
RESEARCH ARTICLE APPLIED PHYSICAL SCIENCES

Experimental observations of marginal criticality in granular
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Two drastically different theories predict the marginal criticality of jamming. The full
replica symmetry breaking (fullRSB) theory predicts the power-law distributions of
weak contact forces and small interparticle gaps in infinite-dimensional hard-sphere
glass, with two nontrivial exponents θf = 0.42311 . . . and γ = 0.41269 . . ., respec-
tively. Independently, the marginal mechanical stability (MMS) analysis predicts that
the isostatic random packings of hard frictionless spheres under external stress are
marginally stable and provides inequality relationships for the exponents of the weak-
force and interparticle-gap distributions. Here, we measure precisely contact forces and
particle positions in isotropic jammed bidisperse photoelastic disks and find the clear
power-law distributions of weak forces and small interparticle gaps, with both exponents
θf = 0.44(2) and γ = 0.43(3) in an excellent agreement with the fullRSB theory. As
the jammed packing subject to area-conserved cyclic pure shear approaches the yielding
point, the two exponents change substantially from those of the isotropic case, but they
still satisfy the scaling relationship provided by the MMS argument. Our results provide
strong experimental evidence for the robustness of the infinite-dimensional theory and
the MMS analysis in real-world amorphous materials.

jamming | glass | marginal stability

A liquid undergoes a glass transition upon fast quench (1, 2), whereas in the athermal
situation, a flowing granular material undergoes a jamming transition subjected to
compression (3–5) or shear (6), with subtle structural changes while gaining rigidity.
The deep connection between the two transitions has been thought for a long time (3).
Two independent theories were developed for the marginal criticality of hard spheres
near jamming: One is the first-principle replica theory of hard-sphere glass in infinite
dimensions (2, 7), and the other is the marginal mechanical stability (MMS) analysis for
isostatic random hard-sphere (or disk) packings in finite dimensions (8–11).

The first-principle theoretical description of amorphous materials is extremely
challenging (12). The recent full replica symmetry breaking (fullRSB) theory of the
hard-sphere glass in infinite dimensions (2, 7, 13) unifies the glass transition and the
jamming transition within the statistical mechanics framework, echoing Liu and Nagel’s
(3) seminal proposal made years ago. Moreover, this theory points out a Gardner transition
(2, 7) within the glass phase similarly existing in the spin glass (14). The fullRSB
theory (2, 7) predicts that when a stable glass undergoes a Gardner transition, either
by compression or cooling, the metastable basins in the free-energy landscape break into
a fractal hierarchy of subbasins, forming a marginal phase. For hard spheres, the jamming
transition manifested by the divergence of pressure happens deeply inside the marginal
phase. Specifically, the fullRSB solution delivers three nontrivial power-law exponents
of κ, γ, and θf characterizing jamming, including the cage size Δ versus the pressure p,
Δ∼ p−κ with κ= 1.41574 . . ., the distribution of small interparticle gaps P(h)∼ h−γ

with γ = 0.41269 . . ., and the distribution of weak contact forces P(f )∼ f θf with
θf = 0.42311 . . . (2, 7).

Indeed, before the fullRSB theory (2, 7), the relationships between these three critical
exponents were already predicted by the independently developed MMS analysis (8–11).
Thus, the jamming criticality results from the remarkable convergence of two completely
independent lines of research associated with two types of marginal stability (15, 16). The
first type refers to the (free-energy) landscape marginal stability of the Gardner phase (2, 7),
which resembles that of spin glass. The second type (8, 10, 11) closely related to isostaticity
refers to the MMS of jammed packings, as introduced in the jamming field (3–5, 8, 10,
17, 18). While the low-energy excitation of the Gardner phase is presumably system-wide
extended in the limit of infinite dimensions (19), both extended and localized modes may
exist in low dimensions. Besides the weak-force exponent θe , satisfying θe = 1/γ − 2,
which is associated with the extended excitation and coincides with the θf in infinite
dimensions, the MMS also includes an extra exponent θl associated with the localized
excitation, satisfying θl = 1− 2γ (10).

Significance

Amorphous materials, such as
grains, foams, colloids, and
glasses, are ubiquitous in nature
and our daily life. They can
undergo glass transitions or
jamming transitions to obtain
rigidity either by fast quench or
compression, but show subtle
changes in the structures
compared to the liquid states or
liquid-like states. Recent progress
on the first-principle replica
theory unifies the glass transition
and the jamming transition and
points out the marginal phase
with fractal free-energy landscape
within the stable glass phase.
Independently, marginal stability
analysis predicts the relations
between the exponents of the
marginal phase. Here, we perform
experiments with photoelastic
disks and provide direct evidence
of these theories in real-world
amorphous materials.

Author affiliations: aSchool of Physics and Astronomy,
Shanghai Jiao Tong University, 200240 Shanghai, China;
bResearch Center for Advanced Science and Technology,
University of Tokyo, Tokyo 153-8505, Japan; cInstitute of
Theoretical Physics, Chinese Academy of Sciences, Beijing
100190, China; dSchool of Physical Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China;
eWenzhou Institute, University of Chinese Academy of Sci-
ences, Wenzhou 325000, China; and fInstitute of Natural
Sciences, Shanghai Jiao Tong University, 200240 Shanghai,
China

Author contributions: Y.W. and J.Z. designed research; Y.W.
and J.S. performed research; Y.W. and J.S. analyzed data;
and Y.W., J.S., Y.J., and J.Z. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
jiezhang2012@sjtu.edu.cn.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2204879119/-/DCSupplemental.

Published May 24, 2022.

PNAS 2022 Vol. 119 No. 22 e2204879119 https://doi.org/10.1073/pnas.2204879119 1 of 5

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2204879119&domain=pdf&date_stamp=2022-05-24
http://orcid.org/0000-0003-0849-9240
http://orcid.org/0000-0001-8310-4582
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jiezhang2012@sjtu.edu.cn
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204879119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204879119/-/DCSupplemental
https://doi.org/10.1073/pnas.2204879119


Since the upper critical dimension of jamming is conjectured to
be two (17, 20), the robustness of the fullRSB theory needs to be
verified in two or three dimensions, in particular, in experiments.
In the last decade, numerous simulations (2, 9, 10, 20–24) have
been performed. The exponent κ, closely related to the dynamical
information of caging, has been verified in simulations of the
dimension d = 3− 8 (2). Nevertheless, the two exponents γ and
θf can be directly obtained from a static packing. The exponent
γ ≈ 0.4 of the interparticle gaps is known to be constant in all
dimensions, regardless of preparation protocols (9, 21, 25–27),
except γ ≈ 0.5 (9, 28), when including rattlers (9). However,
the exponent θf of the weak contact forces is more sensitive
to the dimension and preparation protocols, and its value has
been reported within the range of 0 to 0.45 (9, 10, 19, 21–23,
25, 29). Recently, the solution of this controversy was proposed
by Charbonneau et al. (19): If localized buckling excitation is
removed, the exponent of the weak-force distributions coincides
with the infinite-dimension solution θf = 0.42311 in d = 2− 4.

The experimental verification of the marginal criticality of
jamming is rare. Indirect characterizations of the Gardner phase
through particle dynamics has been performed in model glass
systems, such as the cage separation upon compression in vibrated
granular matter (30, 31) and the logarithmic growth of the mean
square displacement in colloidal glass (32). Yet, direct quantitative
verification of the critical exponents of the fullRSB theory (2, 7)
and the relationship between the weak-force exponents and the
small-gap exponent (8, 10, 11) in experiments are still lacking.

Results

To measure interparticle contact forces and particle positions, we
perform a two-dimensional experiment with bidisperse photoe-
lastic disks of 1,355 large disks and 2,710 small disks, whose
diameters are 1.4 cm and 1.0 cm, respectively. Experimental
details are described in Materials and Methods.

Criticality of Weak Contact Forces. A typical experimental stress
image is plotted in Fig. 1A, and the corresponding force network
is plotted in Fig. 1B. To quantify the heterogeneity of the force
network, plenty of works (33–36) have focused on the tail of force
distribution, which is closely related to the statistical framework
of granular materials. Nevertheless, marginal criticality of jammed

packings is often related to the distribution of weak contact forces
(11), i.e., the contact forces smaller than the mean value. From the
mechanical stability perspective, the weak forces are most likely
to open under external perturbations to destabilize the packing.
Alternatively, from the perspective of the hierarchical free-energy
landscape, the weak-force distributions reflect the structure of
the hierarchy basins in the free-energy landscape of the packing.
Fig. 1C shows the probability distributions of contact forces P(f )
for different pressure levels on log–log scale. Here, P(f ), as well
as g(h) mentioned below, are ensemble averaged over 30 jammed
configurations. Limited by the measurement resolution—that is,
the minimum force f ≈ 0.05 N can be accurately measured—we
cannot observe clear scalings of weak-force distributions at low
pressure.

Subjected to isotropic compression, the global pressure of
the jammed packing increases, and the range of reliable scaling
becomes sufficiently large—that is, f ∈ [0.05, 0.6× 〈f 〉], with
〈f 〉 referring to the mean force. By fitting with a power law, the
exponent θf at different pressure can be extracted and is plotted in
Fig. 1 C, Inset. We can see that the exponent θf saturates for large
pressures, whose value shows an excellent agreement with that of
the fullRSB theory (2, 7). The critical exponent θf = 0.42311 is
indicated as the dashed line both in the main panel and Inset of
Fig. 1C.

Note that, upon compression, even as the pressure and the
contact number of the overjammed packings exceed the values
at the jamming point, the associated packings are still close to
the MMS, which is due to the excess contact number required to
stabilize the packing due to the external pressure (17, 37). In other
words, a small increment of pressure tends to destabilize the pack-
ing of the fixed contact number, and, hence, the accompanying
increase of the contact number would stabilize the packing at the
new pressure level. Further, the excess contact number reduces
the fraction of bucklers significantly (19), which explains that
the measured exponent θf = 0.44(2) in our case is close to the
θe = 0.42, but deviates substantially from the θl = 0.17 due to
the bucklers (19).

Criticality of Small Interparticle Gaps. While the opening of
contacts bearing weak forces destabilizes the packing, the nearly
touched contacts can close the gaps to form new contacts to
stabilize the packing. For monodisperse packings, the distribution

Fig. 1. Interparticle contact forces in compression jammed packings. (A) A typical experimental stress image of photoelastic disks visualized by two matched
circular polarizers, in which a small portion of the image is enlarged. (B) The corresponding force network is plotted, in which the thicknesses of bond are
proportional to the magnitudes of the measured contact forces. (C) The probability density distributions of contact forces P(f) for isotropically jammed packings
at different pressure levels. C, Inset shows the fitted power-law exponent θf of P(f) versus pressure levels, and error bars represent SDs of the fitted coefficients.
The black dashed lines in the main panel and Inset represent a power law with an exponent θf = 0.42311, which is given by the fullRSB theory.
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Fig. 2. Interparticle gaps in compression jammed packings. (A) A snapshot of a typical bidisperse photoelastic disks packing. (B) Radial distribution functions
g(h) of the interparticle gap h at different pressure levels. Here, h = rij/(ai + aj) − 1 is the dimensionless interparticle gap between particle i and particle j, in
which ai and aj are the radii of particles i and j, respectively, and rij is the distance between particles i and j. (C) g(h) plotted on a log–log scale. C, Inset shows the
power-law exponent γ of g(h) fitted in the range [0.012, 0.05] versus the pressure levels. The black dashed lines in the main panel and Inset represent a power
law with an exponent γ = 0.41269, which is given by the fullRSB theory.

of small gaps can be directly given by the radial distribution func-
tion g(r). Due to the bidisperse characteristic in our experiments,
the first peak of g(r) will split into three peaks. To avoid the
effects of bidispersity, we define the dimensionless interparticle
gaps as h = rij/(ai + aj )− 1, where rij is the distance between
two neighboring particles i and j, and ai and aj are the radii of
the two particles, respectively, as shown in Fig. 2A. Finally, we
obtain the distributions of dimensionless interparticle gaps g(h),
as shown in Fig. 2 B and C.

For sphere packings near the jamming transition, g(h) is a delta
function at h = 0 followed by a power-law decay g(h)∝ h−γ

(25, 28). However, the delta function often smears out due to
the uncertainty of particle positions in experiments, as shown in
Fig. 2B. The width of the Gaussian-like peak at h = 0 is around
0.01, which indicates that the uncertainty of the particle detection
is around a half-pixel. Even if the small interparticle gaps had
a power-law scaling, it would be hidden by the Gaussian-like
peak near h = 0. For soft sphere packings, the peak of g(h)
shifts down upon compression, as shown in Fig. 2B. Therefore,
applying compression on the packings helps to disentangle the
Gaussian-like peak and the scaling of positive interparticle gaps
with h > 0. In Fig. 2C, we plot g(h) on log–log scale and find
an increasingly clear power-law scaling as pressure increases. As
the very small gaps are interfered with by the accuracy of particle
positions, and, meanwhile, the critical scaling may break down
for large gaps, we fit the g(h) in the range h ∈ [0.012, 0.05] to
the power law. The fitted exponents are shown in Fig. 2 C, Inset.
Similar to the exponent θf of weak forces, the exponent γ is also
in good agreement with the fullRSB solution, indicated by the
dashed lines in Fig. 2C. Note that the fraction of rattlers is around
0.8% in the overjammed packings and, thus, negligible.

Nonuniversal Criticality in Sheared Packings with Friction. In
simulations of hard-sphere glass, the packing fraction of jamming
point φJ depends on the parent liquid state and the preparation
protocol, which results in the jamming line (2, 27). Specifically, a
denser parent liquid produces a denser jammed packing (2), and
applying shear further expands the phase space of jammed states
(27). Nevertheless, the marginal critical scalings associated with
jamming are universal, regardless of the path to jam, and the asso-
ciated exponents, including γ ≈ 0.4 (27, 38), θe ≈ 0.42 and θl ≈
0.17 (38), remain unchanged. Next, we will show, however, that
for jammed frictional particles, the situation becomes different.

Fig. 3A shows a typical force network of the jammed packings
prepared under the steady-state cyclic pure shear, in which the
global stress ratio μ (see Materials and Methods for details) is
around 0.41. Both the weak-force distributions P(f ) and the
small-interparticle-gap distributions g(h) depart obviously from
the infinite-dimensional solution, as shown in Fig. 3 B and C.
This might explain the relatively large range of the exponent γ ∈
[0.25, 0.75] reported in colloidal (39) and granular experiments
(40) under gravity. While P(f ) typically shows a peak around the
mean contact force for isotropically jammed packings, as shown in
Fig. 1 and also in literature (29, 33, 34), the peaks disappear here
in Fig. 3: For jammed packings subject to the steady-state cyclic
pure shear, within our contact-force resolution, P(f ) increase
monotonically as f decreases.

Remarkably, even both the weak-forces exponent θf and the
small-gaps exponent γ deviate substantially from those of the
infinite-dimensional solution, they still satisfy the relationship
predicted by the MMS analysis (8–11). Here, the global stress
ratio μ= 0.41 of the jammed packings subject to the steady-state
cyclic pure shear is close to the yielding point. Fig. 3C shows
that the exponent γ of small gaps is around 0.56. According
to the theory (8, 10, 11), the exponent γ = 0.56 derives the
two weak-force exponents θl = 1− 2γ =−0.12 and θe = 2−
1/γ =−0.21, which then determine the weak-force exponent θf
according to the relationship θf = min(θl , θe) = θe =−0.21. As
shown in Fig. 3B, the P(f ) of the packing μ= 0.41 is very close
to the power-law scaling with an exponent θf =−0.21, plotted
as the red dotted line, which indicates that the bound between θf
and γ is marginally satisfied. Moreover, as estimated from γ, the
fact that θe < θl suggests that the extended excitation becomes
dominant in the weak-force region for jammed packings subject
to the steady-state cyclic pure shear near yielding. Note that the
systematic evaluation of θf deteriorates rapidly for μ < 0.41 since
the pressure drops with μ, and, hence, the power-law regime
narrows substantially.

Discussion

We have experimentally investigated the marginal criticality in
jammed bidisperse photoelastic disks.

First, we have measured the power-law exponents of the weak-
force distributions and the small-interparticle-gap distributions in
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Fig. 3. Interparticle forces and gaps in jammed packings subject to cyclic shear. (A) A typical force network for jammed packings subject to cyclic pure shear.
(B and C) Distributions of interparticle forces P(f) (B) and distributions of interparticle gaps g(h) (C) for jammed packings with different global stress ratios μ.
The red dotted line represents the power law with an exponent θf = −0.21, which is derived from the exponent γ = 0.56 and the scaling relationship given by
the MMS analysis. The black dashed lines in C represent a power law with an exponent γ = 0.41269, as a guide for the eye.

the isotropic jammed packings. As the global pressure increases,
the interval of the weak forces (i.e., f < 〈f 〉) above the minimum
force resolution increases significantly, and, meanwhile, the local-
ized excitation is suppressed. We thus can obtain a reliable mea-
surement of the weak-force exponent associated with extended
excitation, i.e., θf = θe = 0.44(2), and the small-interparticle-
gap exponent γ = 0.43(3), both of which agree extremely well
with those of the fullRSB solution (2, 7).

Next, we investigate the two exponents in the jammed packings
produced in the steady-state cyclic pure shear. We find that
both exponents of θf and γ deviate substantially from those of
the isotropic case; especially when the stress ratio μ approaches
the yielding point, the accompanied pressure value increases sig-
nificantly due to shear-induced dilation that creates reasonably
wide ranges of power-law scaling. Remarkably, the two exponents
still satisfy the relationship predicted by the MMS (8, 10, 11).
Furthermore, the extended modes dominate over the low-energy
excitation based on the estimation from γ, implying that the
avalanche dynamics of granular materials shall percolate the whole
system near the yielding point.

Note that the interparticle friction in our system is beyond
the present scope of the fullRSB theory (2, 7). We believe that
friction expands the phase space of the jammed states significantly
compared with that of the frictionless spheres or disks. Recall that
to create the isotropic jammed packings, we first prepare an initial
stress-free packing with the packing fraction φ= 83.4%, close to
the two-dimensional jamming point of frictionless particles φJ ≈
84% (4), and then we apply constant vibrations at the bottom
plate to eliminate the base friction. Adopting this preparation
protocol allows us to generate the almost perfectly uniform and
isotropic jammed packings (41, 42), from which we obtain the
good statistics of the contact forces and interparticle gaps that are
consistent with the prediction of frictionless hard spheres (2, 7).
To create the jammed packings upon the steady-state pure shear
of conserved area, we believe that the interparticle friction plays
an important role in selecting the jammed states in the expanded
phase space, which, therefore, changes the exponents of P(f )
and g(h).

It has been reported that the Gardner phase is not necessarily
universally observed (43, 44) in finite-dimensional glasses far
away from jamming. The fact that the jamming criticalities are
observed in low dimensions might be due to the emergence
of hyperuniformity (45–48) in jammed packings, which may

suppress the fluctuations in finite-dimensional systems. Mean-
while, a clear theoretical basis for the superuniversality of jamming
is still lacking (5, 16, 20, 49).

In the future, the connection between these critical scalings of
microstructures and the rheological dynamics of amorphous solids
needs to be studied. In addition, the effects of particle shape on
the microstructures of interparticle gaps and contact forces (50)
can be explored by using the photoelastic ellipses (33).

Materials and Methods

Experimental Setup. The layer of particles is placed on a horizontal glass plate
and is laterally confined by two pairs of walls, forming a rectangle. The two pairs
of walls can move inward simultaneously to apply isotropic compression, or one
pair moves inward and the other pair moves outward to apply area-conserved
pure shear. To eliminate the friction between the particle layer and the glass plate,
we attach eight mini vibrators below the glass plate. At the top, an array of 2× 2
high-resolution (100 pixels/cm) cameras are aligned and synchronized. A pair of
matched circular polarizers are inserted above and below the particle layer. The
top polarizer is right below the array of cameras and can be moved horizontally
in and out under the control of a motor. A uniform green light box is mounted at
the bottom.

Preparation Protocols of Jammed Packings Subject to Isotropic Compres-
sion. Packings at different pressure levels subject to isotropic compression are
prepared as follows. We first prepare a stress-free random and homogeneous
particle configuration with the packing fraction φ= 83.4% (the ratio between
the area of disks and that of the rectangle) near the jamming point φJ ≈ 84.0%
of frictionless particles. To achieve this goal, we start from a random loose ini-
tial configuration by filling a random mixture of bidisperse photoelastic disks
within the rectangle. When applying isotropic compression to increase the φ, we
constantly apply manual agitation within the photoelastic disks to remove any
transient force chains and, meanwhile, turn on the mini vibrators to eliminate
the base friction. After the stress-free random initial packing with φ= 83.4%
is prepared, we stop manual agitation for any further isotropic compression.
Next, we apply isotropic compression in incremental steps to obtain packings
at a sequence of incremental pressure levels with maximum packing fraction
φ= 86.2%. During this process, the mini vibrators are synchronized with the
movement of the four walls, such that they are turned on when the walls move
and are turned off when the walls pause after an incremental step. The force
chains of isotropically jammed packings are homogeneous and isotropic. An
example of an original stress image and the associated force-network image
are shown in Fig. 1 A and B. Note that we can generate an ensemble of sets of
isotropically jammed packings by applying the above protocol repetitively.
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Preparation Protocols of Jammed Packings Subject to Pure Shear.
Packings of different pressure levels subject to area-conserved pure shear are
prepared as follows. We first follow the protocol of preparing a weakly jammed
packing subject to isotropic compression with the packing fraction φ= 85.0%.
We then apply pure shear to this packing to drive the system into steady states, in
which the curve of the global stress ratioμ≡ τ/p versus the strain of every shear
cycle remains fixed. Here, the global stress ratio μ refers to the ratio between the
global shear stress τ and the pressure p of the system. The strain ε of every shear
cycle is in between εmin =−2.8% and εmax = 2.8%. We apply pure shear in
incremental steps to cover a sequence of strains within εmin ≤ ε≤ εmax. During
this process, the mini vibrators are synchronized with the movement of the four
walls, such that they are turned on when the walls move and are turned off when
the walls pause after an incremental step. Since there is shear-induced dilation in
area-conserved cyclic pure shear, the pressure p of the system is not a constant,
and, hence, we obtain a sequence packings of different μ and p subject to cyclic
pure shear. Note that we can similarly generate an ensemble of sets of cyclically
sheared jammed packings by applying the above protocol repetitively.

Particle Detection and Contact Force Measurements. For each step of
compression or shear, we record one stress image, as shown in Fig. 1A, and one
normal image, depending on whether the top polarizer is inserted or removed.
With the normal image, we use the Hough transform algorithm to detect the
positions of particles with subpixel resolutions. We can then obtain interparticle
contacts with the criterion of rij < (1 + δ)(ai + aj). Here, rij is the distance
between particle i and particle j, ai and aj are the radii of particles, and δ is set
as 0.05 to avoid the missing of force-bearing contacts. Note that although this
value of δ may include a few false contacts, it, however, will not affect the results

presented in this paper since the measured contact forces of those false contacts
are smaller than 0.05 N. With the stress image and the positions of particles and
contacts, we can solve the contact force vectors using a force-inverse algorithm,
which generates a computed stress image based on an initial guess of contact
forces, and then iterate to minimize the difference between the experimental
and computed stress images. The relative error of contact force measurement is
less than 5% for the typical force magnitude; when f < 0.05 N, measurements
are often interfered with by the inhomogeneity of background illuminations
and limited by the image resolution. Our final remark is regarding the mini
vibrators: Applying vibration using mini vibrators efficiently eliminates the base
friction, but this method will not produce noticeable effects in the relaxation of
the stress images. For a jammed packing, we turn on the mini vibrators for a
considerably long time, and we compare the stress images before and after and
see no noticeable changes.

Data Availability. All study data are included in the article.
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