Step 4, which consists of Eq. (6)–(8); (2) nonconvex MMU constraint is handled 

by SCD in Step 5, which consists of Eq. (19) and (20) and subsequently provides nonzero 

spot set Ik+1; (3) convex MMU subproblem Eq. (15) restricted onto Ik+1 is solved in Step 6, 

which consists of Eq. (26) and (27).

The appearance of Ωk+1 in SCD (Step 5) and PGD (Step 6) reflects the dependence of 

optimization objectives on Ω, i.e., Eq. (5) and (10). The iteration loop of Eq. (11) and (12) 

indexed by k is combined with the iteration loop of Eq. (14) and Eq. (15) indexed by m, i.e., 

with a single index k in the above algorithm.

The parameters are set empirically in this study: K=20, γ=0.95, μ=1/|∥A∥, and the number 

of PGD iterations N=200. Note the parameters (γ, μ, N) are only needed for PGD in Step 6. 

The number of SCD iterations (Eq. (19)) is the same as the number of spots Nx. For efficient 

implementation of SCD, instead of calculating bn as the product of a matrix and a vector in 

Eq. (16), the difference between bn and bn-1 is calculated, which is essentially the product of 

a vector and another vector.

2.5. Materials

Our new algorithm (“SCD”) is validated in comparison with a state-of-the-art algorithm 

(“ADMM”) for MMU optimization with relatively large g. ADMM refers to our previously 

developed iterative convex relaxation algorithm [8,9] with inner loops solved by ADMM 

[15–17], which has been shown to be effective for solving a variety of treatment planning 

problems besides MMU optimization, including energy-layer minimization [8], dose-rate 

optimization [9,12,22,26], and hybrid proton-photon optimization [24]. Three clinical cases 

for treatment planning studies included a lung case (Table 4 and Fig. 4), a brain case (Table 
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5 and Fig. 5), and a prostate case (Table 6 and Fig. 6). In each case, ADMM and SCD were 

planned for the scenarios of efficient IMPT and ARC respectively.

For completeness, we also compare ADMM and SCD with a post-processing method (“PP”) 

[2] and the spot-reduction method (“SR”) [25] under various values of g (Fig. 1), for brain 

IMPT (Table 2 and Fig. 2) and prostate ARC (Table 3 and Fig. 3). Varian Eclipse treatment 

planning system currently uses PP [2].

PP first solves without the MMU constraint (i.e., g=0) and then generates the final spot 

weights via a post-processing rounding step with respect to g, which in this work is through

x = max(x, g),  if x ≥ g/2
0,  otherwise  . (28)

SR was developed by Paul Scherrer Institute [25] and can heuristically handle the MMU 

constraint by iterative removal of small-weight spots, i.e., the smallest m% spot weights are 

set to 0 every n iterations during a total of N iterations. In this study, m=10, n=50, N=300 for 

brain IMPT and m=20, n=20, N=100 for prostate ARC.

Clinically used DVH constraints were used for treatment planning. All plans were 

normalized to have D95=100% to PTV. Dose influence matrices D were generated via 

MatRad [20] with 5 mm spot width, and 3 mm lateral spacing on 3 mm3 dose grid. The 

beam angles for IMPT were empirically chosen to be (0°, 120°, 240°) for lung, (45°, 135°, 

225°, 315°) for brain, and (90°, 270°) for prostate. All beam angles were used for ARC, 

which consisted of 24 beam angles sampled equally from 0° to 345°, without deliverability 

optimization of ARC. Relatively large values of MMU threshold g (i.e., with improved 

efficiency of plan delivery) were chosen to demonstrate the difference between ADMM and 

SCD (Table 1).

In Table 2–6, the conformal index (CI) is defined as V100
2/(V×V′100) (V100: PTV volume 

receiving at least 100% of prescription dose; V: PTV volume; Vʹ100: total volume receiving 

at least 100% of prescription dose). The value of CI is between 0 and 1, and ideally CI=1. 

All the quantities are in percentage: the dose quantities are in percentage with respect to the 

prescription dose; the volume quantities are in percentage with respect to total volume of the 

structure under consideration; optimized objective value f and CI are unitless and displayed 

in percentage for uniform presentation of results.

3. Results

3.1. Comparison with different g values

For small g value, i.e., g=5 in Fig. 1, all four methods had comparable objective values for 

IMPT, while SR, ADMM, and SCD had comparable objective values for ARC, which were 

smaller than PP. Dose and DVH plots are presented in Fig. 2 and 3 for IMPT and ARC 

respectively, while dosimetric parameters are presented in Table 2 and 3 respectively. Fig. 2 

and Table 2 show that PP, ADMM, and SCD had comparable plan quality for IMPT, while 

SR had slightly degraded target coverage. Fig. 3 and Table 3 demonstrate SR, ADMM, and 
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SCD had comparable plan quality for ARC, while PP had much worse plan quality, e.g., the 

target coverage in Fig. 4(a) and (e).

As g increases, SCD was more robust than ADMM, which in turn was more robust than 

PP and SR, in terms of preserving plan quality measured by objective values. Note that all 

spot weights were zero from PP and thus PP was not available at g=15 and 20 for ARC 

(Fig. 1(b)). Therefore, for large g value, we will only compare SCD with ADMM in the 

followings.

3.2. Efficient IMPT

The first application of MMU optimization with relatively large g considered in this work is 

for efficient IMPT (with a few beams).

In terms of the target coverage, Table 4–6 show that SCD is quantitatively better than 

ADMM: the CI improved from 0.56 to 0.69 for lung (Table 4), from 0.24 to 0.70 for 

brain (Table 5), and from 0.36 to 0.70 for prostate (Table 6); under the same target dose 

normalization, the max target dose decreased from 126% to 119% for lung, from 130% to 

119% for brain, and from 125% to 114% for prostate. The improvement of target coverage 

via SCD is also illustrated by comparing dose plots in (a) and (c) of Figure 4–6, e.g., larger 

110% isodose line in ADMM, and tighter 80% and 100% to PTV in SCD, and also DVH 

plots in (e) of Figure 4–6, e.g., blue solid (ADMM) v.s. red solid (IMPT) lines.

In terms of the OAR sparing, Table 4–6 demonstrate that SCD generally had lower OAR 

dose than ADMM. For example, compared to ADMM, SCD decreased mean lung dose from 

12% to 10% (Table 4), brainstem V10Gy from 7.9% to 4.1% (Table 5), and mean bladder 

dose from 31% to 23% (Table 6). The improved OAR sparing via SCD is also evidenced by 

that the DVH curve from SCD (red solid lines) is generally under that from ADMM (blue 

solid lines) in OAR DVH plots (f)-(h) of Figure 4–6.

3.3. ARC

The second application of MMU optimization with relatively large g considered in this work 

is for ARC (with many beams from a full arc).

In terms of the target coverage, Table 4–6 show that SCD is substantially better than 

ADMM: CI improved from 0.28 to 0.80 for lung (Table 4), from 0.09 to 0.63 for 

brain (Table 5), and from 0.18 to 0.80 for prostate (Table 6). With respect to g under 

consideration, ADMM failed to generate an acceptable plan, e.g., the max target dose 

was 167%, 214%, and 179% respectively for lung, brain, and prostate; however SCD still 

performed well, e.g., with the max target dose 116%, 117%, and 111% respectively for 

lung, brain, and prostate. The substantial improvement of target coverage via SCD is also 

illustrated by comparing dose plots in (b) and (d) of Figure 4–6, and DVH plots in (e) of 

Figure 4–6, e.g., blue dotted (ADMM) v.s. red dotted (IMPT) lines.

In terms of the OAR sparing, SCD again had lower OAR dose than ADMM in general, e.g., 

the decrease of mean lung dose from 19% to 9% (Table 4), brainstem V10Gy from 6% to 

1% (Table 5), and mean bladder dose from 90% to 39% (Table 6), and improved OAR DVH 
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plots via SCD (red dotted lines) compared to ADMM (blue dotted lines) in (f)-(h) of Figure 

4–6.

3.4. SCD v.s. ADMM

In addition to previous sections, the comparison of optimization objective values between 

ADMM and SCD also demonstrates the superior performance of SCD, in terms of 

comparable objective values between IMPT and ARC (Table 4–6).

In contrast, note that the plan quality of IMPT was better than that of ARC for ADMM, e.g., 

optimization objective value was 0.028 and 0.164 for IMPT and ARC via ADMM in Table 

4. This shows that ADMM failed to handle nonconvex MMU constraint, because IMPT used 

a beam subset from ARC and therefore ARC (optimization with more degrees of freedom) 

should be no worse than IMPT in theory. In contrast, the comparison results of ARC and 

IMPT with SCD make physical sense, i.e., the plan quality of ARC was comparable with 

that of IMPT, e.g., optimization objective value was 0.0086 and 0.0055 for IMPT and ARC 

via SCD in Table 6. This suggests that SCD was effective in dealing with the nonconvexity 

from the MMU constraint.

4. Discussion

Although it has been shown that our new method via SCD can effectively handle the MMU 

optimization problem with large MMU threshold, SCD does not fully solve the MMU 

problem in the sense that it may break down as well for sufficiently large MMU threshold. 

This is due to the problem nature of nonconvexity from the MMU optimization. Despite its 

limitation, SCD is still clinically significant in the sense that it overcomes the limitation of 

current MMU optimization methods (e.g., ADMM) to a certain extent, when large MMU 

threshold is desirable, e.g., for the delivery of high dose rates (efficient IMPT, FLASH) 

or/and a large number of spots (ARC).

SCD is particularly important to ARC. First, this is because a large number of spots need to 

be optimized and delivered for ARC [11], which effectively increases the MMU threshold 

substantially from IMPT. Second, similar to the comparison of IMRT and VMAT, compared 

to IMPT, a primary advantage of ARC is its delivery efficiency, which further demands 

large MMU threshold for efficient delivery (similar to efficient IMPT via increasing MMU 

threshold and thus dose rate). It has been demonstrated SCD can successfully solve the ARC 

problem with relatively large MMU threshold, e.g., with improved plan quality from IMPT 

to ARC when more spots are available for optimization. In comparison, current methods 

(e.g., ADMM) fail to do so, in the sense that they cannot optimize a large number of spots 

for ARC, for which their plan quality is deteriorated to be unacceptable (e.g., Fig. 4–6(b)).

A limitation of ARC studies here is that the ARC deliverability [11] is not considered. 

However, this simplification is appropriate for the purpose of this work on the effectiveness 

of SCD for MMU optimization. On the other hand, deliverable arcs can be constructed 

directly based on the ARC plan of many stationary beams via an additional sequencing 

step, similar to the leaf sequencing algorithm [21] from fluence-based VMAT (with many 

stationary beams) to deliverable VMAT.
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FLASH requires the ultra-high dose rate, which corresponds to ultra-high MMU threshold. 

In our previous FLASH studies [12,22], it was found that, for such ultra-high MMU 

threshold, the optimization with more angles can have worse plan quality. This is similar to 

what was demonstrated in Section 3.3, e.g., due to the nonconvexity of the MMU constraint, 

ARC with more optimization degrees of freedom can have worse plan quality than IMPT, 

unless an optimization algorithm (e.g., SCD) can handle the nonconvexity. A future study 

will be performed to investigate the impact of SCD for FLASH.

Planning to CTV with robust optimization is often preferred over planning to PTV for 

proton RT [23]. However, the primary focus of this work is to develop SCD and illustrate 

its effectiveness for dealing with the MMU optimization, which is independent from robust 

optimization. Thus, planning to PTV is considered in this work for simplicity and clarity. 

For clinical implementation, our previously developed robust optimization algorithms [24] 

can be incorporated for SCD.

The dose calculation engine from MatRad [20] used in this work is based on pencil beam 

dose calculation algorithm, which is known to have limited accuracy in certain scenarios 

[26]. Also, this work used the default machine data provided by MatRad, which will need to 

be replaced with the commissioning data for clinical use.

This work considers the MMU optimization problem with a constant MMU threshold (a 

scalar) for all energy layers. An alternative is to use per-energy-layer MMU threshold (a 

vector) [9], which has the benefit to alleviate the nonconvexity of the MMU problem. 

The proposed SCD method is general and should be applicable to per-energy-layer MMU 

threshold as well. The joint use of SCD and per-energy-layer MMU threshold may allow for 

better plan quality from the MMU optimization, which will be investigated in a future work.

On the other hand, although the MMU threshold g for treatment planning has a minimum 

machine limit Gmin, i.e., Gmin=5 in this work, it has no maximum limit, as long as the 

plan quality is acceptable. However, because the plan quality decreases as g increases, the 

value of g is mainly limited by the optimization algorithm. Besides SCD or per-energy-layer 

MMU threshold, higher dose per fraction also allows for the increase of g.

5. Conclusion

We have developed a new MMU optimization algorithm based on SCD. To the best of our 

knowledge, our new method can accurately solve MMU problems with strong nonconvexity 

coming from large MMU threshold that current methods fail to solve, and therefore can 

serve as the cornerstone of optimization engines for many important applications that cannot 

be accurately solved by current methods, such as the delivery of a large number of spots 

(e.g., ARC) or/and ultra-high dose rate (e.g., efficient IMPT).
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Appendix A

In implementation, Eq. (7) and (8) are solved respectively by

Ω = j ∣ p ≤ j′ < p*, dp*′ = c ,  if dp′ > c,  (A1)

Ω = j ∣ p* < j′ ≤ p, dp*′ = c ,  if dp′ < c, (A2)

where j′ is the index of d′ in the descending order. Next we provide two examples to 

illustrate how to solve DVH constraints via Eq. (A1) and (A2).

First, we consider a DVH max constraint D20%≤30%. The DVH curve in Fig. A1(a) does 

not meet this constraint, because D20%=45%>30%. Following Eq. (A1), we first find p* by 

solving Dp*=30%, and arrive at p*=31%. Then from Eq. (A1), Ω for the DVH curve in Fig. 

A1(a) is the following

Ω = j ∣ 20% ≤ j′ < 31%, d31%′ = 30% . (A3)

Note that Eq. (A3) selects the indexes (20% to 31%) of the least violation of the constrained 

value c=30%, while the indexes (<20%) with larger dose deviation from c (i.e., ≥45%) are 

not included in Ω. This is consistent with the optimization objective Eq. (5), i.e., this choice 

of Ω in Eq. (A3) minimizes Eq. (5). On the other hand, as long as the dose in Ω (20% to 31% 

volume as shown in Fig. A1(a)) is reduced to be ≤30%, the DVH constraint D20%≤30% will 

be satisfied.

Second, we consider a DVH min constraint D98%≥100%. The DVH curve in Fig. A1(b) does 

not meet this constraint, because D98%=97%<100%. Following Eq. (A2), we first find p* by 

solving Dp*=100%, and arrive at p*=95%. Then from Eq. (A2), Ω for the DVH curve in Fig. 

A1(b) is the following

Ω = j ∣ 95% < j′ ≤ 98%, d95%′ = 100% (A4)

Note that Eq. (A4) selects the indexes (95% to 98%) of the least violation of the constrained 

value c=100%, while the indexes (>98%) with larger dose deviation from c (i.e., <100%) are 

not included in Ω. This is consistent with the optimization objective Eq. (5), i.e., this choice 

of Ω in Eq. (A4) minimizes Eq. (5). On the other hand, as long as the dose in Ω (95% to 98% 

volume as shown in Fig. A1(a)) is increased to be ≥100%, the DVH constraint D98%≥100% 

will be satisfied.
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Figure A1. 
Examples of DVH constraints and Ω. (a) DVH max constraint; (b) DVH min constraint.
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Figure 1. 
Optimized objective values with different g’s. (a) log10 of objective values for Brain IMPT; 

(b) log10 of objective values for Prostate ARC; (c) objective values for Brain IMPT; (d) 

objective values for Prostate ARC. Note that all spot weights are zero from PP and thus PP 

is not available at g=15 and 20 for Prostate ARC. The unit of g is 106 protons.
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Figure 2. 
IMPT for Brain with g=5. The dose plot window is [0%, 110%]. 110%, 100%, 80% isodose 

lines and PTV are highlighted in dose plots.
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Figure 3. 
ARC for Prostate with g=5. The dose plot window is [0%, 110%]. 110%, 100%, 80% 

isodose lines and PTV are highlighted in dose plots.
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Figure 4. 
Lung. The dose plot window is [0%, 110%]. 110%, 100%, 80% isodose lines and PTV are 

highlighted in dose plots. The values of g are listed in Table 1.
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Figure 5. 
Brain. The dose plot window is [0%, 110%]. 110%, 100%, 80% isodose lines and PTV are 

highlighted in dose plots. The values of g are listed in Table 1.
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Figure 6. 
Prostate. The dose plot window is [0%, 110%]. 110%, 100%, 80% isodose lines and PTV 

are highlighted in dose plots. The values of g are listed in Table 1.
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Table 1.

clinical cases with large g. The dosimetric quantities from left to right: dose per fraction (unit: Gy), number 

of fractions, MMU threshold (unit: 106 protons), number of proton spots, plan optimization time for ADMM 

(unit: second), and plan optimization time for SCD (unit: second).

d Nf g min Nx TADMM TSCD

IMPT

Lung 2 30 30 6081 244 2400

Brain 2 10 35 2458 56 364

Prostate 1.8 25 40 2339 170 920

ARC

Lung 2 30 30 48646 417 7800

Brain 2 10 30 14644 92 660

Prostate 1.8 25 20 27940 313 4630
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Table 2.

IMPT for brain with g=5. The dosimetric quantities from left to right: optimization objective value, max dose 

of PTV, conformal index, mean dose and V10Gy of brainstem, V12Gy of brain, and mean dose of body.

Unit: % f Dmax CI BS V10Gy V12Gy Body

PP 1.5 112 85 17.0 2.0 5.8 0.8

SR 4.0 119 76 18.9 3.2 6.5 0.9

ADMM 2.1 116 79 18.3 3.3 6.8 0.9

SCD 1.9 112 81 17.5 3.6 7.2 1.0
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Table 3.

ARC for prostate with g=5. The dosimetric quantities from left to right: optimization objective value, max 

dose of PTV, conformal index, mean dose and D10 of bladder, mean dose and D10 of rectum, mean dose of 

femoral head, penile bulb, and body.

Unit: % f Dmax CI Bl D10,B1 Re D10,Re FH PB Body

PP 90.0 199 43 37 102 31 92 5.1 43 2.2

SR 0.57 109 87 31 77 30 73 5.0 23 1.8

ADMM 0.26 107 92 27 74 25 68 4.1 22 1.5

SCD 0.24 103 90 34 82 33 76 5.2 25 1.9
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Table 4.

Lung. The dosimetric quantities from left to right: optimization objective value, max dose of PTV, conformal 

index, mean dose and V20 of lung, mean dose and V30 of heart, mean dose of esophagus, cord, and body. The 

values of g are listed in Table 1.

Unit: % f Dmax CI Lung V20 Heart V30 Eso Cord Body

IMPT
ADMM 2.8 126 56 12.2 15.5 4.9 0.73 20.9 6.8 6.2

SCD 1.9 119 69 10.0 10.9 3.4 0.53 11.5 4.8 4.9

ARC
ADMM 16.4 167 28 19.4 20.9 6.0 0.89 40.8 11.5 10.7

SCD 2.2 116 80 9.4 9.0 2.2 0.25 10.3 4.2 4.7

Phys Med Biol. Author manuscript; available in PMC 2023 January 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cai et al. Page 26

Table 5.

Brain. The dosimetric quantities from left to right: optimization objective value, max dose of PTV, conformal 

index, mean dose and V10Gy of brainstem, V12Gy of brain, and mean dose of body. The values of g are listed in 

Table 1.

Unit: % f Dmax CI BS V10Gy V12Gy Body

IMPT
ADMM 9.2 130 24 20.3 7.9 22.4 2.0

SCD 3.1 119 70 18.7 4.1 8.6 1.1

ARC
ADMM 99.1 214 9 26.0 6.3 36.9 4.6

SCD 3.9 117 63 16.4 1.0 6.1 1.1
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Table 6.

Prostate. The dosimetric quantities from left to right: optimization objective value, max dose of PTV, 

conformal index, mean dose and D10 of bladder, mean dose and D10 of rectum, mean dose of femoral head, 

penile bulb, and body. The values of g are listed in Table 1.

Unit: % f Dmax CI Bl D10,Bl Re D10,Re FH PB Body

IMPT
ADMM 1.9 125 36 31 108 35 106 37 33 2.9

SCD 0.86 114 70 23 82 29 90 28 27 2.2

ARC
ADMM 8.0 179 18 90 179 78 171 17 45 5.5

SCD 0.55 111 80 39 87 38 83 5.6 25 2.1
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