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Abstract

Background—The electronic health record (EHR) has become increasingly ubiquitous. At the 

same time, health professionals have been turning to this resource for access to data that is needed 

for the delivery of health care and for clinical research. There is little doubt that the EHR has made 

both of these functions easier than earlier days when we relied on paper-based clinical records. 

Coupled with modern database and data warehouse systems, high-speed networks, and the ability 

to share clinical data with others are large number of challenges that arguably limit the optimal use 

of the EHR

Objectives—Our goal was to provide an exhaustive reference for those who use the EHR in 

clinical and research contexts, but also for health information systems professionals as they design, 

implement, and maintain EHR systems.

Methods—This study includes a panel of 24 biomedical informatics researchers, information 

technology professionals, and clinicians, all of whom have extensive experience in design, 

implementation, and maintenance of EHR systems, or in using the EHR as clinicians or 

researchers. All members of the panel are affiliated with Penn Medicine at the University of 

Pennsylvania and have experience with a variety of different EHR platforms and systems and how 

they have evolved over time.

Results—Each of the authors has shared their knowledge and experience in using the EHR in 

a suite of 20 short essays, each representing a specific challenge and classified according to a 

functional hierarchy of interlocking facets such as usability and usefulness, data quality, standards, 

governance, data integration, clinical care, and clinical research.

Conclusion—We provide here a set of perspectives on the challenges posed by the EHR to 

clinical and research users.

Keywords

electronic health records; user-computer interface; standards; medical informatics; systems 
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Introduction

The use of electronic health records (EHRs) has become much more pervasive over the 

past 5 years, to the extent that the vast majority of hospitals and office-based physicians 

in the United States have adopted an EHR system.1,2 Concomitantly, there is considerable 

evidence in the literature and even from personal anecdotal reports of which many are aware 

that suggest difficulties in using the EHR for patient care and research. For example, Artis 

et al found that incomplete data can lead to misdiagnosis and medical error when clinicians 

rely on the EHR when rounding3 and during hand-offs.4 These findings were substantiated 

in another study which found that physicians frequently identified poor EHR usability 

as a barrier to finding patient information5. Aside from the patient care context, another 

study found that primary care practitioners encountered difficulty in generating quality 
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improvement reports from EHR systems and subsequently adhering to meaningful use 

care coordination criteria.6 As a reaction to these difficulties, practitioners have developed 

workarounds to address unintended consequences of EHR use that could affect patient 

safety.7,8 However, little work has been reported on the consequences of using workarounds 

but the available evidence suggests that EHRs are sufficiently inadequate to accommodate 

every clinical or research contingency.9–13 Finally, the EHR is front and center in the fight 

against the novel coronavirus disease 2019 (COVID-19) pandemic. The need has never been 

greater for robust EHR systems that provide timely access to accurate and complete health 

care data by clinicians, public health agencies and professionals, biomedical informaticians, 

and researchers who are engaged in patient care, clinical characterization of COVID-19, and 

establishing distributed networks for large-scale pandemic surveillance. As a result of all of 

these concerns, we feel that it is important to review the reasons for why the EHR presents 

so many challenges for users in clinical and research domains.

Methods

Conceptual Framework

We have structured this paper according to a functional classification that was created by 

the authors to reflect challenges relating to our central theme which is the use of the EHR 

in clinical and research domains. Based on our experience in clinical care and research 

uses and deployments of EHR systems, we reached consensus on a series of activities 

associated with characteristics of EHRs that relate to the central theme. These activities and 

characteristics are represented as classification facets in our framework:

• EHR usability and usefulness: reflects the user experience during use of an EHR 

system, with implications for patient safety, ability to use the EHR effectively for 

clinical care, and research.

• EHR data quality: reflects the quality and reliability of data as used in clinical 

care and research.

• EHR standards: reflects adherence by the EHR to standards (vocabularies, 

ontologies, nomenclatures, and communication) and the effect of standards on 

EHR use.

• EHR governance: reflects policies and procedures enacted to ensure the proper 

use of EHR systems and data.

• EHR and other data integration: reflects the procedures and challenges posed by 

integration of EHR data with other data sources, including other EHR systems.

Within each facet are one or more subfacets that represent concepts that were identified by 

the authors to be of critical importance to clinical and clinical research informaticians, as 

well as practicing clinicians. It is important to note that these facets often interlock with 

each other, such that they can overlap and that their relationships are of critical importance 

in addressing the central question of the user of the EHR. The relationships between these 

facets are illustrated in this directed acyclic graph (Fig. 1).
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Another way to visualize our conceptual framework is in the following Venn diagram (Fig. 

2) where the overlap between the five domains is clearly illustrated, as is the central concept, 

use of the EHR in clinical care and research, which underpins the entire model.

We explore each of these facets in more detail throughout this paper. Rather than approach 

these as a scoping or systematic review, we felt it was important to share our views and 

experience as informatics professionals.

The Authors

Our panel of biomedical informatics researchers, information technology professionals, and 

clinicians describe an extensive list of characteristics of the EHR that make its design, 

implementation, and use difficult in clinical and research contexts. To accomplish this, 

collectively, we bring a combined 510 years of experience in working with EHRs in research 

and clinical contexts, and from a wide spectrum of perspectives. We represent all of the 

five domains commonly considered to comprise biomedical informatics, from translational 

to clinical to clinical research to consumer health to public health informatics. Each of us 

has had an active role in the design, implementation, use, or evaluation of EHR systems. 

In addition, each of us has an active role in the overall organization of this paper, while 

leveraging our specific expertise to focus on the sections of the paper that are relevant to 

that expertise. Our particular specialties and experience are provided in the Supplementary 

Appendix (available in the online version). As a result, we hope to bring our experience 

and expertise to bear in exploring each of the five facets that we feel are most important in 

answering the question: “Why is the electronic health record so challenging for research and 

clinical care?.”

Organization of the Paper

We offer a consideration on the organization of this paper. While it is organized according 

to the facets and subfacets in our conceptual framework that are relevant to each facet, we 

propose that clinical care and clinical research are inextricable at this time; the centrality of 

EHR systems and data in the service of clinical research bears out this observation and, we 

believe, justifies our organization. Where appropriate, we identify possible overlaps between 

various sections in the matrix presented in “Overlap of the Subfacets” section. We hope that 

approaching an answer to our question in this way does not confuse the reader.

Usability and Usefulness

Human Factors and Human Computer Interaction: How Do We Make It Easy for 
Researchers and Clinicians to Interact with Software and Computational Technology? 
(George Demiris)

Usability challenges with EHRs have been well documented; these challenges pertain 

to clinicians’ accessing and navigating these systems, retrieving and analyzing relevant 

information, and having to engage in redundant procedures or workarounds to complete 

tasks. Some of these same challenges are also present for researchers who rely on using 

EHRs to extract and process data. As an informatics discipline, human factors or ergonomics 

research focuses on the study of human computer interaction, the user experience related 
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to interface design, information processing, and overall perception of a system. These are 

critically important aspects of EHRs and have significant influence whether a system will 

be adopted and how effectively it will be used once introduced into the workflow. In the 

context of health care, human factors issues do not only affect the overall user experience 

but may actually impede efficiency of clinical operations through increased documentation 

time and disrupted information flow, and even patient safety (e.g., causing documentation 

errors or alert fatigue). In a systematic review of usability studies with EHRs, Zahabi et al 

identified 50 studies that highlighted usability issues such as violations of natural dialog, 

control consistency, effective use of language, and effective information presentation.14 

Furthermore, this review showcased how usability principles such as customization options, 

error prevention, minimization of cognitive load, and feedback are in many instances 

ignored or violated. Similarly, Roman et al. conducted a systematic review of usability 

literature examining navigation in EHRs and found that navigation actions (e.g., scrolling 

through a medication list) were frequently linked to specific violations of usability heuristic 

principles such as recognition rather than recall, flexibility and efficiency of use, and error 

prevention.15

The challenge with EHRs is that they often have been designed without a recognition of the 

complex and everchanging cognitive, collaborative, organizational, and structural aspects of 

interdisciplinary health care delivery. Such systems have traditionally been conceptualized 

through a billing or overall administrative lens which may not fully align with clinicians’ 

and patients’ perspectives or information needs. As a 2005 Institute of Medicine Report 

pointed out, “usability in software-intensive systems cannot be achieved by patching user 

friendly interfaces onto user-hostile system architectures.”16 To facilitate access to software 

and computation technology for researchers and clinicians, further work is needed in the 

following three distinct areas: (1) assessment of user information needs and preferences; 

(2) user training; and (3) expansion of a usability standards framework and certification 

for health information systems. While system designers often assume what clinicians and 

researchers may need when it comes to using a health information system, these actual end 

users are often not included in early design phases, or only a limited subset of users is 

invited to provide feedback in spite of the broad spectrum of distinct stakeholder needs that 

need to be addressed by the system. End users need to be engaged in all phases of design, 

implementation, and formative evaluation of systems. Similarly, user training and support 

resources need to be developed, recognizing the importance of timely assistance and the 

burden that traditional training sessions may introduce. Finally, both federal agencies and the 

industry have recognized usability and human–computer interaction issues as imperative to 

the success of these systems and have introduced criteria and guidelines for usability. For 

example, the Office of the National Coordinator (ONC) of Health Information Technology 

requires EHR vendors to employ a user-centered design process as part of its certification 

requirements.17 More specifically, a vendor must attest to having utilized a user-centered 

design approach and provide summative usability testing findings on eight functions of the 

system.17 However, this requirement alone does not seem sufficient to address challenges 

in usability and the growing dissatisfaction of clinicians with these systems; more extensive 

and purposeful summative testing with larger number and more inclusive demographics of 

participants has been suggested.18 An expansion of the usability framework that informs 
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certification efforts and potentially additional certification requirements have the potential to 

better address these challenges.

Electronic Health Records and Inflexibility (Ross Koppel)

Many clinicians and analysts find EHRs inflexible. EHRs often do not allow the nuances 

needed to reflect the patient’s reality. The categories may make little sense—too broad, 

demanding levels of granularity not available from the presenting patients, even from 

patient’s laboratory data, or not allowing clinicians to reflect the ambiguity and messiness of 

real medical practice. Sometimes EHRs demand inputs that are simply absurd, for example, 

a forced field requiring the value of the differential between the left and right iris responses 

to light, even though there are millions of people with only one functioning eye. Very 

often, EHRs’ inflexibility results from the expectations of the multiple masters that create 

or maintain them: insurance company or other reimbursement needs; regulatory bodies; 

local, state, and federal data demands; superannuated diagnosis-related groups (DRGs), 

the International Classification of Diseases, version 10 (ICD-10) codes, conflicts among 

services or professions, medical associations in the way they categorize or scale issues; 

new treatment protocols; new drugs or diseases not yet incorporated into the software; 

or demands for data unknown to local clinicians, such as full medication lists, patients’ 

histories, allergies, countries visited, and others, all with no way for the clinician to explain 

or code the contradictions or data unavailability. Last, there is another source of EHR 

inflexibility that emerges from rules that prohibit post hoc updating earlier entries, e.g., later 

test results, better diagnoses, revised treatment plans or medications.

Data Quality

Bias and Fairness (Ryan Urbanowicz and Qi Long)

The concepts of bias and fairness are interlinked in biomedical research. Bias, defined 

as prejudice against a person or group, has many potential sources in EHR analyses.19 

Data may be collected from unequal demographics of a population and systemic bias 

can impact the exposures and treatment decisions of individual patients. Such biases can 

impact the fairness of statistical or machine learning (ML) modeling such that resulting 

prediction models may have dissimilar error rates across population subgroups or lead 

to unfavorable treatment decisions and then worse outcomes for marginalized subgroups 

defined by, namely, race, gender, or age.20 For example, data from predominantly Caucasian 

samples in the Framingham Heart Study were used to predict cardiovascular events, but 

applications of these models to nonwhite populations yielded over- and underestimations of 

risk.21 Another example is that race has been used as part of an algorithm for estimating 

kidney function in practice, and it has been argued that this may unduly restrict access to 

care for under-served minority groups.22 Ultimately biases existing in the data will tend 

to be reflected by the statistical or ML strategies applied to model and make predictions 

in that same domain. Fairness in EHR analyses can be promoted by first identifying and 

then accounting for biases, for example, over- or undersampling, adjusting the weights of 

samples, as well as by adding fairness-aware constraints, to the model training process.23
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Variability in Laboratory Data (Daniel Herman)

Variability in clinical practice and documentation makes it extremely challenging to derive 

generalizable knowledge and models from EHR data. To illustrate this, let us focus on 

one of the most standardized domains of clinical practice: clinical laboratory testing. The 

fundamental question is if you go to two different clinical practices and get the same blood 

test, will the results be equivalent? There is considerable regulation of laboratories and 

their tests aimed at minimizing the variability of such results.24 Unfortunately, even when 

this system works perfectly, results for some tests can differ widely across laboratories. It 

depends on how well standardized and on how accurate the tests are. For tests where the 

targeted biological analyte is precisely defined and the methods are mature, such as studies 

of the concentration of sodium ions in blood, test results tend to be very consistent across 

laboratories.25 But, for more complex macromolecules for which there are no certified 

reference materials or methods, results can be extremely variable.26

Because of the heterogeneity in the way, some laboratory test results are reported in the 

EHR, it is important to capture sufficient metadata to enable filtering or harmonization of 

results when analyzing laboratory test results in EHR data. The most common standard for 

mapping laboratory test results is the Logical Observation, Identifiers, Names, and Codes 

(LOINC) which includes 93,600 (version 2.68) terms.27 Mapping laboratory results to 

LOINC greatly facilitates data harmonization but LOINC does not actually include sufficient 

detail to resolve poorly standardized tests because it does not denote particular assays 

or instruments. Thus, it is critical to gather information such as performing laboratory, 

reporting units, reference range, and testing date, and to explore differences in results across 

these variables. In addition, these same principles of surveying variability and ultimately 

considering filtering or harmonizing data applies to every domain of clinical data.

Standards

Standards and the Electronic Health Record (Peter Gabriel)

Successful research with EHR data requires that systems be able to exchange information 

in a way that preserves the meaning of the data. Since different EHR systems (and even 

different implementations of the same system) encode data in unique ways, mapping data 

to an external standard is often necessary. This enables “semantic interoperability,” defined 

as the ability for computer systems to exchange data with unambiguous, shared meaning. 

While a human physician can easily understand that “pneumonia” and “lung infection” are 

the same, a computer cannot. Achieving semantic interoperability is the main driver for 

meaningful health care data exchange and aggregation at all levels (within and between 

organizations, regional or research networks, and even countries). It requires standardized 

documentation of medical knowledge and the health care process.28

One way to achieve this has been the development of standardized vocabularies for medical 

terms which often codify specific types of EHR data. For example, the 10 revision of the 

International Statistical Classification of Diseases and Related Health Problems (ICD-10), 

described in detail in the next section, consists of diagnostic and procedural codes.29 

The LOINC is an international standard for codifying health measurements, observations 

Holmes et al. Page 7

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(such as laboratory and imaging tests), and documents, whereas RxNorm is the standard 

medications terminology in the United States.30 The Systematic Nomenclature of Medicine 

Clinical Terms (SNOMED CT) is the most comprehensive clinical terminology in the 

world and is available to the U.S. users at no cost through the National Library of 

Medicine’s UMLS Metathesaurus. SNOMED CT is organized into concepts, descriptions, 

and relationships. Concepts represent a unique clinical entity or process, and have a unique 

identifier associated with them. Descriptions of the concepts that allow for specification of 

synonyms, help enable semantic interoperability through mapping of equivalent terms to a 

single underlying concept. Finally, the relationships describe how concepts are associated 

with one another.

In addition to the information content standards mentioned above, information exchange 

standards help to ensure that data are transmitted between systems with a consistent 

structure and organization. The Health Level Seven International (HL7) is an American 

National Standards Institute–accredited standards developing organization responsible for 

several widely used information exchange standards, including HL7 Messaging Standard 

Version 2 (HL7 V2), HL7 Clinical Document Architecture (HL7 CDA), and HL7 Fast 

Healthcare Interoperability Resources (HL7 FHIR, https://www.hl7.org). Similarly, the 

Clinical Data Interchange Standards Consortium (CDISC) develops and maintains multiple 

information content and exchange standards specifically dedicated to supporting clinical 

research activities. Finally, several common data models (CDMs) have gained widespread 

adoption in recent years. These specify a consistent structure for storing data in databases 

that can facilitate combining datasets together, as well as distributing queries across a 

federated network of databases, and aggregating the results. The Observational Medical 

Outcomes Partnership (OMOP) CDM is one such model, used worldwide for observational 

research.31

Billing Codes to Record Diagnoses (Mary R. Boland)

A primary function of the EHR is the documentation of the events that occur during routine 

clinical care. Therefore, EHRs contain rich information detailing the clinical encounter and 

the patient’s experience within the health care system. Researchers often seek to repurpose 

these rich data sources for use in studies to understand disease burden, treatment efficacy, 

and health outcomes. A key feature of EHR data is the use of billing codes to record 

diagnoses, procedures, medications, and other billable events that occur as the patient 

navigates through the health care system. These codes are recorded by physicians through 

their encounters with EHR platforms and systems. However, in one common EHR system, 

EPIC (Epic Systems Corporation, Inc.), physicians do not often directly record codes, but 

concepts (e.g., chief complaint and diabetes) that are translated to codes later). Medical 

coders, along with specialized automated coders, apply hospital billing codes called the ICD 

codes to each patient’s encounter to encode diagnoses, diseases, conditions, comorbidities, 

and other aspects of the patient clinical status recorded during their care. The World Health 

Organization releases versions of ICD billing codes that incorporate periodic updates. The 

versions used most frequently in the United States are v.9 (up until c.2015) and v.10 

(2015-present), and a more recent version ICD-11 which has not gained traction in the 

United States yet but will likely be used in the next decade or so.32
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Billing codes, such as ICD-10, are very comprehensive and include many very detailed 

observations that clinicians make regarding the patient during the clinical encounter. For 

example, there is a code for being hurt in the library (ICD-10 Y92.241—“Library as 

the place of occurrence of the external cause”), and there are extremely detailed codes 

pertaining to sporting accidents, including being burned by water skis on fire (ICD-10 

V91.07XA—“Burn due to water skis on fire, initial encounter”). These codes are often used 

in combination with other codes (e.g., injury codes such as broken arm) to provide rich and 

detailed context around why the patient may have broken their arm. ICD billing codes are 

organized within a hierarchy comprised of a range of health topics and subtopics based on 

mechanisms (e.g., infectious and parasitic diseases), affected organ systems, (e.g., diseases 

of the respiratory system), or disease related (e.g., neoplasms) among other topics. However, 

the ICD taxonomy does not uniformly represent clinical reality or the interpretation of that 

reality by clinicians and coders.33

Researchers will leverage these ICD codes to define clinical phenotypes and health 

outcomes to study a group of patients both with (cases) and without these characteristics 

(controls). However, researchers should be aware that codes are often used to justify a 

diagnostic procedure that otherwise might not be covered by a payor. Frequently, these 

codes are not removed from the EHR when the diagnostic test is subsequently reported 

as negative. This creates the possibility of false positives in a query of EHR data for the 

purposes of cohort identification. In addition, some codes are not to be used in billing 

(such as accident detail codes) and those codes are annotated as nonbillable codes in the 

record systems. These “nonbillable codes” are often annotated by clinicians to provide 

clinical context to the billable codes and for reporting purposes after the fact. However, it 

is important that the majority of ICD codes are recorded and captured for the purpose of 

billing, and therefore, their ability to correctly define a patient’s clinical phenotype or health 

outcome for research can be highly variable.34 Furthermore, in some instances insurance 

claims are rejected due to the selection of billing codes. This can lead to altering the 

initial billing codes to a more refined set of billing codes (e.g., a more specific disease 

code vs. a more general one) that may satisfy the insurance company, but may not be as 

useful for research. In addition to ICD codes, there are also procedural codes annotated 

by the Current Procedural Terminology (CPT) codes and medication codes annotated by 

RxNORM, along with a specialized coding terminology for oncology called the ICD for 

Oncology version 3, or ICD-O-3, that captures cancer morphology, histology, and behaviors. 

These clinical domain-specific lists can provide additional granularity beyond traditional 

ICD code lists useful for answering clinical research questions. These billing data can be 

further enhanced through coupling with additional clinical information (signs, symptoms, 

radiological findings, and laboratory/result values) housed in EHRs derived from structured 

and unstructured clinical data (natural language processing [NLP] and image processing) to 

further improve specificity and sensitivity of EHR phenotyping algorithms.35

Ontologies (Charles Kahn)

Ontologies encode biomedical knowledge that in turn can empower mining of EHR data. An 

ontology specifies a domain’s concepts along with the relationships among those concepts 

and can be used to standardize the terms used in a field of discourse. An ontology is 
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more than a controlled vocabulary. The connections between terms make ontologies more 

powerful than simple vocabularies: those connections define the concepts’ semantics, or 

“meaning.” Through those relationships, ontologies express knowledge in a form that is both 

computable and human readable.36 Unlike individual terminologies and coding systems, 

ontologies are supported by the World Wide Web Consortium (w3c.org) standards that 

enable linked data sharing. Ontologies can specify part-whole relations (e.g., lingula is part 

of left upper lobe, which is part of left lung), subclass–superclass (“is-a”) relations (e.g., 

adenocarcinoma is a type of carcinoma), and various other kinds of relationships. These 

relationships make ontology-enabled applications more powerful.36 For example, a search 

for patients with “lung cancer” will identify patients with adenocarcinoma (a subtype of 

cancer) in the lingula (a part of a lung); the ability to reason abstractly makes the search 

more effective.

Biomedical ontologies—including those built on the principles of the Open Biological 

and Biomedical Ontology (OBO) Foundry37—enable sophisticated data mining from 

EHR data. The Systematized Nomenclature of Medicine (SNOMED) and the Disease 

Ontology provide a standardized representation of diagnoses. The Drug Ontology relates 

medications to their active ingredients; the Chemical Entities of Biological Interest links 

those ingredients to their biological roles. Thus, a medication record associated with a health 

care encounter can be used to infer diagnosis and intervention. The results of laboratory 

tests can be transformed into statements about a patient’s phenotype.38 Through the encoded 

relationships of terms representing the data, ontologies provide explicit context and semantic 

complexity that allows one to achieve a more accurate understanding of EHR data and to use 

that data more effectively.39,40

Common Data Models (Robert Grundmeier)

Among the many challenges that arise with EHR data are that the structures are often 

vendor specific, may differ across health systems even when the same vendor’s product 

is in use, and are not organized in ways that are useful for typical research analyses.41 

Each health system typically employs highly skilled data analysts who work diligently to 

transform the EHR’s complex data structures into formats that are more usable for research. 

Without a Common Data Model (CDM), these efforts typically must be repeated for each 

project and within each health system that may be participating in a multisite research 

endeavor. A more efficient approach is to consistently use a dataset with a standardized data 

structure across many projects. These standardized data structures are typically referred to 

as a CDM. Although the structures of CDM’s are necessarily more complex than a data 

model constructed for a specific research question, they offer some significant advantages as 

follows:

• They are much simpler than the raw data structures of the EHR.

• Users who move from one organization to another can very quickly begin 

working with a CDM that they are familiar with since the data structures are 

the same.

• There are often communities working collaboratively to solve recurring analytic 

challenges together.
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• Communities often provide tutorials, code examples, and forums to propose 

improvements to the data model or obtain extra help when needed.

• Time and money are saved by eliminating nonvalue-added work to prepare, 

harmonize, and learn a project-specific data model.42

There are, however, a few disadvantages to CDM’s as mentioned below:

• There isn’t just one, so evaluation and selection of a model needs to occur which 

is a project unto itself.

• A CDM requires significant effort to implement, particularly mapping and 

validating your EHR data.

• A CDM requires ongoing maintenance to ensure that it stays current with 

changes to the CDM, as well as the underlying EHR data, feeding the model.

• They do not accommodate all data in the EHR, thus specific needs may require 

extensions to the CDM.

A review of several CDMs identified the OMOP CDM as particularly flexible for addressing 

a variety of research questions involving EHR data.43 The OMOP data model is maintained 

by the Observational Health Data Sciences and Informatics (OHDSI) community which 

includes a large and active community of collaborators.31 Researchers interested in patient-

centered outcomes research may find the PCOR-Net CDM useful in part through research 

opportunities facilitated by the Patient-Centered Outcomes Research Institute (PCORI).44 

For researchers seeking to combine biologic data (e.g., gene sequence or expression data) 

with EHR data, the i2b2 data model and related research tools may be most helpful.45 

Before developing a custom-made data model, researchers should always consider whether 

an existing CDM can adequately organize their research datasets. In addition, it is important 

to note that existing CDMs contain metadata from medical or administrative sources and 

have not included metadata data from other disciplines such as nursing, physical therapy, 

social work, or case management, nor do they include the consumer perspective. This gap 

should be addressed as current CDMs are updated and new ones proposed. Increasingly, 

there is also an expectation among funding agencies that researchers use a CDM to ensure 

the research datasets can be made widely available at the conclusion of the funding period to 

maximize the value of publicly funded research efforts.

Governance

Data Governance and the Electronic Health Record (William Hanson)

While the term data governance has been familiar in other industries for years, its relevance 

to medical data has only become apparent recently, with the broad adoption of electronic 

medical records, which generate a mix of structured and unstructured data. Medical data 

historically comes in a variety of “dialects,” varying from institution to institution, vendor to 

vendor, and even from instance to instance of the same vendor’s implementation. Data from 

the electronic record may also be concatenated with other patient datasets into complex data 

assemblages consisting of administrative, demographic, physiologic, laboratory, descriptive 

text and images, and the governance of these datasets requires input from a range of 
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disciplines and domains.46 The analysis of such data for research may require expertise 

in NLP, data normalization, and other specific skills. A national experiment wherein data 

pertaining to clinical care, practice organization, and patient experience were combined to 

assess the quality of care provided by individual family practitioners was undertaken in 

the United Kingdom’s National Health Service in 2004 (reference in comment). Financial 

rewards were assigned to high quality care amounting to as much as $77,000 dollars 

($42 pounds at the then-exchange rate) and the underlying data were derived from the 

practitioner’s computers and patient surveys. This program both relied upon and illustrated 

the need for increasing digitization of medical data, as well as attention to its accuracy. 

The interdependency of medical datasets also increasingly requires coordinated stewardship 

and governance, so that changes in one system are made with visibility to others and with 

appropriate adjustments in linked systems: changing the name or structure (i.e., the adoption 

of a new ICD release) of an element may have profound consequences for downstream 

systems. And as genetic or genomic data are integrated into datasets, highly sensitive, 

and unalterable patient-specific data becomes manifest in a digital format and necessitates 

special security, and ethical considerations.47–49 Responsible data stewardship and rigorous 

data governance are increasingly essential to ensure patient privacy and data integrity.

In addition to the above principles, medical data are increasingly recognized to be of 

tangible value, and as with other industries, the use and or misuse of patient data can have 

profound financial, reputational or regulatory impacts on an organization. The acquisition 

of troves of patient data may be the explicit or hidden agenda in the business models of 

new or incumbent software vendors, as has become apparent with agreements between the 

United Kingdom’s National Health Service and Deep Mind or the University of Chicago 

and Google.50–53 Effective governance and stewardship mandate a thoughtful review of the 

potential consequences of both data breaches, as well as transactions in which identifiable 

patient data are exchanged with another party.

Data Privacy (Yong Chen)

In the last two decades, there is a growing number of research networks embedded in 

health care systems, such as PCORnet and OHDSI, with the goal to accelerate biomedical 

discoveries. These research networks have provided an unprecedented opportunity for 

multicenter clinical research. As multicenter health care data are stored at different locations 

and patient-level information is often protected by privacy regulations and rules, direct data 

integration across multiple data centers is often not feasible or requires large amounts of 

operational effort. There have been great efforts on developing novel methods to allow 

multicenter analysis while allowing protection of patient privacy.54 One of the most 

widely adopted methods is the divide-and-conquer strategy, such as meta-analysis and its 

multivariate extensions, which is commonly adopted in OHDSI, where investigators at 

distributed sites run a prespecified model and report the analysis results (such as estimated 

effect sizes and their variances) to be combined via meta-analysis models. Such procedure 

works well in many situations but can lead to nonnegligible biases in situations involving 

rare exposure or rare outcomes, for example, pharmacovigilance studies of rare drug adverse 

events. The second set of methods are iterative distributed regressions, where investigators 

at distributed sites run a prespecified model and communicate with a central site iteratively 
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to update their results.55 This approach leads to the identical result as if the individual 

patient-level data were pooled together and the prespecified model was run on the pooled 

data. It has been deployed in research consortia such as pScanner.56 Another set of 

methods is the communication-efficient distributed algorithms, seeking a trade-off between 

bias and communication efficiency, includes one-shot distributed regression algorithms for 

binary, and time to event outcomes.57,58 This approach aims to minimize the number of 

communications among investigators at different clinical sites, while seeking estimates 

that are close to the analysis results from pooled data. Although these methods require 

communication of more statistics than traditional meta-analysis, the communicated statistics 

are summary statistics and are often privacy preserving. One common limitation of the latter 

two approaches is that the data are assumed to be homogeneously distributed across clinical 

sites. Future work is needed to extend the distributed algorithms to heterogeneous data. In 

addition, missing data present some unique challenges in a distributed data setting, while 

some privacy-preserving missing data methods have been developed, this remains a nascent 

area of research.59,60 Furthermore, sharing of genetic data and biobank data are important to 

facilitate large-scale genetic studies, but special attention is needed to protect patient privacy 

and confidentiality.

Deidentification (Tessa Cook, Danielle Mowery, Nebo Mirkovic, and Laura Fluharty)

To preserve the privacy of individuals and restrict knowledge of their immediate social 

circles (e.g., relatives, household, and employer) while conducting research with EHR 

data, the data must first be deidentified. The federal Health Insurance Portability and 

Accountability Act (HIPAA), codified as 45 CFR §160 and 164 (US Code of Federal 

Regulations) and the Common Rule, prescribes two options for deidentification of clinical 

data: (1) removal of 18 “safe harbor” identifiers such as person’s name, address, date of 

birth or other unique identifying information that is considered protected health information 

(PHI); or (2) certification by an expert that the risk of reidentification of an individual from 

the data are low.61 Most EHR research follows the first approach. For epidemiologic and 

population health research, a limited dataset may contain some identifiers needed to model 

cohorts over time (ages and dates) and geographical space (zip codes).

Obfuscation is another approach that reduces the likelihood of reidentification of any 

person, by transforming individual data points into categories to reduce uniqueness of data. 

However, none of these techniques guarantee true anonymization which eliminates any link 

to the individual’s identity.62 Recent studies have demonstrated that by combining individual 

attributes in deidentified datasets with publicly available data, individual uniqueness can 

be exploited to reidentify individuals.63 Because anonymization can decrease information 

content of the dataset, differential privacy methods are sometimes used in research because 

they divulge insightful characteristics of cohorts while not disclosing information about any 

particular individual. Furthermore, several tools exist for redacting PHI elements from EHR 

data; however, their performance depends on the types of PHI in the data and on how the 

data are documented.64 Data recorded in discrete/structured form has little variability and 

can be more readily redacted or obfuscated. Examples include demographics (e.g., names, 

age, and date of birth), dates and times of clinical events (e.g., admission, discharge), 

and billing/administrative information (e.g., medical record number). However, unstructured 
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clinical text can be highly variable with regard to frequency, terms, formats, and types of 

PHI documented. For example, pathology results may solely contain the patient’s name, 

and dates of clinical events; in contrast, discharge summaries often contain rich information 

about family members, patient’s date of birth, treatment dates and locations, as well as 

demographics. Other data modalities present unique challenges to preserving privacy. Head 

and neck computed tomography (CT) scans can contain distinguishing facial features. By 

definition, genetic data are uniquely linked to an individual’s identity, and the growing 

number of public repositories containing genetic information has inadvertently created 

new challenges to preserving participant autonomy.65 Additional restrictions may occur for 

particular sensitive populations (mental health, AIDS/HIV, etc.), as governed by individual 

state laws. Data sharing among organizations (e.g., in the context of multicenter studies) 

requires additional legal controls such as data use agreements or business agreements, as 

well as appropriate technology for secure data exchange and storage.

Data Integration

Data Integration and the Electronic Health Record (Jeffrey Morris and Dokyoon Kim)

Correlative analyses of EHR data with other external data sources can provide significant 

insights, especially in identifying important explanatory factors, as well as discovery of 

prognostic or predictive biomarkers that may have translational value for precision therapy. 

There are many types of external data useful for these purposes, including geographic, 

socioeconomic, geospatial measurements of air quality or climate variables, genetic and 

multiplatform genomic data, radiological and other imaging data, and wearable device 

or mobile health data including mobility or activity levels, heart rate, or blood pressure 

data. Many of these external data are high-dimensional and complex, raising considerable 

informatics and analytical challenges. One important decision is whether to use a feature 

extraction approach, computing and analyzing simple summaries from the complex data, 

or try more advanced modeling approaches, such as functional data analysis, that focus on 

modeling the entire data structure as a complex object. Feature extraction is computationally 

efficient and can work well if the features extracted contain the salient information 

contained by the data, but can miss out on key insights if not captured by the features. 

Functional data modeling approaches have potential to find insights missed by feature 

extraction approaches, but their complexity and computational intensity can make them 

more difficult to implement. Another key factor to consider is multiple testing. If many 

external variables are screened to find associations with clinical outcomes, it is important 

to use training/testing strategies, permutation tests, or multiple-testing adjustment to account 

for the multiple testing and prevent reporting of spurious false-positive results.

Pecoraro et al also point out that the use of EHR has the advantage of managing 

standardized data and documents already integrated in a health infrastructure that can 

be easily extended comprising ad hoc information systems.66,67 Additionally, Botsis et 

al emphasized that automatic or advanced data validation and flexible data presentation 

tools should be developed to ensure information integrity. Effective strategies (e.g., new 

tools, better classification systems, and others), for secondary use of EHR data, could be 
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also accumulated from case studies and shared with the research community as the best 

practices.68

Data Warehouses as a Challenge for Research with Electronic Health Record Data (Peter 
Gabriel and James Beinlich)

Health care data warehouses containing EHR data present a significant challenge for 

research use due to factors relating to the history of EHR’s and the state of database 

technology and the maturing of analytics in general. EHRs are optimized for the 

efficient capture and storage of the billions upon billions of individual, patient-level 

transactions that support the highly complicated clinical and administrative processes of 

a modern health care system. Their origins are rooted in the automation of administrative 

processes like registration, scheduling, and billing. Historically, EHRs provided these central 

functions, while richer clinical information existed in specialty-specific ancillary systems 

that exchanged data with the EHR through electronic interfaces. This has been changing, 

however, as the larger, market-dominating EHR systems have evolved into fully integrated 

platforms providing deep support for a broad set of ancillary and specialty-specific areas.

The resulting complexity of these systems is striking. EHR databases typically contain 

hundreds of thousands of data tables and millions of individual data elements. In addition, 

the way the systems are configured and used (and the resulting patterns of data capture) 

can vary significantly over time and across different areas of a large hospital or health 

care system, let alone across institutions. This makes it a formidable challenge to extract, 

transform, and summarize the data into a warehouse environment that correctly preserves 

the meaning of the original data. And even with careful design, proper interpretation of 

warehouse data can be difficult for secondary users who lack a detailed working knowledge 

of the operational workflows that led to its original capture. Data in the EHR are also 

limited by the data that are entered into the EHR. As Weiskopf et al pointed out, the 

completeness of EHR data for secondary uses is lower than one might expect for a variety 

of reasons that fall into four general categories: (1) documentation, (2) breadth, (3) density, 

and (4) prediction.69 In an effort to address completeness issues that affect secondary 

use, organizations need to balance increased need for data with the pushback from busy 

clinicians that already feel overwhelmed by data entry requirements into the EHR. As Kroth 

et al point out in a survey of 282 clinicians, 86.9% cited excessive data entry requirements as 

one of the most prevalent concerns about EHR design and use.70

It is also important to point out that until recent changes in the economic health care model 

(i.e., accountable care organizations and value-based care), many data points were only 

within the capturing organization’s immediate scope of care (i.e., a particular hospital stay or 

clinic visit), leaving gaps in the complete picture of a patient’s care. As health care providers 

are becoming more accountable financially for patient outcomes and utilization beyond 

their direct scope of care, more external data points are being captured in each institution’s 

clinical systems.

From a technological perspective, data warehouses have historically been designed to 

overcome the limitations (such as complexity and performance) of operational databases 

which are optimized to support transactional volume processing. Much like the history of 
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EHR’s, reporting databases and systems have traditionally supported administrative and 

operational reporting activities (capacity, billing, etc.) as opposed to population health 

and clinical needs which has resulted in functionality gaps to address things to support 

accountable care organizations and value-based care. Until recently, data warehouses have 

been massive, relational databases that do a great job of harmonizing vast amounts of data 

from a variety of operational stores, but they require significant up-front development and 

implementation to optimize performance. This approach forces organizations to assume 

in advance what questions will be asked of the warehouse to design and implement it. 

Over time, organizations have learned that this, while it provides significant value, is 

also very inflexible (some changes require rearchitecting of the warehouse) and results in 

long timelines to introduce enhancements. As the move to cloud technology, in-memory 

processing, and flexible data architecture have evolved, the challenges of legacy data 

warehouses are quickly being addressed. This is critical to address the fast-paced and 

everchanging nature of data analytics and biomedical informatics.

Clinical Care

Patient Surveys for Precision Medicine (Marylyn Ritchie)

The promise of precision medicine relies on our ability to integrate all relevant risk factors 

for disease which include clinical risk factors that can be captured in an EHR, but also 

environmental exposures, behavior, and social determinants of health (SDOH). Extracting 

the relevant clinical risk factors from an EHR is done on a regular basis. However, a 

significant amount of data that are needed for precision medicine are simply not captured 

thoroughly in an EHR. A 2015 report from the National Academy of Medicine (NAM) 

identified multiple domains and measures of SDOH that are important for health and disease 

that should be better captured in an EHR but are not captured by clinical providers.71 These 

domains include: sociodemographic factors (education, employment, and financial resource 

strain), psychological factors (health literacy, stress, negative mood, and affect), behavioral 

domains (dietary patterns, physical activity, tobacco, and alcohol use), social relationships 

(social connections and/or isolation and exposure to violence), and neighborhoods and 

community characteristics.71 While advances have been made since the time this report was 

written in 2015, EHRs still lack most of these measures. This gap could be addressed by 

including the nursing, physical and occupational therapy, and social work communities in 

the endeavor to enrich the EHR with these data. Clinical researchers focus on SDOH factors 

in research projects; the consequence is that these data are relegated to sections of the EHR 

that are not routinely accessed by physicians or researchers or that they reside in research 

databases outside of the EHR.

In some precision medicine research programs like the United Kingdom Biobank, which 

is a population-based biobank, data on physical activity, dietary information, and social/

behavioral measures are abundant. Much of these data are collected via participant-reported 

surveys.72 It seems that a powerful approach for precision medicine research in the 

future would include routinely conducting patient-reported surveys to supplement the 

EHR. If informatics tools, algorithms, and workflows to enable the addition of robust 

patient-participant reported data to capture environmental exposures, behavior and SDOH 
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data can be leveraged to supplement EHR data, these additional data will greatly enhance 

opportunities for precision medicine research using EHR data

One way to conduct these surveys in patients from health systems to link with the EHR 

data for research is through the use of the PhenX Toolkit (https://www.phenxtoolkit.org/).73 

The PhenX Toolkit is an online catalog of standard measurement protocols. Currently, there 

are over 800 measurement protocols in the Toolkit addressing 25 research domains. PhenX 

protocols cover a broad scope of research domains (e.g., demographics, cardiovascular, diet 

and nutrition), while collections provide depth in specific areas (e.g., substance abuse and 

addiction research and mental health research). For example, PhenX surveys were used in 

conjunction with EHR data at the Marshfield Clinic. Surveys were mailed to participants 

through the Marshfield Personalized Medicine Research Project (PMRP).74 A total of 36 

measures from the PhenX Toolkit were chosen within the following domains: demographics, 

anthropometrics, alcohol, tobacco and other substances, cardiovascular, environmental 

exposures, cancer, psychiatric, neurology, and physical activity, and physical fitness. The 

results of this study and the high response rate highlight the utility of the PhenX Toolkit as a 

path forward to collect valid phenotypic data that can be used to augment the data available 

in the EHR.

While it is clear that the integration of SDOH and environmental data with the EHR would 

improve health care and research, it is important to note that the lack of behavioral and 

SDOH data is pervasive at an international level, and not unique to health systems and 

EHRs. For example, an analysis of the main indicators to assess the quality of child care 

in 30 European Union (EU)/(European Economic Area) EEA countries highlights that the 

focus continues to emphasize clinical indicators and does not include both individual and 

community wellbeing factors (Luzi et al).75

Clinical Decision Support Systems (Kathryn Bowles and Michael Draugelis)

Building, validating, and implementing clinical decision support (CDS) systems from EHR 

and administrative data holds many challenges, especially data availability and the quality 

of that data. Then, once implemented, CDS system maintenance brings another set of 

unique challenges because health system data are noisy and dynamic. Human-entered data 

contains temporal noise from corrected or deleted data over time, creating a changing 

state of knowledge that health system EHR does not often capture. The missing temporal 

information makes it difficult for researchers or engineers to reproduce or predict system 

performance. This hidden technical debt results in a brittle CDS system whose accuracy is 

continually degrading. Data governance can help by limiting who, when, and how data are 

accessed, as well as reducing incomplete or inaccurate documentation,76,77 and variation 

in data fields.41 In addition to data governance, the CDS maintenance challenges call for 

robust active data monitoring, root-cause analysis, and routine system updates.78,79 Having 

the skilled workforce to manage data quality, extraction, and CDS maintenance is critical 

and may alone be difficult to achieve.
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Clinical Research

Registries (Tessa Cook)

Patient registries are a powerful mechanism for collecting EHR data for quality 

improvement and research. They can be constructed within a single hospital or health 

system, or data collected from the EHRs of multiple hospitals and health systems to 

facilitate large-scale, population-based research. Within a single health system, constructing 

a registry requires careful analysis of the data elements to be used to identify patients 

who belong in the registry. Across multiple contributing systems, setting up a registry is 

a complex task that requires coordination between experts in information security, patient 

privacy, data science, and statistics, in addition to research and health care. One of the 

biggest challenges in collecting data from different EHRs and harmonizing it for addition to 

a registry is the fact that these different EHRs use unique labels and organizational schemes 

for their data.80 No preexisting harmonization mechanism exists. As a result, every new 

registry that is built requires the same steps to be performed again. To address this particular 

challenge, some have explored empowering patients to contribute their data directly to 

registries.73,81 However, this approach has its own challenges that are beyond the scope of 

this discussion.

Registries may collect data for the same patients in a phased approach to make the process 

of contributing to the registry appealing to the participating sites. However, this results 

in another major challenge, namely, establishing and maintaining the accuracy of the data 

within the registry. Because of concerns surrounding patient privacy and data security, 

actual patient identifiers are almost never contributed to a registry. Instead, a mapping table 

between the patient’s true identity and an anonymized identifier is often maintained at the 

contributing site. It can be onerous for a site to access a specific medical record for periodic 

updates to the registry.82 Additionally, errors in the mapping can lead a site to reference the 

wrong patient’s record when updating the registry, thereby decreasing the accuracy of the 

data within the registry.

Study Design (Blanca Himes and Rebecca Hubbard)

Epidemiologic studies and clinical trials are carefully designed in advance of data collection 

to address specific hypotheses. In contrast, studies that use EHR data for secondary purposes 

rely on data generated by a complex process involving patients choosing to interact with 

a health care system, and health care providers and administrators documenting these 

interactions for the purposes of recording clinical care and billing.83 Although EHR data 

can be made to superficially resemble a traditional cross-sectional or longitudinal study, 

the underlying data generation process is starkly different, and this must be considered 

when performing research. Novel and actionable health insights can result from carefully 

designed EHR studies, but if they lack domain knowledge, naïve researchers may design a 

study that only yields findings that are tautological or reflect confounding (e.g., smoking 

history is associated with chronic obstructive pulmonary disease (COPD) and hemoglobin 

A1C tests are associated with diabetes). Health care encounters are sporadic and may not 

capture highly relevant health information that occurs between visits, including encounters 

with providers in other health systems. Additionally, a wide range of information on 
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behavioral, social, economic, and environmental factors that influence health are often 

not recorded in EHRs.84,85 Sicker individuals tend to be overrepresented in EHR-derived 

datasets because they more frequently visit health systems to manage multiple comorbid 

conditions and for urgent care resulting from these conditions.86,87 Even data recorded 

during a single encounter imperfectly represents health processes of interest to researchers 

due to uncertainty of tests used for health assessment and errors in phenotypes assigned 

based on what is available in the EHR. For example, phenotypes can be erroneous due 

to failure to record research-relevant information that was not necessary at the point of 

care, or coarse assignment of conditions based on billing codes, rather than results of a 

full clinical assessment. Moreover, the timing of phenotype detection may lag behind the 

health events themselves, with this lag varying across patients depending on the timing and 

type of health care encounters the patient experiences. As a result, EHR-derived phenotypes 

are an imperfect reflection of patient health, and methods for analysis of EHR data must 

appropriately account for the complex process that connects them to the underlying truth.

Statistical Issues as a Challenge for Research with Electronic Health Record Data (Marylyn 
Ritchie and Qi Long)

While EHRs contain an enormous amount of rich, longitudinal data which can be very 

powerful for observational research studies, there are several statistical issues that need to 

be considered and overcome to generate robust, unbiased findings from analysis of EHRs 

data. First, EHR data are fraught with measurement errors and most notably phenotyping 

errors. It has been widely acknowledged that EHR may not contain sufficient data for some 

clinical endpoints and particularly, ICD codes, developed for billing purposes, that do not 

always accurately capture all medical conditions. For example, it is challenging to define 

progression-free survival in oncology using EHR data. While advanced statistical and ML 

methods have been developed to improve phenotyping accuracy using EHR data,88 the 

resulting “predicted” phenotypes still have some uncertainty that needs to be adequately 

accounted for in subsequent statistical analysis.89 Another statistical issue in EHR data is 

that of variation in the time intervals of measurements and diagnoses across patients. Unlike 

clinical trials or prospective epidemiological cohorts with regularly scheduled follow-up 

visits, because the patient data in an EHR is populated when they visit the health system, 

there is irregularity in the time intervals for different patients. The frequency of patient visits 

and lengths of intervals are often associated with patient’s underlying health condition. For 

some patients, they have routinely scheduled appointments, while for others, there are only 

sporadic and occasional visits. This variability can lead to challenges when trying to perform 

longitudinal and/or time series analyses and can lead to biased results if not adequately 

accounted for in these analyses. There are ongoing efforts on addressing these and other 

challenging statistical issues associated with EHRs data.90

Missing Data (Blanca Hubbard)

Inherent in clinical care is a bias toward ordering tests as needed for better diagnosis, and 

performing procedures and ordering drugs in accordance with patient needs. Additional 

factors, such as type of insurance, can influence what is ordered for patient care and 

eventually recorded in the EHR. Because prespecified protocols do not guide which EHR 

data elements should be collected, unavailability of tests or other information in EHRs does 
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not imply “missing” in the traditional sense of failure to collect data despite an intention to 

do so. Rather, the timing and type of measures available in the EHR are driven by clinical 

and administrative—not research—needs, resulting in inconsistent assessment of patient 

characteristics. Even when rigorous effort is exerted to extract information from EHRs, 

including via manual chart abstraction, text mining, and NLP, some data elements will be 

unavailable for some patients simply because not all measures of interest to researchers were 

recorded. Similarly, presence of data in the EHR can reflect purposeful decision-making, 

as demonstrated by a retrospective study that found that laboratory orders were better 

predictors of outcomes than actual test results.91 Because researchers typically have no 

control over missing or inconsistently collected EHR data, it is critical to understand 

the causes of missingness and adopt methodology that appropriately accounts for the 

missingness mechanism, realizing that in some cases, a problem of interest may simply 

not be addressable.

Many methods have been developed for the analysis of missing data which occurs in all 

studies, regardless of their design. Each approach relies on assumptions about the underlying 

missing data mechanism, the most common of which is that data are missing at random 

(MAR). In the case of MAR, the probability that a measure is missing can be predicted 

on the basis of observed variables. Popular methods such as multiple imputation and 

inverse probability weighting make the MAR assumption. Because EHR data are often 

not MAR, these popular methods may not be appropriate to deal with missing EHR data. 

In the case of missing not at random (MNAR), the probability that a measure is missing 

is associated with the unobserved value itself or other unobserved patient characteristics. 

For EHR data, MNAR results when individuals who are sicker have more encounters, and 

thus, more measurements and types of measures recorded. For cognitively impaired patients, 

missing data may be meaningful and related to the condition because the patient was unable 

to provide the information. Haneuse and Daniels92 suggested that consideration of why 

EHR data were observed and recorded can guide researchers to appropriately use missing 

data methods. Modeling the mechanism underlying the observation process based on an 

understanding of data provenance is more likely to lead to correct specification and hence, 

valid analysis, than the traditional approach to missing data which focuses on specifying 

reasons that data are missing.

Machine Learning and the Electronic Health Record (Ryan Urbanowicz and Michael 
Draugelis)

Machine Learning (ML) holds great promise as a tool for the detection of patterns and 

associations, particularly when the number of potentially predictive variables become large, 

and there is a need to consider complex multivariate relationships. However, ML is far from 

a silver bullet, and its effective use relies on many factors, for example, data dimensions 

(number of variables and instances), signal-to-noise ratio, selecting appropriate methods, 

optimizing hyperparameter settings, and eliminating or accounting for bias. EHR data 

include extensive yet noisy clinical notes, diagnosis and procedure codes, laboratory test 

measurements and results, medication prescriptions, as well as biomedical images such as 

computerized tomography (CT), magnetic resonance imaging (MRI), or pathology images 

where relevant. Thus, there are some specific considerations when applying ML to EHR 
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data due to the biases inherent in EHR. First, applying ML to EHR always constitutes a 

secondary data analysis, meaning that ML is being applied to answer questions that the 

data were not collected to specifically answer.93 This ultimately increases the amount of 

noise and the diversity of bias sources that can negatively impact ML performance. Second, 

EHR data contain longitudinal health information for an individual patient at the point of 

care. Thus, when we construct a three-dimensional matrix that consists of patients, a set 

of variables, and time, the matrix is extremely sparse. This nature of sparseness of EHR 

data makes ML very difficult to train robust models for the outcome prediction. Third, 

disease phenotypes are often not definitively defined or validated in EHR which has led to 

significant interest in computational phenotyping, where phenotypes are themselves derived 

through the application of ML methods.94 Fourth, EHR data typically offer a mixture of 

variable types (e.g., binary, ordinal, quantitative, and categorical). Some ML algorithms 

can favor certain variable types when mixed together in a dataset.95 This is one of many 

potential sources of bias that can impact ML performance.19 Lastly, ML predictive modeling 

requires structured data to train upon. EHR data often include unstructured text or other 

variables that are poorly suited to ML algorithm modeling. Thus, prior to ML modeling, 

EHR data often require preprocessing via NLP and/or feature engineering. Despite these 

considerations, we believe that ML will have a positive impact on many aspects of 

biomedical research with EHR.

Overlap of the Subfacets

The matrix shown in Table 1 illustrates the overlap between the various subfacets as 

presented and discussed in the previous sections, and indicated here by the section number. 

There are several facets that are remarkable for the number of intersections between 

subfacets. These include usability, data quality, data standards, and data integration, and 

reflect the importance of these facets in understanding the use of the EHR for clinical care 

and research (Table 1).

Conclusion

The value of EHRs was clearly demonstrated as health systems around the world 

relied on patient data to understand and respond to the coronavirus pandemic and 

resulting COVID-19. Some of the lessons learned about our health information technology 

infrastructure and informatics methodologies for dealing with this infectious disease 

emergency have been recently reviewed.96 One of these challenges relates to the integration 

of data across health systems to achieve better statistical power and to identify clinical 

patterns and associations which are more likely to generalize across different patient 

populations. This integration can happen in a centralized manner as demonstrated by 

the National COVID Cohort Collaborative (N3C) consortium97 or in a federated manner 

as demonstrated by the Consortium for the Clinical Characterization of COVID-19 by 

EHR(4CE)98 or the OHDSI consortium.99 These data sharing efforts and others have 

revealed that, while we have made a lot of progress on CDMs and standards for data 

integration, there is much work left to do.
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The goal of this review was to summarize the challenges of deriving clinical value and 

research insights from EHR data. We covered the data harmonization, integration, and 

storage challenges faced by the COVID-19 research consortia, as well as many other 

challenges, such as inflexibility of EHRs, data privacy and security, fairness and bias, data 

quality and variability, and analytics including study design, statistics, and machine learning 

(ML). While each of these topics merits intense study, it is important to step back and think 

about how they relate to one another in the context of a learning health system where basic 

science and clinical research are closely integrated with biomedical informatics and clinical 

care to improve the health of individuals and the health care delivery process.100 Central to 

the learning health system is the availability of EHR data in an integrated, standardized, fair, 

and user friendly manner. Basic scientists and clinical researchers need to be able rapidly 

query and get access to clinical data in a self-service manner. CDMs and ontologies can 

play an important role in this self-service model by allowing for natural language queries of 

the data for cohort discovery. Such queries enable anyone to query the data thus bypassing 

the need to engage a data wrangler who are often in short supply with a health system. 

Self-service identification of cohorts and the seamless transfer of clinical data to a secure 

server could greatly reduce the time this normally takes from weeks or months to hours or 

days. This single time reduction could greatly accelerate the generation of research results 

and new knowledge which could benefit a learning health system. Thus, we recommend 

learning health systems invest in self-service data access as a way to accelerate the discovery 

process.

An additional slow step in the learning health system process is data cleaning and quality 

control. As we have discussed, clinical data from EHRs are complex and noisy. Assessing 

and dealing with bias, missingness, extreme values, etc., can consume a lot of time with 

large datasets with hundreds or thousands of variables. It is not unusual for the data cleaning 

phase of the analysis to consume several months or longer. When combined with inefficient 

data access, it is not unusual for 12 months to pass before statistical and ML analyses can 

begin to address a clinical question. Unfortunately, there has not been much progress on 

automating the data cleaning and quality control process for EHR data. Reducing the time 

it takes to clean data from several month to several days or weeks would eliminate a major 

bottleneck. As such, we recommend federal, private sector, and health system investment in 

automated data cleaning methods.

A major barrier on the data science front is access to statisticians and informaticians to 

collaborate on statistical and computational analyses. This is particularly true given the rise 

in demand for artificial intelligence (AI) and ML expertise to identify patterns in big clinical 

data. Unfortunately, advanced statistical methods and many AI and ML methods are beyond 

the reach of nonexperts. This is due to their mathematical and algorithmic complexity, 

computational demands, implementation decisions, such as parameter setting, and the 

lack of user friendly software. A promising development in this space is automated ML 

(AutoML) which is designed to take much of the guesswork out of implementing ML.101 

AutoML has the potential to bring powerful ML methods to nonexperts. The key will be 

to move AutoML software from the command line to user friendly graphical interfaces. An 

additional goal is to automate the interpretation of models generated by AutoML. There 

is much work to be done with AuoML. However, it has the potential to greatly accelerate 
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discovery by putting powerful computational methods in the hands of anyone who want 

to do so. We recommend federal, private sector, and health system investment in AutoML 

methods and their interpretation and explainability.

What COVID-19 has revealed to us is the urgency of making progress on these challenges, 

so that access and use of EHR data can become routine and efficient. We have made several 

recommendations related to accelerating scientific discovery by developing and deploying 

informatics methods and tools for self-service data access and automated data cleaning and 

ML. These steps alone could save users months of time for each study. It is important to 

not lose sight of the many other pieces of the learning health system puzzle. For example, 

advancing a ML model into the clinic through clinical decision support can take years for 

model validation and eventual adoption as part of a clinical workflow with decision support. 

Informatics has a very important role to play in this part of the learning health system 

process as well. It is our hope that this review will motivate researchers with quantitative and 

computational skills to tackle these challenges and will motivate new policies and funding to 

make this a priority.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding

Research reported in this publication was supported by the National Center for Advancing Translational Sciences of 
the National Institutes of Health under award number: UL1TR001878. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the National Institutes of Health.

References

1. Office of the National Coordinator for Health Information Technology. Office-based physician 
electronic health record adoption. Accessed December 8, 2020 at: dashboard.healthit.gov/
quickstats/pages/physician-ehr-adoption-trends.php

2. Office of the National Coordinator for Health Information Technology. Percent of hospitals, by type, 
that possess certified health IT. Accessed December 8, 2020 at: dashboard.healthit.gov/quickstats/
pages/certified-electronic-health-record-technology-in-hospitals.php

3. Artis KA, Bordley J, Mohan V, Gold JA. Data omission by physician trainees on ICU rounds. Crit 
Care Med 2019;47(03):403–409 [PubMed: 30585789] 

4. Shenvi EC, Feupe SF, Yang H, El-Kareh R. “Closing the loop”: a mixed-methods study about 
resident learning from outcome feedback after patient handoffs. Diagnosis (Berl) 2018;5(04):235–
242 [PubMed: 30240357] 

5. Khairat S, Coleman C, Newlin T, et al. A mixed-methods evaluation framework for electronic health 
records usability studies. J Biomed Inform 2019:94:103175 [PubMed: 30981897] 

6. Cohen DJ, Dorr DA, Knierim K, et al. Primary care practices’ abilities and challenges in using 
electronic health record data for quality improvement. Health Aff (Millwood) 2018;37(04):635–643 
[PubMed: 29608365] 

7. Bristol AA, Nibbelink CW, Gephart SM, Carrington JM. Nurses’ use of positive deviance 
when encountering electronic health records-related unintended consequences. Nurs Adm Q 
2018;42(01):E1–E11

8. Gephart S, Carrington JM, Finley B. A systematic review of nurses’ experiences with unintended 
consequences when using the electronic health record. Nurs Adm Q 2015;39(04):345–356 
[PubMed: 26340247] 

Holmes et al. Page 23

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php
http://dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php
http://dashboard.healthit.gov/quickstats/pages/certified-electronic-health-record-technology-in-hospitals.php
http://dashboard.healthit.gov/quickstats/pages/certified-electronic-health-record-technology-in-hospitals.php


9. Friedman A, Crosson JC, Howard J, et al. A typology of electronic health record workarounds 
in small-to-medium size primary care practices. J Am Med Inform Assoc 2014;21(el):e78–e83 
[PubMed: 23904322] 

10. Schiff GD, Zucker L. Medical scribes: salvation for primary care or workaround for poor EMR 
usability? J Gen Intern Med 2016;31(09):979–981 [PubMed: 27412424] 

11. Flanagan ME, Saleem JJ, Millitello LG, Russ AL, Doebbeling BN. Paper- and computer-based 
workarounds to electronic health record use at three benchmark institutions. J Am Med Inform 
Assoc 2013;20(e1):e59–e66 [PubMed: 23492593] 

12. Hysong SJ, Sawhney MK, Wilson L, et al. Provider management strategies of abnormal test result 
alerts: a cognitive task analysis. J Am Med Inform Assoc 2010;17(01):71–77 [PubMed: 20064805] 

13. Menon S, Murphy DR, Singh H, Meyer AND, Sittig DF. Workarounds and test results follow-up 
in electronic health record-based primary care. Appl Clin Inform 2016;7(02):543–559 [PubMed: 
27437060] 

14. Zahabi M, Kaber DB, Swangnetr M. Usability and safety in electronic medical records interface 
design: a review of recent literature and guideline formulation. Hum Factors 2015;57(05):805–834 
[PubMed: 25850118] 

15. Roman LC, Ancker JS, Johnson SB, Senathirajah Y. Navigation in the electronic health record: a 
review of the safety and usability literature. J Biomed Inform 2017;67:69–79 [PubMed: 28088527] 

16. Reid PP, Compton WD, Grossman JH, Fanjiang Geds. National Academy of Engineering (US) 
and Institute of Medicine (US) Committee on Engineering and the Health Care System. Building 
a Better Delivery System: A New Engineering/Health Care Partnership Washington, DC: National 
Academies Press (US); 2005

17. Health information technology: standards, implementation specifications, and certification 
criteria for electronic health record technology. 2014 edition; revisions to the permanent 
certification program for health information technology. Accessed June 17, 2021 at: https://
federalregister.gov/a/2012-20982

18. Ratwani RM, Fairbanks RJ, Hettinger AZ, Benda NC. Electronic health record usability: analysis 
of the user-centered design processes of eleven electronic health record vendors. J Am Med Inform 
Assoc 2015;22(06):1179–1182 [PubMed: 26049532] 

19. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning 
algorithms using electronic health record data. JAMA Intern Med 2018;178(11):1544–1547 
[PubMed: 30128552] 

20. Kearns M, Neel S, Roth A, Wu ZS. An Empirical Study of Rich Subgroup Fairness for Machine 
Learning. In: Proceedings of the Conference on Fairness, Accountability, and Transparency. FAT* 
'19. Association for Computing Machinery; 2019100–109 Doi: 10.1145/3287560.3287592

21. Gijsberts CM, Groenewegen KA, Hoefer IE, et al. Race/ethnic differences in the associations 
of the framingham risk factors with carotid IMT and cardiovascular events. PLoS One 
2015;10(07):e0132321 [PubMed: 26134404] 

22. Eneanya ND, Yang W, Reese PP. Reconsidering the consequences of using race to estimate kidney 
function. JAMA 2019;322(02):113–114 [PubMed: 31169890] 

23. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning 
to advance health equity. Ann Intern Med 2018;169(12):866–872 [PubMed: 30508424] 

24. Ehrmeyer SS, Laessig RH. Has compliance with CLIA requirements really improved quality in US 
clinical laboratories? Clin Chim Acta 2004;346(01):37–43 [PubMed: 15234634] 

25. Greg Miller W, Myers GL, Lou Gantzer M, et al. Roadmap for harmonization of clinical laboratory 
measurement procedures. Clin Chem 2011;57(08):1108–1117 [PubMed: 21677092] 

26. Christenson RH, Jacobs E, Uettwiller-Geiger D, et al. Comparison of 13 commercially available 
cardiac troponin assays in a multicenter North American study. J Appl Lab Med 2017;1(05):544–
561 [PubMed: 33379796] 

27. Huff SM, Rocha RA, McDonald CJ, et al. Development of the logical observation identifier 
names and codes (LOINC) vocabulary. J Am Med Inform Assoc 1998;5(03):276–292 [PubMed: 
9609498] 

28. Cornet R, Chute CG. Health concept and knowledge management: twenty-five years of evolution. 
Yearb Med Inform 2016;1(9312666):(Suppl 1):S32–S41 [PubMed: 27488404] 

Holmes et al. Page 24

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://federalregister.gov/a/2012-20982
https://federalregister.gov/a/2012-20982


29. Centers for Disease Control and Prevention. International Classification of Diseases, 10th Revision 
(ICD-10). Accessed June 17, 2021 at: https://www.cdc.gov/nchs/icd/icd10.htm

30. Bodenreider O, Cornet R, Vreeman DJ. Recent Developments in Clinical Terminologies - 
SNOMED CT, LOINC, and RxNorm. Yearb Med Inform 2018;27(01):129–139 [PubMed: 
30157516] 

31. Hripcsak G, Duke JD, Shah NH, et al. Observational health data sciences and informatics 
(OHDSI): opportunities for observational researchers. Stud Health Technol Inform 2015;216:574–
578 [PubMed: 26262116] 

32. World Health Organization. International Statistical Classification of Diseases and Related Health 
Problems (ICD). ICD-11 Accessed June 17, 2021 at: https://www.who.int/classifica-tions/icd/en/

33. Smith SW, Koppel R. Healthcare information technology’s relativity problems: a typology of how 
patients’ physical reality, clinicians’ mental models, and healthcare information technology differ. 
J Am Med Inform Assoc 2014;21(01):117–131 [PubMed: 23800960] 

34. Woodfield R, Grant I, Sudlow CLUK Biobank Stroke Outcomes Group UK Biobank Follow-Up 
and Outcomes Working Group. Accuracy of electronic health record data for identifying stroke 
cases in large-scale epidemiological studies: a systematic review from the UK Biobank Stroke 
Outcomes Group. PLoS One 2015;10(10):e0140533 [PubMed: 26496350] 

35. Liao KP, Cai T, Savova GK, et al. Development of phenotype algorithms using electronic 
medical records and incorporating natural language processing. BMJ 2015;350:h1885 [PubMed: 
25911572] 

36. Schulz S, Jansen L. Formal ontologies in biomedical knowledge representation. Yearb Med Inform 
2013;8(9312666):132–146 [PubMed: 23974561] 

37. Smith B, Ashburner M, Rosse C, et al. ; OBI Consortium. The OBO Foundry: coordinated 
evolution of ontologies to support biomedical data integration. Nat Biotechnol 2007;25(11):1251–
1255 [PubMed: 17989687] 

38. Zhang XA, Yates A, Vasilevsky N, et al. Semantic integration of clinical laboratory tests 
from electronic health records for deep phenotyping and biomarker discovery. NPJ Digit Med 
2019;2(32):32 [PubMed: 31119199] 

39. Bona JP, Prior FW, Zozus MN, Brochhausen M. Enhancing clinical data and clinical research data 
with biomedical ontologies insights from the knowledge representation perspective. Yearb Med 
Inform 2019;28(01):140–151 [PubMed: 31419826] 

40. Brochhausen M, Bona J, Blobel B. The role of axiomatically-rich ontologies in transforming 
medical data to knowledge. Stud Health Technol Inform 2018;249:38–49 [PubMed: 29866954] 

41. Bowles KH, Potashnik S, Ratcliffe SJ, et al. Conducting research using the electronic health 
record across multi-hospital systems: semantic harmonization implications for administrators. J 
Nurs Adm 2013;43(06):355–360 [PubMed: 23708504] 

42. Nordo AH, Levaux HP, Becnel LB, et al. Use of EHRs data for clinical research: Historical 
progress and current applications. Learn Health Syst 2019;3(01):e10076 [PubMed: 31245598] 

43. Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus MN. Evaluating common data models 
for use with a longitudinal community registry. J Biomed Inform 2016;64:333–341 [PubMed: 
27989817] 

44. Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality. J Am Med 
Inform Assoc 2014;21(04):576–577 [PubMed: 24821744] 

45. Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond with informatics 
for integrating biology and the bedside (i2b2). J Am Med Inform Assoc 2010;17(02):124–130 
[PubMed: 20190053] 

46. Murtagh MJ, Blell MT, Butters OW, et al. Better governance, better access: practising responsible 
data sharing in the META-DAC governance infrastructure. Hum Genomics 2018;12(01):24 
[PubMed: 29695297] 

47. Meinert E, Alturkistani A, Brindley D, Knight P, Wells G, de Pennington N. Weighing benefits and 
risks in aspects of security, privacy and adoption of technology in a value-based healthcare system. 
BMC Med Inform Decis Mak 2018;18(01):100 [PubMed: 30424753] 

Holmes et al. Page 25

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/nchs/icd/icd10.htm
https://www.who.int/classifica-tions/icd/en/


48. Dankar FK, Ptitsyn A, Dankar SK. The development of large-scale de-identified biomedical 
databases in the age of genomics-principles and challenges. Hum Genomics 2018;12(01):19 
[PubMed: 29636096] 

49. Stahl BC, Rainey S, Harris E, Fothergill BT. The role of ethics in data governance of large 
neuro-ICT projects. J Am Med Inform Assoc 2018;25(08):1099–1107 [PubMed: 29767726] 

50. Powles J, Hodson H. Google deepmind and healthcare in an age of algorithms. Health Technol 
(Berl) 2017;7(04):351–367 [PubMed: 29308344] 

51. Roland M Linking physicians’ pay to the quality of care–a major experiment in the United 
Kingdom. N Engl J Med 2004;351(14):1448–1454 [PubMed: 15459308] 

52. Roland M, Guthrie B. Quality and outcomes framework: what have we learnt? BMJ 
2016;354:i4060 [PubMed: 27492602] 

53. United States District Court Northern District of Illinois Eastern Division. MATT DINERSTEIN, 
individually and on behalf of all others similarly situated, Plaintiff, v. Google, LLC, a 
Delaware limited liability company, THE UNIVERSITY OF CHICAGO MEDICAL CENTER, 
an Illinois not-for-profit corporation, and THE UNIVERSITY OF CHICAGO, an Illinois 
not-for-profit corporation. Accessed June 17, 2021 at: https://www.courtlistener.com/recap/
gov.uscourts.ilnd.366172/gov.uscourts.ilnd.366172.85.0.pdf

54. Ohno-Machado L To share or not to share: that is not the question. Sci Transl Med 
2012;4(165):165cm15

55. Wu Y, Jiang X, Kim J, Ohno-Machado L. Grid Binary LOgistic REgression (GLORE): building 
shared models without sharing data. J Am Med Inform Assoc 2012;19(05):758–764 [PubMed: 
22511014] 

56. Ohno-Machado L, Agha Z, Bell DS, et al. ; pSCANNER team. pSCANNER: patient-centered 
scalable national network for effectiveness research. J Am Med Inform Assoc 2014;21(04):621–
626 [PubMed: 24780722] 

57. Duan R, Boland MR, Liu Z, et al. Learning from electronic health records across multiple sites: 
a communication-efficient and privacy-preserving distributed algorithm. J Am Med Inform Assoc 
2020;27(03):376–385 [PubMed: 31816040] 

58. Duan R, Luo C, Schuemie MJ, et al. Learning from local to global: an efficient distributed 
algorithm for modeling time-to-event data. J Am Med Inform Assoc 2020;27(07):1028–1036 
[PubMed: 32626900] 

59. Deng Y, Jiang X, Long Q. Privacy-preserving methods for vertically partitioned incomplete data. 
Annu Symp Am Med Inform Assoc 2021;2020:348–357

60. Chang C, Deng Y, Jiang X, Long Q. Multiple imputation for analysis of incomplete data in 
distributed health data networks. Nat Commun 2020;11(01):5467 [PubMed: 33122624] 

61. Health Information Privacy. Guidance regarding methods for de-identification of protected health 
information in accordance with the Health Insurance Portability and Accountability Act (HIPAA) 
privacy rule. Accessed August 3, 2020. Accessed August 3, 2020 at: https://www.hhs.gov/hipaa/
for-professionals/privacy/special-topics/de--identification/index.html

62. Kushida CA, Nichols DA, Jadrnicek R, Miller R, Walsh JK, Griffin K. Strategies for de-
identification and anonymization of electronic health record data for use in multicenter research 
studies. Med Care 2012;50:S82–S101 [PubMed: 22692265] 

63. Rocher L, Hendrickx JM, de Montjoye Y-A. Estimating the success of re-identifications 
in incomplete datasets using generative models. Nat Commun 2019;10(01):3069 [PubMed: 
31337762] 

64. Meystre SM, Friedlin FJ, South BR, Shen S, Samore MH. Automatic de-identification of textual 
documents in the electronic health record: a review of recent research. BMC Med Res Methodol 
2010;10(100968545):70 [PubMed: 20678228] 

65. Hayden EC. Privacy loophole found in genetic databases. Accessed June 17, 2021 at: https://
www.nature.com/articles/nature.2013.12237

66. Pecoraro F, Luzi D, Ricci FL. Designing ETL tools to feed a data warehouse based on electronic 
healthcare record infrastructure. Stud Health Technol Inform 2015;210:929–933 [PubMed: 
25991292] 

Holmes et al. Page 26

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.courtlistener.com/recap/gov.uscourts.ilnd.366172/gov.uscourts.ilnd.366172.85.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.ilnd.366172/gov.uscourts.ilnd.366172.85.0.pdf
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de--identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de--identification/index.html
https://www.nature.com/articles/nature.2013.12237
https://www.nature.com/articles/nature.2013.12237


67. Pecoraro F, Luzi D, Ricci FL. Secondary uses of EHR systems: A feasibility study. Published in: 
E-Health and Bioengineering Conference (EHB) 21–23 November. 2013; Iasi, Romania; 2013:1–6

68. Botsis T, Hartvigsen G, Chen F, Weng C. Secondary use of EHR: data quality issues and 
informatics opportunities. Summit On Translat Bioinforma 2010;2010:1–5

69. Weiskopf NG, Hripcsak G, Swaminathan S, Weng C. Defining and measuring completeness of 
electronic health records for secondary use. J Biomed Inform 2013;46(05):830–836 [PubMed: 
23820016] 

70. Kroth PJ, Morioka-Douglas N, Veres S, et al. Association of electronic health record design and 
use factors with clinician stress and burnout. JAMA Netw Open 2019;2(08):e199609–e199609 
[PubMed: 31418810] 

71. National Academy of Medicine, Board on Population Health and Public Health Practice Institute of 
Medicine. Capturing Social and Behavioral Domains and Measures in Electronic Health Records: 
Phase 2. Washington, DC: National Academies Press (US); 2015

72. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and 
genomic data. Nature 2018;562(7726):203–209 [PubMed: 30305743] 

73. Hamilton CM, Strader LC, Pratt JG, et al. The PhenX Toolkit: get the most from your measures. 
Am J Epidemiol 2011;174(03):253–260 [PubMed: 21749974] 

74. McCarty CA, Berg R, Rottscheit CM, et al. Validation of PhenX measures in the personalized 
medicine research project for use in gene/environment studies. BMC Med Genomics 2014;7:3 
[PubMed: 24423110] 

75. Luzi D, Rocco I, Tamburis O, Corso B, Minicuci N, Pecoraro F. Variability in the 
assessment of children’s primary healthcare in 30 European countries. Int J Qual Health Care 
2021;33(01):mzab007 [PubMed: 33449077] 

76. Deans KJ, Sabihi S, Forrest CB. Learning health systems. Semin Pediatr Surg 2018;27(06):375–
378 [PubMed: 30473042] 

77. Sarafidis M, Tarousi M, Anastasiou A, et al. Data quality challenges in a learning health system. 
Stud Health Technol Inform 2020;270:143–147 [PubMed: 32570363] 

78. Chen JH, Alagappan M, Goldstein MK, Asch SM, Altman RB. Decaying relevance of clinical 
data towards future decisions in data-driven inpatient clinical order sets. Int J Med Inform 
2017;102:71–79 [PubMed: 28495350] 

79. Sculley D, Holt G, Golovin D, et al. Hidden technical debt in machine learning systems. Accessed 
June 17, 2021 at: https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-
Paper.pdf

80. Mathes T, Buehn S, Prengel P, Pieper D. Registry-based randomized controlled trials merged the 
strength of randomized controlled trails and observational studies and give rise to more pragmatic 
trials. J Clin Epidemiol 2018;93:120–127 [PubMed: 28951111] 

81. Workman TA. Engaging Patients in Information Sharing and Data Collection: The Role of Patient-
Powered Registries and Research Networks. Rockville, MD: Agency for Healthcare Research and 
Quality; 2013

82. Wozniak L, Soprovich A, Rees S, Johnson ST, Majumdar SR, Johnson JA. Challenges in 
identifying patients with Type 2 Diabetes for quality-improvement interventions in primary care 
settings and the importance of valid disease registires. Can J Diabetes 2015;39(Suppl 3):S77–S82 
[PubMed: 26145485] 

83. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med 
Inform Assoc 2013;20(01):117–121 [PubMed: 22955496] 

84. Xie S, Himes BE. Approaches to link geospatially varying social, economic, and environmental 
factors with electronic health record data to better understand asthma exacerbations. AMIA Annu 
Symp Proc 2018;2018:1561–1570 [PubMed: 30815202] 

85. Xie S, Greenblatt R, Levy MZ, Himes BE. Enhancing electronic health record data with geospatial 
information. AMIA Jt Summits Transl Sci Proc 2017;2017:123–132 [PubMed: 28815121] 

86. Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias 
due to the number of health encounters in an electronic health record. Am J Epidemiol 
2016;184(11):847–855 [PubMed: 27852603] 

Holmes et al. Page 27

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf


87. Rusanov A, Weiskopf NG, Wang S, Weng C. Hidden in plain sight: bias towards sick patients 
when sampling patients with sufficient electronic health record data for research. BMC Med 
Inform Decis Mak 2014;14(01):51 [PubMed: 24916006] 

88. Wei W-Q, Teixeira PL, Mo H, Cronin RM, Warner JL, Denny JC. Combining billing codes, 
clinical notes, and medications from electronic health records provides superior phenotyping 
performance. J Am Med Inform Assoc 2016;23(e1):e20–e27 [PubMed: 26338219] 

89. Hubbard RA, Tong J, Duan R, Chen Y. Reducing bias due to outcome misclassification 
for epidemiologic studies using EHR-derived probabilistic phenotypes. Epidemiology 
2020;31(04):542–550 [PubMed: 32282406] 

90. Shortreed SM, Cook AJ, Coley RY, Bobb JF, Nelson JC. Challenges and opportunities for 
using big health care data to advance medical science and public health. Am J Epidemiol 
2019;188(05):851–861 [PubMed: 30877288] 

91. Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes 
within the healthcare system: retrospective observational study. BMJ 2018;361:k1479 [PubMed: 
29712648] 

92. Haneuse S, Daniels M. A general framework for considering selection bias in EHR-based studies: 
what data are observed and why? EGEMS (Wash DC) 2016;4(01):1203 [PubMed: 27668265] 

93. Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and 
a comparison of machine learning approaches. Med Care 2010;48(06):S106–S113 [PubMed: 
20473190] 

94. Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, 
recent advances, and perspectives. J Am Med Inform Assoc 2013;20(e2):e206–e211 [PubMed: 
24302669] 

95. Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. 
Mach Learn 2003;53:23–69

96. Madhavan S, Bastarache L, Brown JS, et al. Use of electronic health records to support a public 
health response to the COVID-19 pandemic in the United States: a perspective from 15 academic 
medical centers. J Am Med Inform Assoc 2021;28(02):393–401 [PubMed: 33260207] 

97. Haendel MA, Chute CG, Bennett TD, et al. The national COVID cohort collaborative (N3C): 
rationale, design, infrastructure, and deployment. J Am Med Inform Assoc 2021;28(03):427–443 
[PubMed: 32805036] 

98. Brat GA, Weber GM, Gehlenborg N, et al. International electronic health record-derived 
COVID-19 clinical course profiles: the 4CE consortium. NPJ Digit Med 2020;3:109 [PubMed: 
32864472] 

99. Burn E, You SC, Sena AG, et al. Deep phenotyping of 34,128 adult patients hospitalised 
with COVID-19 in an international network study. Nat Commun 2020;11(01):5009 [PubMed: 
33024121] 

100. Friedman C, Rubin J, Brown J, et al. Toward a science of learning systems: a research agenda 
for the high-functioning learning health system. J Am Med Inform Assoc 2015;22(01):43–50 
[PubMed: 25342177] 

101. Hutter F, Kotthoff L, Vanschoren J. Automated Machine Learning: Methods, Systems, 
Challenges. 1st ed. Switzerland: Springer Nature; 2019

Holmes et al. Page 28

Methods Inf Med. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Directed acyclic graph illustrating the five entities and activities (facets) that affect the use 

of the EHR in clinical care and research. The direction of the links indicates the direction 

of the relationship. For example, standards impact data quality, and standards impact data 

governance, which in turn impacts data integration. EHR, electronic health record.
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Fig. 2. 
Venn diagram illustrating the overlap between the five facets as they relate to each other 

and the central concept, use of the EHR in clinical care and research. Red: EHR usability 

and usefulness; green: EHR data quality; blue: EHR standards; yellow: EHR and other data 

integration; black: EHR governance; violet: use of the EHR in clinical care and research.
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