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Abstract

Background: Congenital heart disease (CHD) is the most common anomaly at birth, with a 

prevalence of approximately 1%. While infants born to mothers with diabetes or obesity have a 

2–3-fold increased incidence of CHD, the cause of the increase is unknown. Damaging de novo 
variants (DNV) in coding regions are more common among patients with CHD, but genome-wide 

rates of coding and noncoding DNVs associated with these prenatal exposures have not been 

studied in patients with CHD.

Methods: DNV frequencies were determined for 1,812 patients with CHD who had whole 

genome sequencing and prenatal history data available from the Pediatric Cardiac Genomics 

Consortium’s CHD GENES study. The frequency of DNVs was compared between subgroups 

using t-test or linear model.

Results: DNV frequencies were compared for 1,812 patients with CHD and prenatal history data 

who were recruited to the Pediatric Cardiac Genomics Consortium’s CHD GENES study. The 

number of DNVs per CHD patient was higher with exposure to maternal diabetes (76.5 vs 72.1, 

t-test p-value 3.03x10-11), but the difference was no longer significant after including parental ages 

in a linear model (paternal and maternal correction p-value 0.42). No interaction was observed 

between diabetes risk and parental age (paternal and maternal interaction p-values 0.80 and 0.68, 

respectively). No difference was seen in DNV count per patient based on maternal obesity (72.0 vs 

72.2 for maternal BMI <25 vs maternal BMI >30, t-test p-value 0.86).

Conclusions: After accounting for parental age, the offspring of diabetic or obese mothers have 

no increase in DNVs compared with other children with CHD. These results emphasize the role 

for other mechanisms in the etiology of CHD associated with these prenatal exposures.
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Introduction

Congenital heart disease (CHD) is the most common anomaly at birth with a prevalence 

of approximately 6–13 in 1000 births1,2. CHD can be caused by a variety of genetic 

anomalies including aneuploidies, copy number variants (CNVs) and inherited or de novo 
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single nucleotide or small insertion/deletion variants (DNVs)3–8. DNVs are also associated 

with important outcomes for CHD patients such as the risk of neurodevelopmental delay and 

postoperative recovery3,8–10.

Offspring of obese11,12, hypertensive13, and diabetic mothers12,14 are more likely to have 

CHD than other infants. When attributable causes were identified for 1565 infants with 

CHD, maternal obesity was the most common modifiable risk factor15. The magnitude of 

increased risk is generally lower with obesity exposure than with diabetes exposure, though 

the two conditions often overlap. In a study of the National Birth Defects Prevention Study, 

CHD risk was elevated among overweight mothers regardless of gestational diabetes status, 

but the odds ratio (OR) for CHD was higher among mothers who also had gestational 

diabetes16. The mechanism(s) by which these prenatal exposures confer an increased risk 

of CHD remain unclear. As the prevalence of obesity and diabetes have risen in the past 

decade17,18, defining the precise cause of increased CHD risk in affected pregnancies has 

taken on additional urgency. Genetic risk may play a role, as mothers of children with 

conotruncal heart defects were more likely to have a high polygenic risk for type II diabetes 

than fathers19.

Extensive whole genome sequence of >1800 CHD trios (proband and parents) provides 

an opportunity to assess the contribution of DNVs, mediated by a variety of prenatal 

exposures, to congenital heart disease. We and others have demonstrated that each child 

has approximately 75 DNVs, coding and noncoding, not carried by their parents20,21. We 

hypothesized that if a prenatal exposure, such as maternal diabetes or obesity, increased the 

frequency of de novo mutations in the child, this increase should be reflected in the whole 

genome sequence of the trio.

First, we compared the prevalence of maternal gestational diabetes in mothers of CHD 

probands in the PCGC (Pediatric Cardiovascular Genomics Consortium)22 cohort of 

>10,000 CHD families. We also assessed the association between extracardiac anomalies 

and prenatal exposure to maternal diabetes or obesity in this cohort. We then determined if 

any of these prenatal exposures is associated with an increase in de novo single nucleotide or 

small insertion/deletion variants, by comparing CHD probands' whole genome sequence 

(WGS) to their parents' WGS. Additionally, we examined the association of prenatal 

exposures with extracardiac anomalies and presence of loss-of-function variants in known 

CHD genes.

Methods

CHD participants were recruited to the Congenital Heart Disease Network Study of 

the Pediatric Cardiac Genomics Consortium (CHD GENES: ClinicalTrials.gov identifier 

NCT01196182) as previously described23. All participants or their parents provided written 

informed consent using protocols that were reviewed and approved by institutional review 

boards at participating institutions. Whole genome sequence data used in this study has been 

deposited in the National Institutes of Health dbGaP resource. Researchers trained in human 

subject confidentiality protocols may request access to this data at dbgap.ncbi.nlm.nih.gov. 

Full methods are available in Supplemental Materials.
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Results

Prevalence of PCGC CHD probands who were born to diabetic or obese mothers

Of the 12,842 CHD patients enrolled in the PCGC22 with prenatal history, whole genome 

sequencing (WGS) data was available for 1,812 CHD trios (Supplemental Table I and 

Supplemental Data I). Maternal diabetes, pre-gestational or gestational, was reported in 188 

pregnancies. Maternal BMI was reported as >30 kg/m2 for 1605 pregnancies (259 with 

WGS data), and <25 kg/m2 for 7066 pregnancies (1075 with WGS data). For the overall 

cohort, as well as for all maternal ages 20 and above at time of birth, there was a 1.7–2.7 

fold increase in gestational diabetes (GDM) and a 2.9–8.7 fold increase in pre-gestational 

diabetes (PDM) among mothers in PCGC compared to age-matched US birth cohorts18,24 

(Table 1). Gestational diabetes and maternal obesity were both associated with an increased 

odds (1.39–1.57 fold) of an extracardiac anomaly compared to children of mothers without 

these risk factors (Table 2). The increase in extracardiac anomalies was observed for infants 

born to mothers with pre-gestational diabetes was nominal. The increase in extracardiac 

anomalies with gestational diabetes or maternal obesity remained true among younger (ages 

20–30) and older (ages 30–40) mothers (Supplemental Table II).

DNV frequencies in CHD children of obese or diabetic mothers compared with the DNV 
frequency in CHD children of mothers without these risk factors.

There was no significant difference in DNVs among CHD patients born to mothers with 

obesity. By contrast there were significantly more DNVs (76.5, both coding and noncoding) 

in CHD patients with prenatal exposure to maternal diabetes than in CHD patients whose 

mothers did not have diabetes (72.1; Table 3). However, diabetic mothers were significantly 

older than non-diabetic mothers and increased parental (both paternal and maternal) age is 

correlated with increased numbers of DNVs in the child20,21,25,26. After including parental 

ages in the linear model, there was no significant difference in the numbers of DNVs found 

in CHD offspring of diabetic mothers compared to the numbers of DNVs was found in CHD 

offspring of non-diabetic mothers (Table 4). This remained true after excluding all probands 

with isolated atrial septal defect (ASD, Supplemental Table III). Further, correcting for 

parental ages and diabetes exposure in a pairwise fashion did not identify any interactions 

between parental age and diabetes effects on CHD patient DNVs (Supplemental Table IV). 

When patients exposed to gestational or pre-gestational diabetes were separately analyzed, 

results were similar.

Genomic risk score does not indicate contribution of common variants associated with 
diabetes to DNV frequency

Genomic risk scores (GRSs) for Type 2 diabetes27 and hypertension28 were calculated for 

mothers using published variant weights. In a Poisson linear model, maternal diabetes GRS 

was nominally correlated with DNV frequency, but not after consideration of maternal 

diabetes status and parental age (Table 5). Maternal hypertension GRS was not correlated 

with DNV frequency.
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Pathogenic CHD variants

Rare heterozygous variants in at least 138 human CHD genes confer congenital heart disease 

risk4,29 (Supplemental Table V). Rare loss-of-function (LOF) variants in these 138 genes, 

identified from whole exome sequence (WES) data, have been described for 4,443 PCGC 

probands10, including 3,672 with prenatal history data (Supplemental Table VI). Overall, 6% 

(206/3,672) of the PCGC cohort with both WES data and documented prenatal history had a 

LOF CHD gene variant. There was no difference observed in the likelihood of having a LOF 

CHD gene variant based on exposure to maternal gestational diabetes (Supplemental Data 

II).

Discussion

Identifying modifiable risk factors for CHD could lead to significant improvement in 

neonatal health. Many non-genetic CHD risk factors are well established, such as in utero 
rubella infection, maternal alcohol consumption, and exposure to toxic compounds such 

as thalidomide30. Neighborhood-level factors and occupational exposures have also been 

associated with increased CHD risk31,32. This is the first study to characterize genome-wide 

DNV frequency in CHD offspring of mothers with diabetes or obesity. Our analysis of 

DNVs among CHD patients, stratified by these perinatal exposures, indicates that increased 

rates of DNVs are not a common mechanism for the observed increase in CHD risk 

(Figure 1). Though a higher number of DNVs were associated with maternal diabetes, the 

increase was accounted for by the associated difference in parental ages. While the increased 

number of DNVs would lead to a small increased risk of a CHD gene variant, no excess of 

LOF variants in dominant CHD genes were observed in CHD patients with these prenatal 

exposures. Our results suggest other factors such as inherited genetic variants, maternal 

metabolic influences on the developing heart, or environmental factors as important areas of 

future research to better understand their impact on CHD risk.

Other potential mechanisms for CHD risk

As stressors in the in utero environment are associated with epigenetic changes and 

many CHD genes also regulate chromatin state, we hypothesize that similar molecular 

pathways can be modified by environmental and genetic factors early in development. 

Elevated glucose and increased inflammation may contribute to CHD risk associated 

with maternal diabetes and obesity12. Maternal obesity and pre-gestational diabetes are 

both associated with alterations in glucose control, and exposure to hyperglycemia leads 

to abnormal gene expression in isolated cardiomyocytes33 as well as mouse models of 

development34. Maternal hyperglycemia leads to decreased chromatin accessibility at the 

eNOS locus and subsequent increase in Jarid2 expression in a mouse model of CHD 

sensitized by haploinsufficiency of Notch133. Supplementation of diabetic mice with 

cofactors for endothelial nitric oxide synthase (eNOS) during pregnancy reduces CHD, 

highlighting the potential role of endothelial dysfunction in CHD pathogenesis35. Glucose 

may be a dose-dependent teratogen, as higher hemoglobin A1c values are associated with 

greater risk of CHD36. Clinical severity of diabetes also correlates with CHD risk, as 

mothers with acute diabetes complications such as ketoacidosis during pregnancy were more 

likely to have an infant with CHD than those with uncomplicated diabetes37. Similarly, 
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congenital malformations are more common with increasing severity of maternal obesity38. 

Potential protective factors include exercise39, first-trimester folic acid supplementation40, 

as nutritional deficiencies can be more prevalent among women with obesity, though the 

observed benefit has not been consistently observed41. Our data demonstrate that the 

biologic basis for these associations is not an increase in DNVs among CHD genes.

Shared risk with other developmental disorders

Extracardiac anomalies and neurodevelopmental impairments are commonly associated with 

CHD42,43. Maternal obesity and diabetes, alone and in combination, are also associated 

with an increased risk for neurodevelopmental disability among offspring without CHD44,45. 

Children born to mothers with both obesity and pre-gestational diabetes have a further 

elevated risk of neurodevelopmental disability44. The mechanism of risk may involve 

perturbations to early brain development, as BMI is negatively correlated with fronto-

thalamic connectivity in the first month of life46. Consistent with previous studies, which 

have demonstrated larger odds ratios for pre-gestational diabetes association with multiple 

congenital anomalies than for isolated cases14, we also observed that maternal gestational 

diabetes and obesity were both associated with an increased likelihood of extracardiac 

anomalies (Table 2). Association of congenital anomalies with both pre-gestation diabetes 

as well as gestational diabetes, which is typically diagnosed at approximately 28 weeks 

of pregnancy, raises important questions about whether hyperglycemia and/or metabolic 

differences associated with obesity and insulin resistance is the primary teratogen 

responsible.

Limitations

Limitations include the use of questionnaires and review of patient medical records 

to determine maternal diabetes status. Neither the onset nor duration of gestational 

diabetes or information regarding maternal hypertension were available for our cohort. We 

recognize that maternal environmental exposures may modify DNV frequency; however 

these characteristics that were not measured in our cohort. We assessed DNVs that create 

single nucleotide polymorphisms and short insertions and deletions in coding and noncoding 

regions of the genome; future studies will consider other types of de novo variation (e.g., 

large insertions and deletions). Finally, it remains possible that subsets of diabetes or obesity 

exposures may influence de novo frequency, but further stratification was limited due to our 

sample size.

Future directions

These results emphasize the need to study mechanisms of CHD risk associated with 

modifiable risk factors. Genetic risk can be modified by environmental factors, and 

vice versa47. Abnormal DNA methylation profiles have been identified among CHD 

patients, but correlations with prenatal exposures are not reported48. Many pathogenic 

CHD variants demonstrate variable penetrance and expressivity, highlighting the possibility 

that environmental factors could also modify CHD severity. Mouse models of CHD have 

also demonstrated that penetrance of NOTCH1-related CHD is increased by exposure 

to gestational hypoxia49. Additional support for an interaction between genetic risk and 

prenatal exposures includes the finding that genetic associations with maternal hypertensive 
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disorders were observed in both fetal and maternal genomes50, indicating that genetic 

as well as in utero environmental factors could contribute to increased CHD. Improved 

understanding of the basis of increased CHD associated with prenatal exposures could 

improve prenatal care to reduce the incidence of CHD and other congenital anomalies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Maternal diabetes and obesity are risk factors for congenital heart disease (CHD). Potential 

mechanisms for risk include de novo variants (DNVs) and epigenetic changes, both of which 

are known to cause CHD. No increase in DNVs was associated with maternal diabetes or 

obesity, indicating that other mechanisms such as epigenetic changes are responsible for the 

increased CHD. Created with BioRender.
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