Skip to main content
. Author manuscript; available in PMC: 2022 Jul 19.
Published in final edited form as: Lancet Digit Health. 2022 May;4(5):e330–e339. doi: 10.1016/S2589-7500(22)00021-8

Table 2:

Summary of reader accuracy versus that of automated classifiers

Readers All algorithms Top 3 algorithms

AK* 0·43 (0·23–0·63) 0·44 (0·42–0·46) 0·83 (0·77–0·89)
BCC* 0·70 (0·61–0·79) 0·80 (0·77–0·82) 0·91 (0·88–0·95)
BKL 0·48 (0·36–0·60) 0·37 (0·35–0·39) 0·43 (0·37–0·50)
DF* 0·50 (0·30–0·71) 0·33 (0·30–0·36) 0·73 (0·50–0·95)
MEL 0·62 (0·53–0·71) 0·58 (0·56–0·60) 0·70 (0·64–0·77)
NV* 0·56 (0·46–0·66) 0·76 (0·74–0·79) 0·76 (0·74–0·77)
NT 0·26 (0·17–0·35) 0·06 (0·05–0·08) 0·01 (0·01–0·02)
SCC 0·65 (0·46–0·83) 0·31 (0·29–0·33) 0·62 (0·55–0·69)
VASC 0·83 (0·68–0·97) 0·46 (0·43–0·49) 0·79 (0·66–0·92)

Data are accuracy of mean count (95% CI). Mean count of correct reader classifications in batches of 30 lesions was 15·7 (95% CI 14·46–16·94). Mean count of correct algorithm (best) classifications in batches of 30 lesions was 18·95 (18·20–19·70). AK=actinic keratosis. BCC=basal cell carcinoma. BKL=benign keratosis. DF=dermatofibroma. MEL=melanoma. NT=not trained. NV=nevi. SCC=squamous cell carcinoma. VASC=vascular lesion.

*

Top three algorithms (average) performed >20% better than readers.

Readers performed ≥20% better than algorithms.