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The Antiseizure Drug Perampanel Is a Subunit-Selective
Negative Allosteric Modulator of Kainate Receptors
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Perampanel (PMP) is a third-generation antiseizure drug reported to be a potent and selective noncompetitive negative allo-
steric modulator of one subfamily of ionotropic glutamate receptor (iGluR), the a-amino-3-hydroxy-S-methylisoxazole-4-pro-
pionic acid receptors (AMPARs). However, the recent structural resolution of AMPARs in complex with PMP revealed that
its binding pocket is formed from residues that are largely conserved in two members of another family of iGluRs, the GluK4
and GluK5 kainate receptor (KAR) subunits. We show here that PMP inhibits both recombinant and neuronal KARs, con-
trary to the previous reports, and that the negative allosteric modulator (NAM) activity requires GluK5 subunits to be chan-
nel constituents. PMP inhibited heteromeric GluK1/GluK5 and GluK2/GluK5 KARs at IC50 values comparable to that for
AMPA receptors but was much less potent on homomeric GluK1 or GluK2 KARs. The auxiliary subunits Neto1 or Neto2 also
made GluK2-containing KARs more sensitive to inhibition. Finally, PMP inhibited mouse neuronal KARs containing GluK5
subunits and Neto proteins in nociceptive dorsal root ganglia neurons and hippocampal mossy fiber–CA3 pyramidal neuron
synapses. These data suggest that clinical actions of PMP could arise from differential inhibition of AMPAR or KAR signaling
and that more selective drugs might maintain antiseizure efficacy while reducing adverse effects.
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Significance Statement

PMP is a regulatory approved antiseizure drug used for refractory partial-onset and generalized tonic-clonic seizures that acts
as a selective negative allosteric modulator of AMPARs. Here, we demonstrate that PMP inhibits KARs, a second family of
ionotropic glutamate receptors, in addition to AMPARs. NAM activity on KARs required GluK5 subunits or Neto auxiliary
subunits as channel constituents. KAR inhibition, therefore, could contribute to PMP antiseizure action or the adverse effects
that are significant with this drug. Drug discovery aimed at more selective allosteric modulators that discriminate between
AMPARs and KARs could yield next-generation drugs with improved therapeutic profiles for treatment of epilepsy.

Introduction
Epilepsy is a common, chronic neurologic syndrome character-
ized by spontaneous recurrent seizures caused by hyperexcitabil-
ity and synchronization in localized or diffuse brain circuits.
Antiseizure drugs (ASDs) suppress the initiation and propaga-
tion of seizures through dampening neuronal excitability, reduc-
ing excitatory neurotransmission, or enhancing inhibitory tone
(Sills and Rogawski, 2020). A significant fraction of patients, esti-
mated at ;35%, remain refractory to seizure management with

existing ASDs (Chen et al., 2018), highlighting the importance of
identifying new drugs that preclude seizure generation and prop-
agation (Golyala and Kwan, 2017). Perampanel (PMP; 2-(2-oxo-
1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile);
Hanada et al., 2011) is a third-generation ASD that received
regulatory approval in 2012 as an adjunct for refractory focal-
onset seizures and treatment of generalized-onset tonic-clonic
seizures. PMP also has mechanism-based adverse effects, how-
ever, that include dizziness, somnolence, ataxia, and psychiat-
ric symptoms that occur in roughly the same dose range as its
antiseizure activity (Zaccara et al., 2013; Rugg-Gunn, 2014;
Zhuo et al., 2017; Villanueva et al., 2022).

The antiseizure activity of PMP is thought to arise through
negative allosteric modulation of one subfamily of ionotropic
glutamate receptors (iGluRs), the a-amino-3-hydroxy-S-methyl-
isoxazole-4-propionic acid receptors (AMPARs; Hanada et al.,
2011; Ceolin et al., 2012; Chen et al., 2014). AMPARs mediate
fast excitatory neurotransmission in the central and peripheral
nervous systems, and their inhibition by PMP dampens neuronal
excitability and reduces synchronized firing of neural networks
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(Rogawski, 2013). PMP has more favorable pharmacokinetic
properties than other AMPAR-negative allosteric modulators
(NAMs) such as talampanel (GYKI-53773; Zaccara et al.,
2013; Patsalos, 2015), which in part could account for its suc-
cessful development as an ASD (Rogawski, 2011).

PMP was reported to be a selective AMPAR NAM that did
not inhibit NMDA or kainate receptors (KARs), the other two
subfamilies of functional iGluRs (Hanada et al., 2011; Ceolin et
al., 2012; Chen et al., 2014; Fukushima et al., 2020). The pharma-
cological selectivity of PMP was established in analyses of neuro-
nal AMPA, NMDA, and kainate receptor function in cultured
neuron and acute brain slice preparations (Hanada et al., 2011;
Ceolin et al., 2012; Chen et al., 2014; Barygin, 2016) and in
recordings from recombinant expressed iGluRs (Fukushima
et al., 2020). The binding site for PMP on AMPARs was localized
to key subunit domains that transduce conformational changes
in the agonist-binding domains (ABDs) to the channel pore,
thereby driving the gating transition from a closed to open state
(Yelshanskaya et al., 2016). This binding pocket is also the site of
action of other AMPAR NAMs such as GYKI-53655 and CP-
465,022 (Lazzaro et al., 2002; Balannik et al., 2005; Hanada et al.,
2011; Yelshanskaya et al., 2016), which are thought to inhibit re-
ceptor activation by restricting conformational changes underly-
ing channel gating (Balannik et al., 2005).

We tested the hypothesis that PMP inhibits KARs in addi-
tion to AMPARs because the structure of PMP in complex
with the GluA2 AMPA receptor subunit revealed that most
of the residues that form the binding pocket are conserved in
the GluK4 and GluK5 KAR subunits (Yelshanskaya et al.,
2016). Moreover, a previous study that tested PMP inhibition
of recombinant KARs focused solely on homomeric GluK2
receptors (Fukushima et al., 2020). Here, we report that PMP
acts as a NAM of heteromeric KARs that incorporate the
GluK5 subunit and that inhibition occurs in the same con-
centration range as AMPA receptors. Two populations of
neuronal KARs were also inhibited by PMP, which diverges
in part from data reported previously (Ceolin et al., 2012).
GluK5 mRNA is expressed throughout the CNS (Watanabe-
Iida et al., 2016; Selvakumar et al., 2021), and neuronal KARs
are known to incorporate this subunit (Contractor et al.,
2003; Vernon and Swanson, 2017), suggesting that a majority
of KARs in the brain will be inhibited at therapeutic doses
of PMP. We conclude that PMP inhibits both recombinant and
neuronal KARs and therefore is not a selective AMPAR NAM.
Thus, antiseizure and adverse effects of PMP in patients could
arise from differential or tandem inhibition of AMPARs and
KARs.

Materials and Methods
Cell culture and transfection. Plasmid DNAs containing the coding

sequence for human KAR subunits GluK1–1b (catalog #NM_000830.4),
GluK2a (catalog #NM_021956.4), GluK3a (catalog #NM_000831.3),
GluK5 (catalog #NM_002088.4), mouse auxiliary protein Neto1 (catalog
#NP_659195.3), rat auxiliary protein Neto2 (catalog #NM_001107417.3),
and rat AMPA receptor subunit GluA4(i) (flip variant, catalog
#NM_017263.2) were transiently expressed in HEK293-T/17 cells
[American Type Culture Collection (ATCC) Global Bioresource
Center] for use in voltage-clamp recordings. The human GluK2a
isoform was used as a template to generate the GluK2(N557D) mu-
tant, and the human GluK5 plasmid was used to generate GluK5
(D540N). Mutations were made using a PCR-based approach and
confirmed by sequencing of the open reading frames by the Northwestern
University Sanger Sequencing Facility. HEK293-T/17 cells were cultured
in DMEM (Corning Cellgro), supplemented with 10% heat-inactivated

fetal bovine serum (GeminiBio), and 0.5% penicillin/streptomycin
(Corning Cellgro) at 37°C with 5% CO2. HEK293-T/17 cells were
transfected with TransIT-LT1 (Mirus Bio) according to the protocol
of the manufacturer. Receptor plasmid DNAs were cotransfected
with an enhanced green fluorescent protein (EGFP) and the transfection
ratio was 1:6 for EGFP and GluK1; 1:3:0.5 for GluK1, GluK5, and EGFP;
1:3:0.5 for GluK1, Neto1 or Neto2, and EGFP; and 1:3:3:1 for GluK1,
GluK5, Neto2, and EGFP cDNAs, respectively. Those ratios were applied
similarly for GluK2 or GluK3 containing receptors.

DRG dissection and acute cell isolation. All animals used in these
studies were treated according to protocols approved by the Institutional
Animal Care and Use Committee of Northwestern University, which
were consistent with standards of care established by the Guide for the
Care and Use of Animals, eighth edition, published by the National
Institutes of Health in 2011. Dorsal root ganglia (DRGs) were collected
from neonatal male and female C57BL/6 mice (postnatal day 1–8),
and DRG neurons were isolated as described previously (Vernon
and Swanson, 2017). In brief, animals were anesthetized with iso-
flurane and decapitated. Lumbar DRGs were collected and digested at
37°C in 1mg/ml collagenase A/D (Roche) and 0.4mg/ml activated papain
(Roche). DRGs were plated to poly-L-lysine-coated glass coverslips in
DMEM (Corning Cellgro) containing 10% fetal bovine serum (GeminiBio)
and 0.5% penicillin/streptomycin (Corning Cellgro).

Slice preparation. For mossy fiber EPSC recordings, transverse hori-
zontal brain slices (350mm) were prepared from 2- to 4-week-old male
and female C57BL/6 mice with Leica VT1200S vibratome (Leica
Biosystems). Animals were anesthetized and decapitated. The brain
was rapidly removed under ice-cold oxygenated sucrose-slicing
ACSF containing 85 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25
mM NaHCO3, 25 mM glucose, 75 mM sucrose, 10 mM DL-APV, 100 mM

kynurenate, 0.5 mM Na L-ascorbate, 0.5 mM CaCl2, and 4 mM MgCl2,
equilibrated with 95%O2/5%CO2. Slices were incubated at 28°C for
30min and slowly exchanged from oxygenated sucrose-ACSF for
oxygenated ACSF solution containing 125 mM NaCl, 2.4 mM KCl, 1.2
mM NaH2PO4, 25 mM NaHCO3, 25 mM glucose, 10 mM DL-APV, 100
mM kynurenate, 0.5 mM Na L-ascorbate, 1 mM CaCl2, and 2 mM

MgCl2.
Electrophysiology. Glutamate-evoked currents were recorded from

transfected HEK293-T/17 cells and acutely isolated DRG neurons in
whole-cell voltage clamp. Recordings were performed 1–3 d after trans-
fection or between 4 and 10 h after isolation of DRG neurons. The exter-
nal solution contained the following (in mM): 150 NaCl, 2.8 KCl, 2
CaCl2, 1 MgCl2, 10 glucose, and 10 m HEPES (pH adjusted to 7.3 with
NaOH). The internal solution used in recordings from transfected cells
was composed of the following (in mM): 110 CsF, 30 CsCl, 10 Cs-
HEPES, 5 EGTA, 4 M NaCl, and 0.5 CaCl2 (pH adjusted to 7.3 with
CsOH). For recordings from DRG neurons, the internal solution con-
tained the following (in mM): 95 CsF, 25 CsCl, 10 Cs-HEPES, 10 Cs-
EGTA, 2 Na Cl, 2 Mg-ATP, 10 QX-314, 5 TEA-Cl, and 5 4-AP (pH
adjusted to 7.3 with CsOH). Cells were held at �70mV in voltage
clamp with an Axopatch 200B amplifier (Molecular Devices), and glu-
tamate was applied for 100ms or 1 s as noted with a three-chambered
flowpipe attached to a Siskiyou MXPZT-300 solution switcher af-
ter lifting the transfected cells from the coverslip into the laminar
solution streams. Glutamate-evoked control currents in the ab-
sence of PMP were recorded before and after wash-out of PMP
from the external solution. Control glutamate concentrations
were 30 mM glutamate for GluK3-containing KARs and 10 mM for
other receptor combinations. Data were analyzed with Clampfit
version 11.0.3 (Molecular Devices).

Recordings from mouse brain slices were conducted at least 2 h after
slice preparation. Individual slices were transferred to a recording cham-
ber, continuously perfused with oxygenated ACSF containing 2 mM

CaCl2 and 1 mM MgCl2 at 30°C. Whole-cell voltage-clamp recordings
were performed from pyramidal neurons in the hippocampal CA3 area
using a MultiClamp 700B patch-clamp amplifier (Molecular Devices).
CSF internal solution was composed of the following (in mM): 95 CsF,
25 CsCl, 10 Cs-HEPES, 10 Cs-EGTA, 2 NaCl, 2 Mg-ATP, 10 QX-314,
and 5 TEA-Cl, 5 4-AP (pH adjusted to 7.3 with CsOH). Mossy fiber
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EPSCs were evoked by electrical stimuli generated by an 310 Accupulser
(World Precision Instruments). Stimulation electrodes filled with ACSF
were positioned in the stratum lucidum. Mossy fiber EPSCs were evoked
in the presence of picrotoxin (50 mM) and D-AP5 (50 mM) at a frequency
of 1Hz. EPSCKAR amplitudes were measured 20ms after the peak of the
compound synaptic current in the presence of 0.5 mM NBQX. Trains of
EPSCs also were evoked with five stimuli at 100Hz every 20 s; ampli-
tudes of EPSCKAR were measured 100ms after the final peak current.

Chemicals. All chemicals except D-AP5 (Hello Bio), DL-AP5 (Hello
Bio), picrotoxin (Ascent Scientific), GYKI-53655 (Abcam), and peram-
panel (Cayman Chemical) were purchased from MilliporeSigma.
Perampanel was dissolved in DMSO. The highest concentration of DMSO
used in the recordings was 0.3%.

Experimental design and statistical analysis. A target number of
recordings for each group was specified; the final numbers varied
because of imposition of criteria such as maximal rise time of currents.
In some cases, additional data were collected because variation in
measured parameters was unexpectedly large or because imposition
of criteria reduced the recordings in a group to an unacceptably low
number. Summary data are expressed as mean and SD, and confi-
dence intervals are shown in Table 1. Inhibition-response curves
were fit to normalized data with the equation Y = 100/(1 1 (IC50/X)
^nH), where nH is the Hill slope, with constrained plateaus at 100
(no inhibition) and 0 (complete inhibition), consistent with our ob-
servation that PMP fully eliminated currents in those KAR combi-
nations where it was possible to measure this parameter. Model
fitting and statistical tests were performed in GraphPad Prism 9
software. Best-fit curves to the inhibition-response data were com-
pared using an extra sum-of-squares F test in GraphPad. Mossy
fiber EPSCKAR data were analyzed by one-way ANOVA followed by
Dunnett’s multiple comparisons test (1Hz data) or an unpaired t test
(100Hz data).

Results
Structural basis for iGluR selectivity
We initially sought to understand the molecular basis of PMP se-
lectivity for AMPA receptors. The PMP binding site on GluA2
AMPAR subunits is positioned between the clamshell-like ABDs
and transmembrane (TM) helices that form the channel pore
(Fig. 1A; Yelshanskaya et al., 2016; Narangoda et al., 2019;
Stenum-Berg et al., 2019). Each subunit in a tetrameric AMPAR
contains a PMP binding pocket, which is formed by residues in
the pre-M1 linker and M3 and M4 TM helices (Fig. 1A,B;
Yelshanskaya et al., 2016). The sequence alignment shown in
Figure 1C illustrates putative interacting residues identified in
the x-ray crystal structure (blue circles) and in molecular dy-
namics (MD) simulations (purple circles) in two domains
(Yelshanskaya et al., 2016; Narangoda et al., 2019). Although
the primary sequences of GluA2 and the KAR subunits
GluK1–5 are highly conserved in these regions, notable excep-
tions occur within the set of PMP binding residues that likely
underlie NAM activity on AMPARs. Binding site residues in
M3 are not shown because they are identical between AMPAR
and KAR subunits. The principal KAR subunits GluK1–3
diverge from GluA2 at binding site residues Ser510, Lys511,
and Asp519 in the pre-M1 domain and Ser788 in M4 (posi-
tions numbered as per the mature GluA2 subunit; analogous
residues in KAR subunits are numbered according to their
full-length position in Fig. 1). The GluK3 KAR subunit differs
from GluA2 and all four other KAR subunits at Gly513 and
Asn791. Notably, the high-affinity KAR subunits GluK4 and
GluK5 differ from GluK1–3 but are identical to GluA2 at two
critical residues, Lys511 and Asp519 (Fig. 1C, blue boxes in
the alignment; Yelshanskaya et al., 2016; Narangoda et al.,
2019; Stenum-Berg et al., 2019), raising the possibility that

these two subunits confer PMP sensitivity to heteromeric
KAR subunits.

PMP actions on recombinant KARs
We tested the hypothesis that PMP inhibits KARs in voltage-
clamp recordings from recombinant homomeric and hetero-
meric KARs expressed in HEK293-T/17 cells (Fig. 2). Glutamate
was rapidly applied to receptor-expressing cells in the absence
and presence of PMP (0.03–30 mM; Fig. 2A). The amplitudes of
currents gated by homomeric KARs composed of either GluK1,
GluK2, or GluK3 subunits were modestly reduced by a high con-
centration of PMP (10 mM); Fig. 2A), which is consistent with an
earlier study in which PMP failed to inhibit homomeric GluK2
receptors in patch-clamp recordings (Fukushima et al., 2020).
The same concentration of PMP inhibited heteromeric GluK1/
GluK5 and GluK2/GluK5 KARs to a much greater extent than
their homomeric counterparts. GluK3/GluK5 KARs current
amplitudes, on the other hand, appeared only slightly more
reduced on average than homomeric GluK3 KARs (Fig. 2A). We
measured PMP inhibition of each receptor combination at con-
centrations ranging from 30 nM to 30 mM and fit the data with
logistic curves to determine IC50 values (Fig. 2B). Homomeric
KARs were poorly fit as a result of only partial inhibition at the
highest concentration tested. These data revealed that incorpora-
tion of GluK5 subunits decreased the IC50 for GluK1 and GluK2
KARs but had only a modest effect on GluK3 KARs (IC50 values
on KARs composed of the indicated subunits; GluK1, 19 mM;
GluK1/GluK5, 2.8 mM; GluK2, 26 mM; GluK2/GluK5, 0.85 mM;
GluK3, 41 mM; GluK3/GluK5, 14 mM; Table 1). Hill slopes ranged
from 0.71 to 1.4 with the exception of GluK3/GluK5, which had
a shallow slope of 0.42 and was not inhibited fully at 30 mM.
GluK1/GluK5 and GluK2/GluK5 KARs were inhibited in a con-
centration range similar to that of AMPA receptors (Hanada et
al., 2011; Fukushima et al., 2020) as the inhibition-response curve
for GluA4(i) AMPA receptors also demonstrates (IC50 of 0.56
mM, Hill slope of 0.80; Fig. 2B). Collectively, these results are

Table 1. IC50 Values for PMP inhibition of KARs

Receptor
IC50 mean
(mM) (SD)

Confidence
interval (mM) p Value

GluK1 19 6 5.3 13–33
GluK2 26 6 9.8 17–56
GluK3 41 6 5.7 34–56
GluK1/GluK5 2.8 6 0.32 2.2–3.5 ,0.0001a

GluK2/GluK5 0.85 6 0.09 0.69–1.0 ,0.0001a

GluK3/GluK5 14 6 7.5 7.3–37 0.03a

GluK1/Neto1 11 6 4.1 6.9–23 0.13a

GluK1/Neto2 19 6 4.3 13–29 0.94a

GluK2/Neto1 5.4 6 0.94 3.9–7.6 ,0.0001a

GluK2/Neto2 5.8 6 0.84 4.4–7.7 ,0.0001a

GluK1/GluK5/Neto2 0.99 6 0.15 0.73–1.3 ,0.0001b

GluK2/GluK5/Neto1 0.69 6 0.16 0.45–1.1 0.001b

GluK2(N557D) 2.8 6 0.32 2.2–3.5 ,0.0001c

GluK2(N557D)/GluK5 1.1 6 0.28 0.72–1.8 0.19c

GluK2/GluK5(D540N) 3.0 6 0.43 2.3–4.0 ,0.0001c

GluA4(i) 0.56 6 0.12 0.36–0.85 0.51d

DRG neurons 11 6 1.0 9.4–13
Mossy fiber EPSCKAR 2.9 6 0.76 1.9–4.9

Statistical comparisons between IC50 values derived from best fits to the inhibition-response data were made
pairwise using the extra sum-of-squares F test.
aHeteromeric receptors compared against their homomeric counterparts.
bNeto-containing heteromeric receptors compared against their Neto-less counterparts.
cMutant receptors compared against their wild-type counterparts.
dGluA4(i) AMPA receptors compared against GluK2/GluK5/Neto1 KARs.
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consistent with a strong subunit-dependency of PMP NAM ac-
tivity on KARs.

Neto1 and Neto2 auxiliary proteins alter KAR function and
pharmacology in a variety of ways dependent on the precise sub-
unit composition of the receptors (Copits et al., 2011; Straub et
al., 2011a,b; Fisher and Mott, 2013) and are constituents of neu-
ronal KARs (Straub et al., 2011a; Wyeth et al., 2014; Vernon and
Swanson, 2017). Residues near the putative PMP binding site in
homomeric and heteromeric KARs appear critical for modula-
tion of channel kinetics by Neto2 (Griffith and Swanson, 2015).
Accordingly, we tested the hypothesis that incorporation of Neto
auxiliary proteins alters PMP NAM activity on homomeric and
heteromeric KARs in recordings from GluK1/Neto1, GluK2/
Neto1, GluK1/Neto2, and GluK2/Neto2 KARs (Fig. 3A) and a
pair of heteromeric receptor/auxiliary protein combinations pre-
dicted to be similar in composition to KARs expressed by sen-
sory neurons in DRGs (GluK1/GluK5/Neto2; Mulle et al., 2000;
Vernon and Swanson, 2017) and at CA3 pyramidal cell mossy
fiber synapses (GluK2/GluK5/Neto1; Mulle et al., 2000; Fernandes
et al., 2009; Straub et al., 2011b; Fig. 3A).

These data revealed an unexpected divergence in the effect of
Neto assembly with GluK1-containing receptors and those with
GluK2 subunits. As shown in the representative traces in Figure
3A (at 10 mM PMP), neither Neto1 nor Neto2 altered NAM

inhibition of homomeric GluK1 KARs (IC50 values, GluK1, 19
mM; GluK1/Neto1, 11 mM; GluK1/Neto2, 19 mM; Fig. 3B), whereas
both auxiliary proteins modestly increased sensitivity of
homomeric GluK2 KARs (IC50 values, GluK2, ;26 mM;
GluK2/Neto1, 5.4 mM; GluK2/Neto2, 5.8 mM). Neither Neto1
nor Neto2 enhanced the PMP sensitivity beyond that con-
ferred by GluK5 in heteromeric receptors that mimic those
in DRG neurons (GluK1/GluK5/Neto2; IC50 = 0.99 mM) or
hippocampal CA3 pyramidal neurons (GluK2/GluK5/Neto1;
IC50 = 0.69 mM; Fig. 3A,B).

We next tested the relevance of a key pre-M1 residue to dif-
ferential PMP actions on GluK2 and GluK5 subunits. Aspartate
519 (GluA2 numbering; Asn557 in GluK2 and Asp540 in GluK5;
Yelshanskaya et al., 2016) is essential for inhibition of AMPA
receptors by the NAM CP-465 022 (Balannik et al., 2005), which
overlaps with PMP in its binding site on GluA2 subunits
(Yelshanskaya et al., 2016). GluK2 KAR subunits mutated to
include an aspartate at this position in place of the encoded as-
paragine were inhibited by CP-465 022, unlike wild-type homo-
meric GluK2 receptors (Balannik et al., 2005). To determine
whether the same residue plays a role in PMP inhibition of
KARs, we recorded from receptors composed of GluK2
(N557D) and GluK5(D540N) subunits. Homomeric GluK2
(N557D) KARs were substantially inhibited by 10 mM PMP

C pre-M1 M1

M4

GluA2 KTSALSLSNVAGV 795*
GluK1 EASALGVENIGGI 838
GluK2 EASALGVQNIGGI 823
GluK3 EASALGIQKIGGI 824
GluK4 RAKGLGMENIGGI 808
GluK5 RAKGLGMENIGGI 807

GluA2 SKPGVFSFLDPLAYE 524*
GluK1 TNPGVFSFLNPLSPD 577
GluK2 TNPGVFSFLNPLSPD 562
GluK3 TNPSVFSFLNPLSPD 564
GluK4 RKPGYFSFLDPFSPG 546
GluK5 RKPGYFSFLDPFSPA 545

N791
D519

M3

M1

pre-
M1

M4

PMP
S788

A BA

NTD

ABD

TMD

in

out

Figure 1. PMP binding site and sequence comparison. A, Tetrameric structure of the homomeric GluA2 AMPAR docked with PMP (c:5L1F; Yelshanskaya et al., 2016). Subunit proteins consist
of N-terminal domains (NTDs), ABDs, and transmembrane domains (TMD). The intracellular carboxy-terminal was not resolved. PMP was localized to a binding pocket between the linker region
and the external segments of TMDs (boxed region). B, The PMP binding site in homomeric GluA2 AMPAR (boxed region in A). Interacting residues that differ in one or more KAR subunit are la-
beled and are D519 in the pre-M1 linker, S788 in the pre-M4 linker, and N791 in the M4 transmembrane helix. C, Sequence alignment between PMP-binding domains in GluA2 and the analo-
gous segments in each KAR subunit. Blue circles identify residues likely to interact with PMP in the x-ray crystal structure (Yelshanskaya et al., 2016); purple circles show additional residues
that interact with PMP in multiple poses from MD simulations (Narangoda et al., 2019) or inferred from mutagenesis experiments (Stenum-Berg et al., 2019). GluA2 numbering is the mature
protein (indicated by the “p”), whereas KAR subunits are numbered as per the full sequence. The M3 domain is omitted because the primary sequence is identical in AMPAR and KAR subunits.
Binding site residues that diverge between subunits are shaded. GluA2 and identical residues in KAR subunits are shaded in blue. Red shading shows positional divergence in one or more KAR
subunits. The gray boxes at S510 (GluA2 numbering) in GluK4 and GluK5 show divergence from both GluA2 and GluK1–3 KAR subunits.
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(Fig. 4A,B) to a much greater degree than wild-type GluK2
KARs (Fig. 2A), suggesting that the asparagine at this position
in GluK2 is principally responsible for preventing inhibition
of homomeric GluK2 receptors. Heteromeric GluK2(N557D)/
GluK5 were inhibited by PMP to roughly the same extent as wild-
type GluK2/GluK5 receptors (Fig. 4A,B). We also recorded from
heteromeric GluK2/GluK5(D540N) receptors to test the
importance of the analogous residue in GluK5 in generating
PMP sensitivity. These receptors exhibited an intermediate
degree of PMP inhibition between homomeric GluK2 and het-
eromeric GluK2/GluK5 receptors (Fig. 4A,B). IC50 values for
these receptors were the following: GluK2(N557D), 2.8 mM;
GluK2(N557D)/GluK5, 1.1 mM; and GluK2/GluK5(D540N), 3.0
mM (Fig. 4B, Table 1). These data implicate Asp557 as a

principal determinant that occludes
PMP inhibition of homomeric GluK2
receptors. Conversely, mutation of Asp540
in GluK5 does not abrogate PMP activity,
and therefore other residues contribute to
NAM binding to KAR receptors contain-
ing this subunit.

PMP inhibition of neuronal KARs
Our data suggest that neuronal KARs
containing the GluK5 subunit will be
sensitive to inhibition by PMP. We
tested this hypothesis by examining
the effect of PMP on well-character-
ized neuronal receptors expressed by
nociceptive DRG neurons and those
localized to hippocampal mossy fiber–
CA3 pyramidal neuron synapses; KARs
in both populations contain GluK5 and
either Neto2 (DRGs) or Neto1 (mossy
fibers; Mulle et al., 2000; Contractor
et al., 2003; Straub et al., 2011a;
Vernon and Swanson, 2017).

The sensitivity of DRG KARs to
PMP was determined in voltage-clamp
recordings of glutamate-evoked currents
from small- to medium-diameter neu-
rons acutely isolated from lumbar DRGs
of neonatal mice. iGluR currents in
DRG neurons at this age arise solely
from KARs (Huettner, 1990; Mulle et
al., 2000), allowing a straightforward
analysis of PMP NAM activity on
neuronal KARs. PMP (30 mM) inhibited
glutamate-evoked currents in DRG neu-
rons, as predicted from the results of
recombinant receptors, whereas GYKI-
53655 exhibited very little NAM activity
at the same concentration (Fig. 5A). The
peak amplitude of glutamate-evoked
currents was reduced by 77.66 4.6% by
PMP and 10.2 6 4.4% by GYKI-53655
(both at 30 mM, n=12 and 10, respec-
tively). Fitting of data over a range of
concentrations yielded an estimated IC50

of 11.2 mM for PMP (Fig. 5B, Table 1).
We examined whether PMP decreases

the KAR-mediated EPSCs (EPSCKAR) at
mossy fiber synapses. Postsynaptic KAR
currents were elicited with 1Hz stimuli,

as described previously (Ito et al., 2004; Fernandes et al., 2009).
AMPA receptors were inhibited selectively with a low concentration
of NBQX (0.5 mM) in the extracellular solution (Perrais et al., 2009).
We chose this approach rather than targeting AMPARs with GYKI-
53655 because the binding site for this NAM overlaps that of PMP
(Hanada et al., 2011; Yelshanskaya et al., 2016). KAR current ampli-
tudes were measured at 20ms after the peak of the EPSCs during
1Hz stimulation to avoid any residual contribution by AMPARs
(Fig. 6A). As shown in the representative traces, PMP (30 mM)
almost eliminated the EPSCKAR, whereas currents in the presence of
GYKI-53655 ran down to an equivalent degree as the vehicle control
(DMSO) condition (Fig. 6A,B). PMP inhibition also was observed
when we evoked mossy fiber EPSCs with a train of five stimuli at
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Figure 2. PMP inhibition of recombinant homomeric and heteromeric KARs. A, Representative currents from recombinant
homomeric and heteromeric KARs. Currents were evoked by glutamate for 100 ms either alone (black lines) or in the presence of
PMP (10 mM, colored lines). Top, The gray bar denotes glutamate application. The current amplitudes of heteromeric GluK1/GluK5
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100Hz in the absence of NBQX (Fig. 6A); the slow decay of the cur-
rents after the last stimuli is predominantly carried by synaptic
KARs and is minimally altered by GYKI-53655. EPSCKAR at 1Hz
stimulation were reduced in a concentration-dependent manner by
1, 10, and 30 mM PMP (Fig. 6B). EPSCKAR commonly exhibits a
slow run down in amplitude of ;20% over 10min of recording,
which is apparent in the DMSO control and GYKI-53655 time
courses shown in Figure 6B. The concentration dependence of
inhibition for currents evoked by 1Hz stimulation in the pres-
ence of NBQX (Fig. 6C) yielded an estimated IC50 value of 2.9
mM (Table 1), which is comparable to the values observed with the
recombinant GluK5-containing heteromeric receptors. KAR

synaptic currents evoked by five stimuli at 100Hz were elimi-
nated by PMP but only partially reduced by GYKI-53655
(each at 30 mM) in the absence of NBQX (Fig. 6C). These data
demonstrate that PMP inhibits KARs at mossy fiber–CA3 py-
ramidal cell synapses.

Discussion
We demonstrate here that perampanel inhibits KARs in addition
to AMPARs and that NAM activity on KARs requires either the
GluK5 subunit or one of the Neto auxiliary proteins as a channel
constituent. The broad expression of GluK5 mRNA in neurons
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C

Figure 3. PMP inhibition of KARs containing Neto1 or Neto2 auxiliary subunits. A, Representative currents from recombinant homomeric and heteromeric KARs containing either Neto1 or
Neto2 auxiliary proteins (GluK1, top; GluK2, bottom). Currents were evoked by glutamate either alone (black lines) or in the presence of PMP (10 mM, colored lines) for either 1 s (GluK1/Neto2)
or 100 ms (others). Top, The gray bar denotes glutamate application. GluK2/Neto1 and GluK2/Neto2 KARs were inhibited to a greater extent than GluK1 receptors with either Neto1 or Neto2.
B, Normalized mean amplitudes of currents evoked from GluK1 and GluK1/GluK5 KARs with and without Neto proteins at a range of PMP concentrations were best fit with logistic curves with
variable IC50 and Hill slopes. The data and fitted curves for GluK1 and GluK1/GluK5 KARs are identical to those in Figure 2 and are shown for the sake of comparison. IC50 values, 95% confidence
intervals, and statistical analyses are shown in Table 1. C, Normalized mean amplitudes of currents evoked from GluK2 and GluK2/GluK5 KARs with and without Neto proteins at a range of
PMP concentrations were best fit with logistic curves with variable IC50 and Hill slopes. The data and fitted curves for GluK2 and GluK2/GluK5 KARs are identical to those in Figure 2 and are
shown for the sake of comparison. IC50 values, 95% confidence intervals, and statistical analyses are shown in Table 1.
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throughout the CNS suggested that most KARs will be suscepti-
ble to PMP inhibition (Bahn et al., 1994), and indeed that proved
to be the case for KARs localized to hippocampal synapses (Castillo
et al., 1997; Contractor et al., 2003) and in lumbar DRG neurons

(Huettner, 1990; Vernon and Swanson,
2017). PMP is efficacious for treatment of
focal and generalized tonic-clonic seizures;
however, a black-box warning for suicidal
ideation and psychiatric disturbances is asso-
ciated with PMP because of severe adverse
effects in some patients (Rugg-Gunn, 2014;
Zhuo et al., 2017; Villanueva et al., 2022).
Our findings raise the possibility that thera-
peutic and adverse effects of PMP arise
differentially from inhibition of either
AMPA or kainate receptors or because
signaling by both types of receptors is
suppressed.

Our data show that AMPARs are not the
sole molecular target for PMP. Recombinant
KARs were insensitive to PMP in a previous
study based on patch-clamp recordings
from homomeric GluK2 KARs (Fukushima
et al., 2020), and we similarly observed that
homomeric GluK2 KARs were relatively
insensitive to PMP. However, KARs com-
posed solely of GluK2 subunits (or solely
of GluK1 or GluK3) are unlikely to be
highly represented in the CNS neurons
(Selvakumar et al., 2021). The GluK5
subunit is widely expressed across the
CNS (Bahn et al., 1994; Selvakumar et
al., 2021), and a variety of receptor popu-
lations exhibit more complex stoichio-
metries in functional and molecular
studies (Mulle et al., 2000; Christensen
et al., 2004; Fernandes et al., 2009;
Selvakumar et al., 2021). PMP inhibition
of heteromeric KARs containing GluK5
subunits or Neto auxiliary proteins in
the same concentration range as AMPA
receptors suggests that the drug will act
as a nonselective AMPA and kainate re-
ceptor NAM throughout the nervous
system.

PMP interacts with discrete residues in
AMPARs that are highly conserved in
KAR subunits (Yelshanskaya et al., 2016;
Narangoda et al., 2019). Our initial map-
ping of the binding site residues that
diverge between GluK2 and GluK5 cen-
tered on Asn557 of GluK2, which is
known to control differential inhibition of
AMPA and kainate receptors by CP-
465 022 (Balannik et al., 2005). Similarly,
GluK2 gained PMP sensitivity when
Asn557 was mutated to the aspartate
found in GluK5 and AMPAR subunits.
PMP binding within the GluA2 pocket
appears to be promiscuous based on the
variety of stable poses observed in simula-
tions (Narangoda et al., 2019), which
might underlie our observation that muta-
tion of the analogous Asp540 in GluK5 to

an asparagine did not completely eliminate PMP inhibition.
Molecular docking of PMP into a GluK2 cryo-EM structure
(PDB:5KUF) and comparison with GluK2(N557D) did not yield
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KARs containing mutations that swap the respective amino acids at a key binding site determinant (N557 in GluK2, D540 in
GluK5). Currents were evoked by glutamate (10 mM for 100 ms) either alone (black lines) or in the presence of PMP (10 mM,
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with logistic curves with variable IC50 and Hill slopes. The data and fitted curves for GluK2 and GluK2/GluK5 KARs are identical
to those in Figure 2 and are shown for the sake of comparison. IC50 values, 95% confidence intervals, and statistical analyses
are shown in Table 1. Reciprocal swaps at this site increased sensitivity of homomeric GluK2 KARs to PMP attenuated but did
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mechanistic insight into how this residue acts as a determinant
of PMP inhibition (data not shown). We also do not understand
how Neto proteins alter the binding domain to favor PMP inter-
actions for GluK2-containing receptors, even in the absence of
GluK5. The cryo-EM structures of GluK2 and Neto2 suggest that
the auxiliary protein is unlikely to directly contact gating linkers
(He et al., 2021); however, alteration of the M3-S2 linker changes
the efficacy of Neto2 modulation (Griffith and Swanson, 2015),
perhaps indirectly as a result of Neto2 interactions with adjacent
membrane and ligand-binding domains.

PMP inhibited central and peripheral neuronal KARs.
Hippocampal mossy fiber–CA3 pyramidal EPSCKAR typically is
differentiated from AMPA receptors in ex vivo recordings using
the AMPA receptor-selective NAM GYKI-53655 or the AMPA/
kainate receptor NAM GYKI-52466. However, these compounds
and PMP have overlapping binding sites on AMPA receptors
(Barygin, 2016; Yelshanskaya et al., 2016), which is likely the case
for KARs as well (Balannik et al., 2005). We circumvented the
confounding actions of overlapping NAMs by instead isolating
the EPSCKAR with two approaches. First, we measured a KAR-
enriched synaptic current in the presence of a low concentration
of the competitive AMPA receptor antagonist NBQX and by
measuring the effect of PMP 20 ms after peak current amplitude,

as was done previously (Perrais et al., 2009). Second, we measured
the EPSCKAR after a brief, high-frequency train of stimulation at a
time point when the AMPA receptor component decayed to base-
line. The experiments definitively show that mossy fiber EPSCKAR

is inhibited by low micromolar concentrations of PMP but not
GYKI-53655 (Fig. 6; Paternain et al., 1995; Castillo et al., 1997).
Our observations diverge, however, from a study in which the
KAR component of mossy fiber EPSPs was insensitive to PMP
(Ceolin et al., 2012). We speculate that the different experiment
outcomes can be reconciled because KAR-mediated EPSPs recorded
previously were isolated pharmacologically using a high con-
centration of GYKI-52466 that competed for binding to synap-
tic KARs and thereby occluded further inhibition by PMP.

PMP also inhibited KARs in nociceptive DRG neurons.
Acutely isolated, small-diameter neonatal DRG and trigeminal
ganglia neurons are the only known cell type in which gluta-
mate-evoked currents arise exclusively from KARs (Huettner,
1990; Sahara et al., 1997), making these neurons of particular use
in validating the action of PMP as an inhibitor. PMP reduced
glutamate-evoked currents in neonatal DRG neurons with an
IC50 of ;11 mM (Fig. 5), whereas GYKI-53655 was ineffective,
again consistent with the expression of GluK1/GluK5 and Neto2
in a subset of DRG and trigeminal neurons (Huettner, 1990;
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Sahara et al., 1997; Mulle et al., 2000; Vernon and Swanson,
2017). KARs have been implicated in nocifensive behaviors in
preclinical pharmacological and genetic models of neuropathic
and inflammatory pain (Simmons et al., 1998; Dominguez et al.,
2005; Ko et al., 2005; Qiu et al., 2011; Bhangoo and Swanson,
2013), migraine (Filla et al., 2002; Andreou et al., 2009, 2015),
and itch-induced scratching (Descalzi et al., 2013). Moreover,
antagonists with mixed AMPA and GluK1-containing KARs
showed efficacy for alleviation of pain in Phase I clinical trials
before drug development programs were terminated (Gilron et
al., 2000; Sang et al., 2004). Thus, PMP antagonism of KARs on
sensory neurons or nociceptive pathways could in part underlie
the analgesic actions of the drug and potential efficacy in pain
management (Khangura et al., 2017; Hara et al., 2020) or in alle-
viation of itch (Haruta-Tsukamoto et al., 2020).

The relevance of KAR inhibition to PMP antiseizure actions
remains to be elucidated. KAR activation with chemoconvulsants
that include the eponymous agonist kainic acid potently induces
seizures in rodents, and the resultant structural and pathologic
alterations reproduce many hallmark features of human temporal
lobe epilepsy (TLE; Ben-Ari, 1985; Ben-Ari and Cossart, 2000;
Rusina et al., 2021). Further dissection of the contribution of a spe-
cific type of KARs—those containing GluK1 subunits—have pro-
duced contradictory results, with antiepileptiform and antiseizure
efficacy observed with both GluK1-selective agonists (Khalilov
et al., 2002) and KAR antagonists (Smolders et al., 2002; Pinheiro
et al., 2013) in a variety of in vitro and in vivo rodent models.
Activation of hippocampal GluK2-containing KARs has been
implicated in seizure induction (Mulle et al., 1998; Yu et al., 2016)
and in maintenance of chronic seizure states (Epsztein et al., 2005;
Peret et al., 2014) in chemoconvulsant models of TLE. These and
other studies have provided strong evidence that KARs play com-
plex and model-dependent roles in the seizures elicited in some
(but not all) chemoconvulsant and electrical stimulation-induced
epileptiform behavior in rodents (Henley et al., 2021; Mulle and
Crépel, 2021).

The abundant preclinical observations linking KAR signaling
and rodent seizure models have not yet led to a framework for
understanding their importance to human epilepsies. In large
part this knowledge gap exists because KAR antagonists also in-
hibit AMPARs, with the exception of modestly selective GluK1-
targeting antagonists (Larsen and Bunch, 2011), which have not
been tested for antiseizure efficacy in randomized trials. It is
likely, however, that overactivation of human KARs causes a pa-
thology like that observed in rodent TLE models because con-
sumption of toxic levels of the high-affinity KAR agonist domoic
acid in contaminated mussels causes acute seizures, cognitive
deficits, gastrointestinal symptoms, and even death (Perl et al.,
1990; Teitelbaum et al., 1990). One individual developed focal
seizures with secondary generalization and an extensive loss
of hippocampal CA3 pyramidal neurons (Cendes et al., 1995).
More recently, severe intractable epilepsies were reported in chil-
dren with a de novo gain-of-function variant in the GRIK2 gene,
which encodes GluK2 subunits, suggesting that aberrant KAR
signaling can cause profound disruption of CNS development
(Stolz et al., 2021). The potential benefits to epilepsy patients of
inhibiting KARs, however, remain unknown, with one possible
exception. Topiramate, a regulatory approved ASD with a variety
of molecular targets, inhibits GluK1-preferring agonist-evoked
currents and seizures through indirect mechanisms that have not
been resolved (Gryder and Rogawski, 2003; Kaminski et al.,
2004). It remains to be determined whether topiramate and PMP
share a molecular basis for their antiseizure efficacy.

In conclusion, we demonstrate that PMP inhibits KARs con-
taining the GluK5 subunit or Neto auxiliary proteins and is
therefore not a selective AMPA receptor NAM. Our results raise
the possibility that KAR inhibition could underlie some aspects
of antiseizure or adverse effects associated with PMP use for epi-
lepsy. Drug discovery aimed at more selective NAMs that dis-
criminate between AMPARs and KARs could yield drugs with
an improved therapeutic profile.
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