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Adolescent development is characterized by an improvement in multiple cognitive pro-
cesses. While performance on cognitive operations improves during this period, the
ability to learn new skills quickly, for example, a new language, decreases. During this
time, there is substantial pruning of excitatory synapses in cortex and specifically in pre-
frontal cortex. We have trained a series of recurrent neural networks to solve a working
memory task and a reinforcement learning (RL) task. Performance on both of these
tasks is known to improve during adolescence. After training, we pruned the networks
by removing weak synapses. Pruning was done incrementally, and the networks were
retrained during pruning. We found that pruned networks trained on the working
memory task were more resistant to distraction. The pruned RL networks were able to
produce more accurate value estimates and also make optimal choices more consis-
tently. Both results are consistent with developmental improvements on these tasks.
Pruned networks, however, learned some, but not all, new problems more slowly.
Thus, improvements in task performance can come at the cost of flexibility. Our results
show that overproduction and subsequent pruning of synapses is a computationally
advantageous approach to building a competent brain.

neural network j reinforcement learning j working memory j pruning

In both artificial and biological neural networks, cognitive operations are defined by
patterns of synaptic connectivity in the network (1–4). During development, neurons
across multiple cortical and subcortical systems first establish an abundance of synaptic
contacts with downstream areas (5–7). Following this period, weak synapses are pruned
through activity-dependent mechanisms (8–11). This process happens early in develop-
ment for some systems, including retinal–geniculate synapses (5) and climbing fiber to
Purkinje cell synapses in the cerebellum (12). However, in human prefrontal cortex,
substantial pruning takes place beginning in late childhood and continuing into adult-
hood (13–15). The number of excitatory synapses in prefrontal cortex peaks between
the ages of 5 and 10. After this it decreases exponentially. Estimates suggest that up to
40% of excitatory synapses are pruned in prefrontal cortex, between the ages of 10 and
30 (13). Studies also suggest that most of the pruning occurs on recurrent layer III con-
nections within prefrontal cortex, as opposed to inputs from other areas (16). During
this time the number of neurons remains relatively constant, having reached adult lev-
els by about 6 mo of age (14). Similar changes in the number of prefrontal synapses
during development have also been seen in monkeys (17–20) and rats (21).
Cognition and learning also change during adolescence (22–26). For example, there are

consistent and systematic changes in performance on reinforcement learning (RL) tasks,
in which participants have to learn from feedback to choose rewarding options and avoid
punishing options (27–30). These studies often characterize performance using two varia-
bles, learning rate and decision noise (31). Learning rate is the rate at which subjects learn
to select the better option, and decision noise characterizes the asymptotic level of perfor-
mance. Decision noise, therefore, reflects the consistency with which subjects select the
better option, after their performance has stabilized. When decision noise is high, subjects
tend to sample multiple options, even late in learning. Studies most consistently report
that decision noise decreases during adolescence (27), although some studies also suggest
that learning rate increases (32). Similar developmental changes have also been seen in
rodents (33). Although performance on well-defined bandit RL problems improves during
adolescence, children are better at learning problems requiring exploration (34–37). Addi-
tionally, children can often learn new skills more quickly than adults, including languages,
and this ability decreases during adolescence (9, 38). Some forms of exploration, for
example, directed exploration, which requires an estimate of what is unknown, improve
during adolescence (39).
Working memory performance and the ability to avoid distraction also improve during

adolescence (40–44). Improvements in working memory may also underlie improvements
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in goal-directed behavior (45). Developmental improvements in
working memory performance have also been seen in primates
(46). Comparison of single-cell neurophysiology responses
between pubertal and adult monkeys shows that neural responses
reflecting remembered items were stronger in adults and less sen-
sitive to distraction during delay periods (46).
Pruning of weak synapses was early recognized as an important

technique to improve performance in artificial neural networks
(47–50). Large artificial networks with many hidden units and
connections can solve complex problems. However, these large
networks generalize poorly beyond their training examples and
rely on massive computational resources. Several techniques have
been introduced to reduce network complexity by shrinking con-
nection weights (51), as well as pruning or eliminating weights
(47, 48), and these approaches have been shown to improve gen-
eralization performance. Pruning techniques, therefore, optimize
the trade-off between network complexity and generalization.
Our goal in the present study was to understand how develop-

mental pruning can account for changes in performance on
working memory and RL tasks. To examine this, we trained two
sets of recurrent neural networks. One set of networks was
trained to carry out a delayed match to sample (DMS) task (46,
52, 53). The DMS task requires subjects to remember items over
a delay, and therefore, it tests working memory. The second net-
work was trained to carry out a two-armed bandit RL task
(54–56). After the networks were trained, we incrementally
pruned networks by removing weak connections. During pruning
we continued to train the networks. We also trained a set of
unpruned networks in parallel, such that they saw the same num-
ber of training examples. We then compared the performance of
the pruned networks to the unpruned networks. We found that
pruning led to changes in network dynamics that improved per-
formance on both tasks. In the DMS task, the pruned network
was less susceptible to distractors, and this improved performance
was related to a strengthening of the attractor basin. In the RL
task, the pruned network produced more accurate value estimates
in the presence of noise. We also found corresponding changes in
the dynamics that accounted for these improvements. The
pruned networks, however, learned some new tasks and new
choice options more slowly than the unpruned networks. There-
fore, the increased performance on the tasks for which the net-
works were trained came at the cost of decreased flexibility.

Results

DMS. We fit recurrent neural networks to two cognitive tasks,
performance on which is known to improve during adoles-
cence: a DMS task that engages working memory (52) and a
two-armed bandit RL task (54). DMS tasks come in many
forms. Here we trained networks on a task inspired by a left/
right auditory spatial match to sample task. In the task, a cue is
presented either on the left or the right of the network agent
(Fig. 1). Following a delay period during which the network
has to remember the location of the first cue, a second cue is
presented either on the left or the right. If the two cues are on
the same side (i.e., if the sign of the input matches), it is a
match trial and the network should give a match response. If
the two cues are on opposite sides, it is a nonmatch trial, and
the network should give a nonmatch response. There are four
possible conditions identified by the side of the first and second
cues. After training, a fully connected recurrent neural network
(Fig. 1B) does well at the task (Fig. 1 C–F). Following cues pre-
sented on the same side, the network produces a match
response (Fig. 1 C and D), and following cues presented on

opposite sides the network produces a nonmatch response (Fig.
1 E and F).

We examined the effect of synaptic pruning on task perfor-
mance and recurrent dynamics. To examine the effect of prun-
ing, we first trained a large ensemble (400) of fully connected
networks on the task. Each of these original 400 networks was
then used to generate a sequence of pruned and unpruned net-
works (Fig. 1G). For the networks trained with pruning, we
first pruned 10% of the weakest recurrent connections (after
the initial training), either positive or negative, and then
retrained the networks on a new set of training examples. Each
new set of training examples, which was fixed for a training epi-
sode, was five trials of each condition, with additive noise. The
noise was frozen for a training episode (see Methods for further
details). We then pruned an additional 5% of the weakest con-
nections and retrained on a new set of examples. We continued
this iteratively until we had pruned 95% of the connections.
For the unpruned networks, we did not prune the connectivity
matrix. However, we introduced a new set of training examples
and retrained to criterion. We repeated this, in parallel with the
pruned networks, such that each unpruned network saw the
same number of training examples as a corresponding pruned
network. We found that with small amounts of pruning, the
pruned networks tended to have higher final loss (Fig. 1H) and
required more training iterations to converge (Fig. 1I). Over an
intermediate range of pruning values, however, the pruned net-
works had lower final training loss and required a smaller num-
ber of training iterations. At the highest pruning levels, the
pruned networks again had high loss and converged slowly.
The unpruned networks had consistent training loss and itera-
tions across the multiple training episodes. When we examined
the appended series of training iterations (SI Appendix, Fig.
S1), it could be seen that pruning led to a large training loss on
the first iteration, which quickly decreased.

We next examined the performance of an example pruned
(70%) and unpruned (trained for the same number of exam-
ples) network. The pruned network had a larger proportion of
strong connections than the unpruned network (Fig. 2A). This
is consistent with a biological process known as homeostatic
synaptic scaling, which maintains the total input to single cells
(57). To begin examining the effect of pruning on the neural
dynamics we carried out singular value decomposition on the
recurrent connectivity matrix, A, and found that the scaling of
the singular values was similar between the pruned and
unpruned networks (Fig. 2B). Thus, we had not reduced the
rank of the recurrent dynamics, which suggests that all of the
recurrent units were participating in the task after pruning.

To compare the performance of the example pruned and
unpruned networks we examined the ability of the networks to
avoid distraction. Distraction was provided by delivering a
probe cue during the delay period between cue 1 and cue 2.
Probe cues were always delivered on the side opposite of the
first cue. Therefore, if the network output was the same on
probe and nonprobe trials, it was resistant to the distractor.
Note that neither network was trained to ignore the probes.
Thus, if the network could not ignore the probe cue, it would
give the wrong answer. Both the pruned and unpruned net-
works gave the correct answer in unprobed trials (Fig. 2 C
and E). In this example probe trial, however, the unpruned net-
work provided the wrong response (Fig. 2D). The pruned net-
work, however, was insensitive to the same probe cue (Fig. 2F).

We explored the latent dynamics of the example networks to
see the effects of the probe stimuli and the pruning (Fig. 3).
For each network we calculated the principal components

2 of 12 https://doi.org/10.1073/pnas.2121331119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121331119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121331119/-/DCSupplemental


(PCs) of the activity in the recurrent layer and examined the
time evolution of the activity in the first two PCs for probed
and unprobed trials. When we examined activity in the first
two PCs we found that the probe, delivered at time 20, drove
the activity off the corresponding trajectory for the unprobed,
condition 4 trial (Fig. 3 A and B). The activity diverged slowly
over several time steps. However, later in the trial, after cue 2
was delivered, the activity was far off the trajectory of the
unprobed trial, which led to the network producing an incor-
rect output at the response time (Fig. 3C). In the pruned net-
work, however, the probed and unprobed trials had similar

trajectories (Fig. 3 D and E), at least in the first two PC dimen-
sions, and only diverged slightly later in the trial in PC2
(Fig. 3E). Thus, the network produced the correct output at
the response time (Fig. 3F).

We next examined the network dynamics in two-
dimensional (2D) PC space and overlaid the network’s vector
field. The vector field shows how the network evolves from dif-
ferent points in phase space over one time step. We examined
the vector field centered on the unprobed trajectory (condition
4) for the unpruned network (Fig. 4A) and the pruned network
(Fig. 4B). The probe stimulus perturbs the network from the

Cue1 Cue2 Response

R
em

em
be

r r
ig

ht
R

em
em

be
r l

ef
t

Delay 1

L

R

L

R

L

R

L

R

Match

Non-match

Match

Non-match

Tone
side

Cue 1

Cue 2

Task phase 1

Task phase 2

Delay 2
Response

Sensory input Recurrent network Decision output

A

B

Probe?

Time

Cue 1 Cue 2 Response

Match

Match

Nonmatch

Nonmatch

Time Time

Time Time
In

pu
t/o

ut
pu

t (
au

)

In
pu

t/o
ut

pu
t (

au
)

In
pu

t/o
ut

pu
t (

au
)

In
pu

t/o
ut

pu
t (

au
)

C D

E F
0 20 40-1

0

1

0 20 40-1

0

1

0 20 40-1

0

1

0 20 40-1

0

1

Lo
ss

Tr
ai

ni
ng

 it
er

at
io

ns

H I

Unpruned
Pruned

Pruned

Unpruned

Pr
un

e 
W

r 1
0%

Pr
un

e 
W

r +
5%

R
et

ra
in

R
et

ra
in

R
et

ra
in

R
et

ra
in

Pr
un

e 
95

%

Starting
network

G

...

...

C
op

y 
W

r

C
op

y 
W

r

Wr

C
op

y 
W

r

Te
st

Te
st

Te
st

Te
st

R
et

ra
in

Te
st

R
et

ra
in

Te
st

0.01

0.02

0.03

20

40

60

80

0.1 0.5 10.25 0.75
Prune fraction and
training episodes

0.1 0.5 10.25 0.75
Prune fraction and
training episodes
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a pruned and unpruned network that had seen the same number of training examples and started from the same weight matrix. (H) Average final training
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training episodes since these networks were not pruned. (I) Number of CG training iterations when retraining pruned and unpruned networks.
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unprobed trajectory. If the vector field of the network is orga-
nized such that it pushes a perturbed trajectory back to the
unperturbed trajectory, the network will be resistant to the
probe and give the correct answer (46). Note that we only illus-
trate the 2D vector field that projects into low-dimensional PC
space. The full vector field can diverge more or less in dimen-
sions that we do not plot. We can see, however, that the vector
field for the pruned network pushes the perturbed trajectories
back to the unperturbed trajectories more effectively than the
vector field for the unpruned network (Fig. 4 A and B). This is
represented by the convergence of the perturbed points (i.e.,
open circles) in the pruned network, back to the unperturbed
trajectory (i.e., end points of vectors from open circles). Thus,
when a probe stimulus perturbs the network off the unper-
turbed trajectory, the network relaxes back to the unperturbed
trajectory, in the pruned network (Fig. 4B) but not in the
unpruned network (Fig. 4A). In the unpruned network the per-
turbed trajectories tend to diverge from the unperturbed trajec-
tory, and the probe trajectory also diverges (Fig. 4A).
To characterize this, we calculated the ratio of the spread of

the end points (circles in Fig. 4 A and B) to the spread of the
probed points after one iteration of the network (Fig. 4C).

When this ratio < 1, the spread of the points after one iteration
of the network is smaller than the spread when they are per-
turbed. This characterizes the extent to which the network col-
lapses perturbed trajectories back to the unperturbed trajectory,
by comparing the volume of perturbed trajectories before and
after one time step of the network. We found that throughout
the delay period, this fraction was smaller, and consistently less
than 1, in the pruned network. It was greater than 1 through-
out the delay in the unpruned network. Thus, when the net-
work was pushed off the mean trajectory by a distractor, it
tended to return to a point closer to the unperturbed trajectory
in one iteration for the pruned network. In the unpruned net-
work, however, the probed trajectory tended to diverge from
the unprobed trajectory.

We further formalized this by calculating the spectrum of
Lyapunov exponents (LEs) around the unperturbed trajectory
averaged over the delay period (Fig. 4D). The LEs characterize
the extent to which two nearby points diverge or converge over
time, as the network is iterated. Values greater than 0 indicate
that the network will diverge in that dimension over time, if
perturbed. Values less than 0 indicate that the network will
converge over time. The maximal LE characterizes the overall
resistance of the network to perturbations. Thus, the LE char-
acterizes the contraction (values < 0) or expansion (values > 0)
over time of perturbed trajectories, and larger positive or nega-
tive values indicate networks in which the expansion or con-
traction occurs more rapidly. The maximal LE in this example
was �0.02 for the pruned network and 0.27 for the unpruned
network. Therefore, activity tended to diverge following a per-
turbation for the unpruned network but converge for the
pruned network. This convergence is why the pruned network
is resistant to distraction.

We characterized the performance and dynamics for our popu-
lation of trained pruned and unpruned networks (Fig. 5). We
found that networks pruned to intermediate values were more
resistant to distractors of different strength, delivered throughout
the delay period, than unpruned networks (Fig. 5A). The differ-
ence in performance was most pronounced early in the delay
(Fig. 5B) and was minimal near the end of the delay, when
pruned and unpruned networks were more resistant to distrac-
tors. In the absence of probe cues (probe strength 0), the net-
works were almost perfect (Fig. 5C). Performance, however,
degraded slowly with increasing distractor strength (Fig. 5C) but
was consistently higher for pruned networks. Pruned networks
had lower maximum LEs, and the LE decreased with increased
pruning (Fig. 5D). Unpruned networks had higher LEs, despite
being continuously trained in parallel with the pruned networks
(Fig. 5D). We also found that the networks that performed on
average best when probed also had lower LEs for both pruned
and unpruned networks (Fig. 5E). The LE was negatively corre-
lated with performance for both the unpruned [r(400) =
�0.299, P < 0.001] and pruned [r(400) = �0.318, P < 0.001]
networks. The distribution of connection strengths, at 70% prun-
ing, averaged across networks, showed fewer small and more
large connections in the pruned than the unpruned networks
(Fig. 5F).

In a final analysis, we trained pruned (70%) and unpruned
networks and examined the rate at which they were able to
learn the DMS task. To examine task learning of pruned and
unpruned networks we randomly initialized networks, pruned
70% of the weakest connections, and then trained them on
the DMS task. We compared these networks to randomly
initialized unpruned networks. We found that the unpruned
networks learned more quickly than the pruned networks
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(SI Appendix, Fig. S2A). The average performance of the
pruned network became similar to the unpruned network after
about 20 training iterations. We also compared this to retrain-
ing pruned (70%) and unpruned networks with a new pair of
cues, after they had previously been trained on the original
task. When we examined learning to do DMS with a new set
of cues, we found that the pruned network was overall more
efficient, similar to the results on the original cues (SI
Appendix, Fig. S2B). Thus, the recurrent dynamics of the
pruned network could be reused to learn DMS for new cues
that the network had not seen previously, and unpruned net-
works can initially learn more quickly than pruned networks,
but the pruned networks learned new cues more effectively, if
not more quickly.

RL. We next trained a series of networks to carry out an RL
task. RL is often thought to be a dopamine-dependent process,
with dopamine driving plasticity on frontal-striatal synapses
during learning (58). However, recurrent neural networks can
be trained to solve bandit tasks and may better reflect the neu-
ral processes that drive learning in these tasks, under some con-
ditions (55, 56). After training, the weights of the network can
be fixed, and the network can make correct choices, essentially
matching performance of biological agents, by storing informa-
tion about past outcomes in patterns of recurrent activity. We
trained a population of networks on a two-state RL problem.
Specifically, they were trained to select a fixation point when it
was presented (SI Appendix, Fig. S3) and to learn to select one
of two targets in each block of trials, depending on which target
was most frequently rewarded. To match the noisy choice
behavior of young subjects, networks were trained to match
noisy value functions (Methods). We followed the same proce-
dure of incrementally pruning and retraining the RL network
that was used to train the DMS network and also training, in
parallel, unpruned networks. Thus, we initially trained 100 net-
works to carry out the RL task. We then used the original set

of 100 networks to generate a series of pruned and unpruned
networks. At each stage, we pruned a fraction of connections in
the pruned networks and retrained the networks with a new set
of training examples. For the unpruned networks, we copied
the unpruned weight matrix forward but retrained them on an
equivalent set of training examples.

When we examined the performance of an example pruned
and unpruned network we found that the pruned RL network
had more large weights (in absolute value) than the unpruned
network (Fig. 6A). SVD on the recurrent A matrix showed that
it was full rank, and the spectrum of singular values was similar
between the pruned and the unpruned networks (Fig. 6B). We
also found that the unpruned network produced noisier results
(higher Q-value error) during selection of both the fixation point
(Fig. 6C) and the best choice option (Fig. 6D). The pruned net-
work, on the other hand, produced results that matched the val-
ues predicted by the Q-learning algorithm well (Fig. 6 E and F).
To explore the network features that led to the improved perfor-
mance of the pruned network, we again examined activity in a
low-dimensional PC space. The dynamics of both networks were
relatively low dimensional and lower dimensional for the pruned
than the unpruned network (Fig. 6G).

When we examined the data plotted in the first two PCs, we
found that the recurrent activity patterns, which represent action
values, during the fixation and choice periods were separated in
state space. They were separated more, however, for the pruned
network than the unpruned network (Fig. 6 H and I). When
we calculated the Mahalanobis distances (59), in the full
20-dimensional latent space, between the value clouds for the
two states, we found that the distances were larger for the pruned
than the unpruned network (average values pruned = 39,261,
unpruned = 5,200). Thus, there was more separation in the
recurrent activity representations for the two states for the pruned
network. We also characterized the LEs across the whole trial and
found that they were consistently smaller in the pruned networks
(�0.020) than the unpruned networks (0.031).
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was probed during the delay (i.e., right/left probe/left). Note that condition 1 would correspond to the correct response if the network was responding to
the probe instead of the first cue in condition 4. The perturbed and unperturbed trajectories for condition 4 diverge around time point 30. The symbols
below the x axis indicate the times at which the first cue (C1), probe (P), second cue (C2), and response (R) occurred. These times were the same across all
conditions. (B) Projection of the same trial on the second PC. (C) Network output, y kð Þ, in each trial. Note that the network produces the wrong response in
the probe trial. (D–F) Data from the pruned network. (D) Evolution of activity projected on the first PC over time for the same conditions shown in A.
Note that the trajectories diverge less and only late in the trial. (E) Projection of activity on the second PC. Note that in this dimension, there is also little
divergence in the activity. (F) In this example the network gives the correct output.

PNAS 2022 Vol. 119 No. 22 e2121331119 https://doi.org/10.1073/pnas.2121331119 5 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121331119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121331119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121331119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121331119/-/DCSupplemental


When we compared performance of a population of pruned
and unpruned networks for a range of pruning values, we
found that pruned networks outperformed unpruned networks,
by better approximating Q values, when pruning fractions were
greater than about 0.3 (Fig. 7A). Correspondingly, pruned net-
works also more frequently chose the same option as the
Q-learning algorithm, which we defined as correct decisions
(Fig. 7B), and obtained more total rewards per block (Fig. 7C).
Similar to the DMS networks, pruned RL networks had lower
LEs (Fig. 7D). For the pruned RL networks the LEs were nega-
tive on average. The pruned RL networks also had lower
dimensional latent dynamics (Fig. 7E) and a larger fraction of
higher strength connections (Fig. 7F). The separation of latent
activity related to values for the two states was also larger for
pruned than unpruned networks (Fig. 7G). When we examined
the relation between LE and the fraction of decisions that were
consistent with the Q-learning algorithm, we found that pooled
across both pruned and unpruned networks, there was a signifi-
cant correlation between fraction correct (i.e., consistency
between network and Q-learning algorithm) and the LE at low
[r (100) = �0.158, P = 0.025), medium [Fig. 7H; r (100) =
�0.873, P < 0.001], and high [Fig. 7I; r (100) = �0.593,
P < 0.001] training noise levels. Thus, lower LEs, mostly in
the pruned networks, lead to better performance. Overall, per-
formance mostly increased with additional pruning for the RL

network, up to 90%. For the DMS network, performance
began to decrease at about 85% pruning. This difference may
relate to the underlying complexity of the task.

In a final analysis we trained both pruned (70%) and corre-
sponding unpruned networks to learn to select between a new
option, which the network had not previously seen (choice 3;
SI Appendix, Fig. S3), and one of the options with which the
network was previously familiar (SI Appendix, Fig. S4). In this
case both networks were first trained to select between options
1 and 2. After this, the pruned and unpruned networks were
retrained to select between options 1 and 3. Although there
was some advantage for the pruned network over the first train-
ing iteration, the unpruned network quickly surpassed the per-
formance of the pruned network. With extensive training the
pruned network approached the performance of the unpruned
network, which suggests that the pruned network had enough
residual capacity to learn this task. However, the unpruned net-
work learned more quickly.

Discussion

We have examined the effect of synaptic pruning in recurrent
neural network models of working memory and RL. The net-
works were able to capture many features of behavior that
change during development. Specifically, in the delayed DMS
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task, the pruned networks were more resistant to distractors.
When we examined the local dynamics, we found that the
distractor resistance followed from a smaller LE around the
unperturbed trajectory in the pruned network. Thus, when a
distractor perturbed the pruned network, it returned to the
unperturbed trajectory, whereas the unpruned network did not.
We used an incremental training and pruning approach. When
we directly trained a network, after randomly initializing the
weights and then pruning 70% of them, we found that the net-
work learned more slowly than the unpruned network. How-
ever, when we first trained networks on the DMS task, with
and without pruning, the pruned network learned with lower
loss to do DMS with new cues.
When we examined the performance of a network trained

to perform a two-armed bandit RL task, we also found that

pruning improved performance. Pruned networks trained in
the presence of noise were able to more accurately approximate
optimal Q values than unpruned networks. Pruning has long
been used as an approach in the feed-forward neural network
literature, to improve generalization performance (47, 48), and
pruning can be computationally optimized (60). The RL results
follow from improved generalization performance. Every block
of trials in a two-armed bandit RL task is unique because
choice outcomes are stochastic. Additionally, there was noise in
the Q values we used for training as this noise approximates
noisier learning in children. Therefore, the network has to learn
to generalize. Although the pruned network was better able to
perform the RL task on which it was trained, it learned to select
a novel option more slowly than the unpruned network. Thus,
pruned networks are better at the tasks for which they have
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been trained, but they learn some new tasks slowly. It is not
clear why the pruned DMS network learned a new option
more effectively, which was not the case for the pruned RL net-
work. These differences may be due to whether learned weights
in the pruned network can generalize better to new options
within a task.
The brain, at least at a thalamocortical level, produces

an overabundance of synapses during development (7). The
reasons for this are unclear. It may be a constraint of develop-
mental processes, which are able to guide axons to their target
structures but not able to establish precise connections (61).
It is unlikely that the precise wiring of the brain, even in sys-
tems like the early visual system where adult plasticity is only
minimally important, could be specified by genetics (9). In
general, the brain relies on learning during development to
establish adult behavior and corresponding neural connectivity
(62). Development uses a mechanism by which axons are steered
toward their target structures, and then synapses are overpro-
duced. The synapses are then pruned through activity-dependent

mechanisms in which weak synapses are eliminated (5, 8). These
mechanisms have been most thoroughly investigated in a few
model systems, including the retinogeniculate pathway, thalamo-
cortical synapses in barrel cortex, and climbing fibers in the cere-
bellum (8, 9).

In addition to these model systems, it is also known that
substantial pruning of excitatory synapses happens throughout
cortex, including in prefrontal cortex (13, 14). Studies in
human postmortem tissue, monkeys (17, 19, 20), and rats (21)
have consistently shown substantial pruning. Across these stud-
ies, synapses appear to peak before puberty (13). They then
decline exponentially and continue to decline with age. The
timing of pruning differs from the timing of cell elimination.
Specifically, the number of neurons in prefrontal cortex, which
is highest at birth, drops to adult levels by about 6 mo of
age (14). Thus, in cortical systems that support cognition, there
is substantial synaptic pruning, specific to excitatory synapses
on both excitatory and inhibitory neurons, during adolescent
development.
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Pruning was developed in machine learning to improve the
generalization and computational efficiency of artificial neural
networks (47, 48, 63). Large networks can learn complex prob-
lems. However, they generalize to new data poorly, especially
when training data are limited. This is often referred to as the
bias/variance trade-off (64). Large networks can approximate
complex functions with minimal bias. However, they produce
highly variable fits when they are trained on different datasets
that represent variations on the same learning problem. Simpler
networks produce biased fits to complex functions as they may
smooth over the complexity. However, they produce less vari-
able fits when trained on different datasets and therefore gener-
alize better to new data. Pruning reduces the complexity of a
large neural network, and therefore, pruning can be used to
optimize the trade-off between bias and variance, for a given
learning problem. Early (47) and more recent work (65) on
pruning was also intended to reduce the memory requirements
and computational demands of large networks. One important
point is that it is not clear whether the pruning used in the pre-
sent work directly produces networks that are better at the task
or whether pruning facilitates training to higher levels of perfor-
mance. Additionally, regularization techniques in machine
learning, like pruning, improve performance in the presence of
limited training data. With very large training datasets, regulari-
zation is less important. Other regularization approaches,

for example, weight shrinkage (66), in which weights are shrunk
toward zero on each training iteration, or adding noise to connec-
tion weights during training (67), could also lead to improved per-
formance. However, these approaches are less related to known
developmental processes.

Consistent with the earlier work in artificial intelligence and
aside from possible developmental constraints, we have shown that
there can be computational advantages to overproducing synapses
and then pruning them incrementally while tasks are learned, in
artificial neural networks. The DMS network was able to learn
more efficiently before pruning. When we pruned a DMS network
before training, it learned more slowly than the unpruned network.
However, trained pruned DMS networks were able to learn new
cues as fast, and more effectively, than unpruned DMS networks.
Additionally, when we explored the ability of the pruned and
unpruned RL networks to learn to select a novel option, to which
the networks had not been previously exposed, the pruned network
learned more slowly. Thus, consistent with developmental pro-
cesses, unpruned networks are able to learn some new tasks or
problems more quickly than pruned networks.

The rate-based recurrent network is simplified and lacks bio-
logical features. Simplified, formal models have provided
insight into neural population coding (68, 69) and RL (31,
70). Connectionist models, particularly as extended in deep
networks, provide a powerful description of tuning functions in

A B C

G H I

D E F

Fig. 7. Performance and accuracy for population of pruned and unpruned RL networks. Bars at the top of A–D and G indicate values for which pruned and
unpruned networks differ significantly. A–G are shown for intermediate noise level (0.1). Error bars are SEM, n = 100. (A) Q-value prediction accuracy on new
blocks of data. Note that this is not the training loss, because when networks were trained, the target function had added noise. This is the accuracy with which
the network predicts the underlying, noise-free Q values. (B) Accuracy (fraction correct) with which networks predict the same choice as the Q algorithm on new
blocks of data. (C) Average reward collected per block for pruned and unpruned networks. (D) Average maximum LE for pruned and unpruned networks.
(E) Cumulative variance explained for pruned and unpruned networks at a prune fraction of 70%. (F) Distribution of connection strength for pruned and
unpruned networks, averaged across all networks. Note that values at 0 are for small nonzero values that fall into the central bin. (G) Mahalanobis distance
between centroids for recurrent activity for fixation vs. choice periods. (H) Scatterplot of fraction correct vs. maximal LE, across pruned and unpruned networks,
trained at a noise level of 0.1. Fraction correct refers to consistency with Q-learning algorithm shown in B. (I) Same as H for noise level of 1.
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sensory cortex (71, 72). Therefore, the basic computational
principles captured by our model can provide a reasonable
description of the effects of neural pruning in cortex. One fea-
ture of biological pruning not captured by our model, which
should be explored in the future, is that only excitatory synap-
ses are pruned. Studying the effects of pruning in spiking neu-
ral networks that learn arbitrary cognitive tasks and that have
excitatory and inhibitory units will be challenging. There are
methods to map between rate models and spiking models (73),
and there has been progress in training spiking networks (74).
Therefore, future work may allow a more detailed exploration
of the effects of pruning in more realistic networks.
Our network makes several predictions that can be explored

in neurophysiology recordings. First, as already shown in previ-
ous neurophysiology data, pruned networks should be more
resistant to distractors in working memory tasks (46). Second,
the resistance to distractors follows from steeper or larger attrac-
tor basins and correspondingly less positive or negative Lyapu-
nov coefficients in the model networks. Thus, when activity is
perturbed, it should relax back to the unperturbed trajectory
more effectively in a pruned (i.e., adult) network. It should be
possible to estimate statistics that capture the size and steepness
of attractor basins with large-scale neural recordings that are
becoming more prevalent (75). Finally, we also found that the
dimensionality of neural activity was lower in pruned networks
in the RL task. Although dimensionality has been estimated in
many neural systems (76, 77), future work could compare
dimensionality across developmental time points.
During the period over which synapses are pruned in cortical

areas that support cognition, there is also improvement in several
behavioral processes (25). Two processes that improve are work-
ing memory (40) and RL (22, 27–29, 32). In working memory
tasks, both the span and resistance to distraction improve with
development (40, 41). Similar improvements have been seen in
monkeys (46). Furthermore, in monkeys, physiology recordings
have shown that resistance to distraction is reflected in neural
activity in prefrontal cortex. In young animals, distractors affected
neural activity during a memory interval. However, in adult ani-
mals, distractor effects quickly dissipated. These results are consis-
tent with the dynamic analysis we carried out on our network.
The pruned network was more resistant to perturbation during
the delay interval. By several related measures, when the pruned
network was perturbed by a distractor, the trajectory relaxed back
to the unperturbed trajectory. The unpruned network, on the
other hand, frequently diverged after perturbation, and this led to
the network sometimes providing the wrong answer. The robust-
ness of the pruned network, reflected in a deeper basin of attrac-
tion and more stable dynamics, is similar to results we have seen
when similar networks were trained on RL tasks, and the evolu-
tion over learning was examined (55).
Performance on RL tasks also improves during adolescence

(22). Some studies report improvements in learning rates (32).
However, the most consistent result is a decrease in decision
noise, such that older subjects more frequently choose the most
rewarded options (27). We found that pruned networks outper-
formed unpruned networks, having lower decision noise, when
both were trained in the presence of noise. The pruned net-
works produced more accurate approximations to the optimal
Q values and more consistently picked the same options as the
Q algorithm. Thus, pruning affected decision noise, consistent
with most studies (27). The networks were trained to reproduce
a specific learning rate, and therefore, it is not straightforward
to assess effects of pruning on learning rates. When we exam-
ined the latent space, we found that the state-dependent value

functions were better separated in the pruned network than in
the unpruned network. The result in the pruned network is
consistent with analysis of neural data from prefrontal cortex in
monkeys, which showed that when new pairs of options were
learned, they were represented in different subspaces in prefron-
tal cortex (76). Qualitatively, there appeared to be more inter-
ference or cross-talk between value representations in the
unpruned network than the pruned network. Therefore, out-
comes tended to affect value updates across multiple options.
This is also reminiscent of results following lesions of orbito-
frontal cortex or ventrolateral prefrontal cortex in moneys,
which lead to problems with credit assignment (78, 79).

Pruning appears to be a closely regulated process, such
that insufficient pruning or overpruning can lead to disorders
(80, 81). For example, it has been suggested that excessive synap-
ses and insufficient pruning may underlie deficits in autism (82).
In the opposite direction, it has been suggested that excessive
pruning may underlie deficits in schizophrenia (83–87), and sub-
sequent genetic and molecular work supports this hypothesis
(88–90). We found that pruning led to a strengthening of the
attractor basin. Thus, pruned networks are less distractable, which
also implies that they may be harder to move out of certain
attractor basins into which they have settled. While this can be
useful when the pruned network functions on the task for which
it has been trained, it can be less useful when the pruned and
trained network is producing pathological output. This may
apply to psychiatric disorders. For example, in depression, brain
networks that underlie motivational processes (91) do not appro-
priately motivate behavior. In addiction, motivational processes
are highly active but motivate harmful behavior. Both depression
and addiction can be resistant to therapy, which is an effort to
modify the input–output mappings of a patient’s brain. Consis-
tent with this, we found that pruned networks can be more diffi-
cult to train on new tasks. Ultimately, unpruning an overpruned
network, and restoring plasticity, may be a highly effective thera-
peutic approach. Unpruning a network can lead to a weakening
of pathological attractors, and restoring plasticity can allow
retraining the network such that it no longer produces pathologi-
cal output.

Recent work with both ketamine and psilocybin, both of
which may be treatments for depression (92–95), suggests that
these drugs may lead to production of new spines (96–98).
Similar results may also follow from other therapeutic techni-
ques like electroconvulsive therapy or deep brain stimulation.
These techniques may lead to therapeutic effects via an increase
in spines and synapses. This increase in spines may flatten the
attractor landscape of the brain and allow plasticity. Both
effects can lead to eliminating pathological attractors. This may
be why these therapies can open a therapeutic window. It is
also the case that early interventions for mental health issues,
when the brain is more plastic, can be more effective than
interventions targeted at the adult, after pruning has taken
place. Although this remains highly speculative, our simulation
results at least provide a theoretical framework for approaching
these issues (99). The theory suggests that an overpruned net-
work can effectively become stuck in a deep basin of attraction,
and the best way out is to increase synapses in the network,
making the network more amenable to learning new solutions.

Methods

We trained a series of rate-based, recurrent neural networks to solve two cogni-
tive tasks. The first set of networks was trained to solve a DMS working memory
task (52). The second set of networks was trained to solve a two-armed bandit RL
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task (54). We trained networks of various sizes, N. As these are low-dimensional
problems, small networks (n = 10) could solve the tasks well. However, we pre-
sent results using n = 30 for the DMS task and n = 20 for the RL task. Results
at n = 30 were more consistent at the population level for the DMS task.

The recurrent dynamics of our network are given by Eqs. 1–3. The network
was simulated as a nonlinear iterative map. The variable u kð Þ represents inputs
to the network at time k; x kð Þ represents the latent dynamics, or activity in the
recurrent layer, at time k; and y kð Þ is the output of the network. For consistency
with tasks used in experimental work, k indexes ∼50-ms time bins.

x kþ 1ð Þ ¼ Af x kð Þð Þ þ Bu kð Þ, [1]

f xð Þ ¼ tanhðxÞ, [2]

y kð Þ ¼ CxðkÞ: [3]

All networks were trained using the scaled conjugate gradient algorithm and
back propagation through time (100, 101). The CG algorithm iteratively mini-
mizes the loss using second-order information. One CG iteration is composed of
weight updates over a full set of conjugate vectors, where the number of vectors
is given by the dimensionality of the weight vector, W, for the network. The first
update vector is given by the gradient calculated with back-propagation. Subse-
quent conjugate vectors are computed recursively, and step size for weight
updates is calculated from the second-order approximation.

We trained matrices A, B, and C using a quadratic loss function on the output
given by

L Wð Þ ¼ ∑K
k¼1ðy kð Þ � ŷ kð ÞÞ2: [4]

The variable W indicates the vector of all weights formed by vectorizing and
concatenating matrices A, B, and C. The inputs and outputs were specific to each
task. For additional details on network training, see SI Appendix, SI Methods.

LE. We estimated a maximal LE for each network (102). The LE characterizes the rate
at which trajectories, in the undriven network, diverge or converge in the latent space.
Specifically, if we consider two nearby points in latent space, x1ðkÞ and x2ðkÞ, the
distance between these points at time k is given by δk ¼ ‖x1ðkÞ � x2ðkÞ‖. After
n iterations of the network, the distance between the subsequent points on each
trajectory is given by δkþn ¼ ‖x1ðkþ nÞ � x2ðkþ nÞ‖. The LE is then defined
by δkþn ¼ eλnδk .

For characterizing our networks we calculated (a local estimate of) the maxi-
mal LE by first calculating

Z ¼ ∏k¼1:KJðkÞ
� �T ∏k¼1:KJðkÞ

� �
[5]

and then calculated the eigen-decomposition of Z. The maximal LE is the log of
the absolute value of the largest eigenvalue of Z divided by the number of time
steps K. This is defined as λ¼ log argmaxi jυijð Þð Þ=ð2 � KÞ where the values of
υi are the eigenvalues of Z. The matrices JðkÞ are the Jacobians of the network
update equation, FðxÞ ¼ Af xð Þ, evaluated at each time step k.
Data Availability. Code has been deposited in GitHub (https://github.com/
baverbeck/Pruning-RNNs.git).
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