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Summary

Gut microbiota metabolism of dietary compounds generates a vast array of microbiome-

dependent metabolites (MDMs), which are highly variable between individuals. The uremic 

MDMs (uMDMs) phenylacetylglutamine (PAG), p-cresol sulfate (PCS) and indoxyl sulfate 

(IS) accumulate during renal failure and are associated with poor outcomes. Targeted dietary 

interventions may reduce toxic MDMs generation; however, it is unclear if interindividual 

differences in diet or gut microbiome dominantly contribute to MDM variance. Here we use 
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a 7-day homogeneous average American diet to standardize dietary precursor availability in 

21 healthy individuals. During dietary homogeneity, the coefficient of variation in PAG, PCS, 

and IS (primary outcome), did not decrease, nor did interindividual variation in most identified 

metabolites; other microbiome metrics showed no or modest responses to the intervention. Host 

identity and age are dominant contributors to variability in MDMs. These results highlight the 

potential need to pair dietary modification with microbial therapies to control MDM profiles.

Graphical Abstract

eTOC Blurb

Guthrie et al. determine the extent to which diet or the gut microbiome contribute to interpersonal 

variation in microbiome-dependent metabolites that are high priority targets of nutritional 

strategies to minimize levels. Diet homogeneity decreases inter-individual variability in hippurate, 

but not key uremic solutes phenylacetylglutamine, p-cresol sulfate and indoxyl sulfate.

Introduction

Dietary change is known to impact the human gut microbiome and physiological status 

including influencing metabolic and immune parameters (Martínez et al., 2013; Wu et al., 

2016; Wastyk et al., 2021). Human diets are sources of chemically diverse substrates for gut 

microbiota metabolism, which generates over 30,000 microbiome-dependent metabolites 

(MDMs)(Glowacki and Martens, 2020). MDMs produced as a consequence of gut 

microbiota metabolism are associated with cardio-renal diseases(Tang and Hazen, 2014; 
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Guldris, Parra and Amenós, 2017), obesity(Liu et al., 2017), metabolic syndrome(Pedersen 

et al., 2016) and cancer(O’Keefe, 2016), reach high concentrations (mM) in systemic 

circulation(Dobre, Meyer and Hostetter, 2020), and most are cleared by the kidneys and 

eliminated in urine. When kidney function declines, MDMs accumulate as some of the 

most abundant uremic solutes (uMDMs)(Mair et al., 2018; Dobre, Meyer and Hostetter, 

2020), which have well defined mechanisms of toxicity(Koppe et al., 2013; Edamatsu et 

al., 2014; Xu et al., 2021), and are difficult to clear via dialysis alone(Dobre, Meyer and 

Hostetter, 2020). The levels of two uMDMs, p-cresol sulfate (PCS) and indoxyl sulfate (IS), 

are highly variable between individuals, but stable within an individual over time(Patel et al., 

2012), indicating precision strategies to reduce their level of production could be clinically 

beneficial. While targeted dietary interventions are an attractive approach to modulate the 

accumulation of potentially toxic MDMs, the extent that diet can be used to modulate and 

control MDM production remains incompletely understood.

Several interventions have investigated the influence of diet modifiable factors on MDM 

levels. Protein restriction was shown in early studies to ameliorate uremic symptoms 

and also to reduce urinary excretion of compounds including PCS, consistent with many 

uMDMs being amino acid-derived (Evenepoel et al., 2009; Itoh et al., 2013). Increasing the 

intake of fiber, defined as carbohydrates that are not absorbed in the small intestine, has been 

hypothesized to program the microbiota to reduce degradation of amino acids(Sirich et al., 

2014; Cases et al., 2019). Vegetarians produce less PCS and IS than omnivores, coincident 

with higher fiber and less protein intake(Patel et al., 2012). In hemodialysis patients, a 

randomized trial has shown that daily intake of 18 g of fiber in the form of resistant starch 

for 6 weeks reduced plasma levels of IS(Sirich et al., 2014).

We carried out the Microbiome Individuality and Stability Over Time (MISO) study to 

investigate interpersonal variation in diet derived MDM levels when diet is homogenized 

and highly standardized. MISO study participants’ urine, fecal and plasma metabolomes and 

stool metagenomes were profiled before, during, and after undergoing a 7-day standardized 

homogeneous diet. We designed the study to add a layer of stringency not previously 

achieved for microbiome focused studies, even in the most highly controlled in-patient diet 

intervention studies reported(Wu et al., 2011, 2016). Even when participants are receiving 

the same meals as one another, meal-to-meal variation (e.g., different content of breakfast 

vs. lunch) combined with variation in gut motility can result in differences in the chemical 

environment experienced by two participant’s respective microbiomes at a given sampling 

time point. Therefore, interindividual differences in, for example, serum metabolites, are 

difficult to attribute to temporal diet variation vs. individualized aspects of the microbiota. 

Our study, in providing a uniform chopped salad format for 7 days ensures that bite-after-

bite is homogenized between participants; therefore, it is expected that dietary chemical flow 

through the colon should be as uniform as possible between participants over the course of 

sampling during the intervention period.

As factors that shape intestinal microbiota composition and its metabolic output are 

incompletely understood, the homogenous dietary intervention helped to identify both 

dietary and host factors impacting microbiota composition, function, and metabolic 

output. To address whether homogenization of diet between participants reduces 
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interindividual variation in three key uMDMs associated with cardiovascular and renal 

toxicity(Ravid, Kamel and Chitalia, 2021), indoxyl sulphate (IS), p-cresol sulfate (PCS) and 

phenylacetylglutamine (PAG), a reduction in interindividual variation in the urine levels of 

these uMDMs served as the primary outcome. Beyond examining how diet impacts these 

three metabolites of interest, the study design enables us to examine how other aspects of 

microbiome composition, metabolic output, and function are affected when dietary variation 

between people and over time are eliminated. We used a microbiome-focused metabolomics 

pipeline to assess MDMs in fecal, urine, and plasma samples, and carried out shotgun 

metagenomic sequencing and 16S rRNA sequencing on fecal samples to assess microbiome 

functional potential and microbiome composition. Our approach identifies MDMs for 

which dietary strategies may be effective at impacting metabolite levels and identifies 

MDMs for which the microbiome or other individualized factors play a dominant role 

over this dietary intervention. Specifically, we identified host identity and age as dominant 

contributors to variability in microbiome-dependent metabolite levels broadly. The results 

suggest microbiome reprogramming or alternative dietary strategies may be required for 

changing much of the metabolic output of an individual’s gut microbial community.

Results

Overview of study design and dietary intervention

We performed a controlled feeding study to quantify the impact of a homogeneous 

diet on interpersonal variability in the excreted levels of MDMs in a healthy cohort 

(ClinicalTrials.gov Identifier: NCT04740684). Of the 61 individuals assessed for eligibility, 

26 were enrolled and 21 participants completed the study and were used for the analysis 

(Figure 1A). The final cohort were adults (age 48 ± 14 y [mean ± SD]), with a mean 

body surface area (BSA) of 1.93 ± 0.27 m2 (Table 1). We enrolled healthy volunteers with 

diverse habitual diets, to understand the effects of homogenizing their diet, regardless of 

their baseline diet. We quantified and compared MDM levels in enrolled participants during 

three phases: the baseline diet (BD) phase (days 1-14), the homogeneous diet (HD) phase 

(days 15 - 21) and the washout (WO) phase (days 22-28) (Figure 1B). During the 14-day 

BD phase, study subjects were instructed to maintain their habitual diet and food logs were 

used to assess their dietary patterns. Participants showed diverse habitual diets, defined by 

a coefficient of variation CV greater than 25 % of macro nutrients (Figure S1). During the 

7-day HD phase, study participants consumed single serve portions of a standardized diet 

ad libitum (Table S1) that was prepared in a commercial kitchen and packaged in 295 g 

portions.

The HD was designed to recapitulate the diet quality, and specifically the fiber and 

macronutrient ranges(Grotto and Zied, 2010), common to adults in America based on 

the National Health and Nutrition Examination surveys and additional studies(Grotto and 

Zied, 2010). Although each participant consumed identical diets during HD (i.e., same 

composition and percentage of macronutrients), the amount of the HD consumed across 

participants varied as expected due to differences in individual caloric needs (we also did 

not want to confound the results with weight changes during this intervention) (Figure 

S1). During the 7-day WO phase study subjects resumed their habitual diet. In addition to 
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collecting detailed participant food logs during the BD and HD study phases, we collected 

stool, blood, and urine samples at five different timepoints, inclusive of all three study 

phases, for microbiome and metabolome profiling (Figure 1B). The overall macronutrient 

composition of dietary protein, carbohydrates and fats were relatively stable across the BD 

and HD study phases (37.5 vs 35.1% for fat, 17.0 vs 14.9% for protein and 45.8 vs 51.3% 

for carbohydrates), amounting to a modest decline in total protein between the BD and HD 

(Figure 1C; Figure S1D, paired Wilcoxon signed rank test, p = 0.03) and significant decrease 

in overall fiber during the HD phase (Figure S1B, paired Wilcoxon signed rank test, p < 

0.0001).

We wished to define how interpersonal and intrapersonal (i.e., temporal) variability in 

microbiome-dependent metabolites (MDMs), genes and species were affected by the 

homogeneous diet. Therefore, we performed shotgun metagenomic sequencing and 16S 

rRNA sequencing on fecal samples and targeted metabolomics of uremic solutes on urine 

samples; and we used a microbiome-focused metabolomics pipeline that we recently 

reported(Han et al., 2021) on fecal, plasma and urine samples from each participant. 

Participant microbiome composition profiles were varied, and as has been previously shown 

in studies of healthy individuals(‘The Integrative Human Microbiome Project: Dynamic 

Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease’, 

2014), the most prevalent phyla were the Bacteroidetes and Firmicutes (Figure 1D). The 

relative abundance of the most prevalent microbiome functional pathways annotated in 

MISO participants remained stable throughout the study (Figure 1E). Our MDM-focused 

metabolomic profiling revealed extensive chemical diversity of the participants’ fecal, 

plasma and urine metabolomes; metabolites were mapped to their structure-based chemical 

ontology at the Superclass level (Figure 1F). MDM metabolome composition was more 

variable in some subjects across the study period and identity as a fecal, plasma, or urine 

MDM.

A 7-day homogeneous diet does not reduce interpersonal variation in three amino-acid 
derived uMDMs

To characterize the impact of homogenizing diet over a 7-day period on interpersonal 

variation in the output of uremic microbiota-dependent metabolites (uMDMs), we profiled 

uMDM levels in urine using targeted mass spectrometry during the BD, HD, and WO 

study phases. The primary outcome for this study was a 25% reduction of the coefficient 

of variation (CV) of 24 hour urinary excretion of at least 1 of 3 well-studied uMDMs 

that are derived from dietary amino acids: (p-cresol sulfate (PCS), indoxyl sulfate (IS), 

or phenylacetylglutamine (PAG)) measured and normalized to a body surface area of 1.73 

m2 using the formula of Mosteller(Mosteller, 1987), during the HD phase as compared to 

the BD phase (Figure S2). The first (BD phase) and fourth (HD phase) time points were 

compared for change in CV calculations. Urine IS levels decreased by 2.8 mg/day/1.73 with 

a CV decrease of 1.7% (p = 0.86). Urine PCS levels increased by 3.9 mg/day/1.73, with a 

CV increase of 11.2% (p = 0.20). PAG levels increased by 7.7 mg/day/1.73 and had a CV 

reduction of 0.05 % (p = 0.49). Therefore, although all three uMDMs exhibited changes 

in CV during the 7-day homogeneous diet, they did not uniformly decrease, and did not 

meet the primary endpoint as each of the 3 metabolites had less than a 25% reduction in 
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interpersonal variation as measured by %CV (Table 2) and the % CV between time points 1 

and 4 did not uniformly decline (Figure 2A).

While we found no significant decline in CV for PCS, IS, or PAG, median macronutrient 

levels did decline between the BD and HD phases. Notably, urine urea nitrogen, an indicator 

of total protein breakdown, decreased during the intervention phase (Figure S1F, paired 

Wilcoxon signed rank test, p = 0.01 with a CV reduction of 12.7%; p = 0.0018), consistent 

with the decreased protein intake by participants during HD (Figure S1D). These data 

indicate that the reduction in total protein was not sufficient to reduce interpersonal variance 

in amino acid-derived metabolites, PCS, IS, and PAG. To determine the effects of any diet 

components on the levels of any of the 3 primary endpoint metabolites, we developed a 

mixed-effects model for each metabolite normalized measurements at time point 4, that 

considered biological sex. The effect sizes computed showed that carbohydrate consumption 

provided a significant increase in PAG levels, but no significant metabolite levels and diet 

for IS and PCS (Figure S2A). We also found no correspondence between Primary outcome 

uremic solute levels and the relative abundance of the major microbiome encoded gene 

responsible for their production (Figure S2C).

Dietary carbohydrates predict urine hippuric acid levels

Given that we saw a reduction in total consumption of fiber during the intervention HD 

phase (Figure S1B, paired Wilcoxon signed rank test, p < 0.0001), and a moderate decline in 

carbohydrates (Figure S1A), we wondered whether uMDMs derived from precursors found 

in carbohydrates and fiber were sensitive to the HD phase of the study. Specifically, we 

focused on hippuric acid, a uMDM that we profiled in urine using the same targeted mass 

spectrometry applied to IS, PCS and PAG. Host and microbial degradation of flavonoids like 

(−)-epigallocatechin result in the production of hippurate, which has urinary excretion values 

ranging from 700-1600 umol in healthy individuals(van der Hooft et al., 2012). Hippuric 

acid also accumulates at high levels in individuals with failing kidneys, but unlike IS, PCS, 

and PAG, there is no compelling evidence of adverse health associations, and therefore it 

was not included in our primary endpoint.

Hippuric acid (Figure 2B), is known to respond dynamically to dietary interventions(Martin 

et al., 2009; Lees et al., 2013), and can be derived from both plant polysaccharides (e.g., 

fiber) and protein sources. During the HD phase, the mean levels of hippuric acid decreased 

and the overall interpersonal variation decreased by 27.9 % difference in hippuric acid 

CV between time point 1 (BD) and time point 4 (HD) (Figure 2A, p = 0.011). During 

the WO phase, the CV returned to baseline levels, indicating that dietary heterogeneity 

between participants is a key determinant in hippuric acid production and variation. We 

next hypothesized that altered macronutrients and intrinsic microbiome capacity shaped 

hippuric acid levels during the HD phase. Using a mixed-effects model that considered 

dietary macronutrient intake parameters as covariates and controlling for host parameters 

(i.e., biological sex), we quantified the role of diet and bacterial metabolism (metagenomic 

data) on the levels of hippuric acid. Carbohydrate levels positively contribute to hippuric 

acid levels based on the computed effect sizes, and total protein negatively contributed 

to hippuric acid levels (Figure 2C, linear model, p = 0.04). We found no correspondence 
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between hippuric acid levels and the relative abundance of the microbiome encoded enzyme 

responsible for producing a precursor, phenylalanine ammonia-lyase (PAL) (Figure S2C). 

These findings indicate that the observed reduction in the CV and urine levels for hippuric 

acid is dietary precursor dependent, consistent with the decrease in variability observed 

between study participants during the HD phase.

The HD intervention reduces inter- and intra- personal variation in microbiome 
composition, function, and metabolic output

We leveraged the study design and participant samples to examine how a homogeneous diet 

impacts a broader array of MDMs, genes, and microbial composition. We first investigated 

how the HD intervention shaped interpersonal variation in participant microbiomes.

Our microbiome focused metabolomics pipeline allowed us to broadly identify, beyond the 

IS,PCS,PAG, and hippuric acid, MDMs that decline in inter-individual variation due to the 

homogeneous average American diet consumed by participants in our study. We defined 

HD diet sensitive metabolites based on a 25% reduction of the coefficient of variation 

(CV) based on the first (BD phase) and fourth (HD phase) time points. Metabolomic data 

for urine, plasma, and fecal samples resulted in 168, 183, and 320 different metabolites, 

respectively, observed in 80% of participants for at least one time point. We evaluated 

the % change in CV between BD phase time point 1 and HD phase time point 4 for 

all fecal, urine, and plasma metabolites present in ≥80% of a given sample type (see 

Methods). We identified 45 fecal, 15 plasma and 16 urine metabolites with ≥25% reduction 

in interpersonal variation (CV) during the HD phase (Figure 3A). Although some of the 

metabolites identified by this pipeline are independent of microbiota metabolism (e.g., 

derived from host, diet, or medication), known urine MDMs, p-cresol glucuronide and 

indole-3-acetic acid (IAA) are colon-derived uremic solutes8, that share precursors with 

PCS and IS respectively, and show a 66.4 % and 37.9 % reduction in CV in urine levels 

during HD, respectively; IAA also shows a reduction in fecal CV (27.6 %). While variation 

in overall microbiome dependent metabolic output was largely independent of study phase 

(Figure 1), this analysis suggests that unifying diet may reduce interpersonal variation for a 

subset of uremic solutes.

To better understand the impact of the HD diet on inter-personal variation in all microbiome-

dependent data types collected in the study, we calculated the Bray-Curtis dissimilarity (as 

a measure of uniqueness: the higher the value the more dissimilar from other samples) of 

participant microbiome composition (16S rRNA), fecal metagenomes, and metabolomes of 

urine, plasma, and stool. Data were collected at all study time points, reflecting all three 

phases of the study. 16S rRNA amplicon sequencing resulted in an average of 46,714 (range 

17,989-70,638) reads per sample, an average of 252 ASVs per sample (range 77-331), and 

534 ASVs that occurred in 80% of participants for at least one time point (a criteria set for 

further analysis; see STAR methods). We found that interpersonal variation in microbiome 

composition and fecal metabolomes declined in the HD phase relative to the BD phase and 

increased during the WO phase relative to HD phase (Figure 3B,C; paired Wilcoxon signed 

rank test, p = 0.002 and p < 0.003; respectively). These data illustrate that a small but 
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measurable amount of variation between people in the compositional features and functional 

output of the gut microbiome are driven by differences in diet.

We next generated random forest models to determine which microbiome-associated data 

types were useful in differentiating participant samples into BD vs HD phases. We built 

independent models for ASV abundance, fecal metabolome, plasma metabolome, and urine 

metabolome, and assessed their ability to correctly classify study phase independently 

(Table S2, Figure S3). As a positive control, we developed a model based on participant 

macronutrient and fiber data, which at 87.5 % accuracy, had the highest accuracy for 

distinguishing BD (1 or 2) versus HD (3 or 4) study time points (Figure 3D). The 

best microbiome-associated data to classify participants by study phase were the fecal 

metabolomic profiles, with 62.5 % accuracy (Figure 3D). The fecal metabolite most 

explanatory for study phase was host derived creatine, followed by 4-hydroxyphenylacetic 

acid, an MDM of tyrosine (Figure 3E; time point 2 versus time point 3, LOOCV). Plasma 

and urine metabolomic profiles, and microbiome compositional features were no better 

than chance in classifying samples into the correct diet phase. Our results suggest that no 

individual metabolite had greater than 4 % explanatory power, however we note the limited 

generalizability of these findings given the small sample set, and the unique design of our 

intervention that lacks an appropriate external validation cohort.

Previous studies have demonstrated a dominant role of diet and environment in dictating 

features within the microbiome(David et al., 2013; Rothschild et al., 2018). We used 

permutational multivariate analysis of variance (PERMANOVA), to quantify the extent of 

variance in microbiome composition, function, and metabolic output explained by each host- 

and diet-associated variable that we measured. The majority of variation in microbiome 

features measured, which include species and genes found within the microbiome, and 

plasma, urine, and fecal metabolites, is due to host identity (Figure 4A), consistent 

with previous work demonstrating individuality of the microbiome in longitudinal dietary 

intervention studies(Zhu et al., 2015; Falony et al., 2016; Zmora et al., 2016; Zeevi et 

al., 2019). Age (15%), body surface area (8%), and biological sex (3%) also explain a 

significant portion of variance across all data types (p < 0.05). Host identity has a greater 

impact on plasma (47%) and urine (45%) derived host-microbe metabolomes compared to 

participant fecal metabolomes (23%). Age contributes to 11% of the plasma host-microbe 

metabolome, but not to the urine or fecal metabolomes, consistent with previous reports 

of age-related plasma metabolomic profiles(Oliphant and Allen-Vercoe, 2019; Zeevi et al., 

2019; Asnicar et al., 2021). Overall, we found that the study time point explains 1-2% of the 

variance in microbiome composition, function, and metabolome.

We were intrigued by the limited impact of the HD intervention on interpersonal variation, 

and next sought to better understand how the HD diet impacted interpersonal variability 

in microbiome features when comparing the BD and HD phases. We hypothesized that, 

we would also observe that intrapersonal differences (i.e., temporal changes within study 

participants) would be greater in the BD phase, due to day-to-day variation in diet, in 

comparison to the HD phase. For each participant we calculated a Bray-Curtis dissimilarity 

matrix for the microbiome associated data types and computed the beta-diversity of each by 

comparing the difference in dissimilarity values for the two time points collected in the BD 
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and HD phase. This approach allowed us to assess whether the homogeneous diet decreased 

overall interpersonal variation in these high-dimensional datasets. Participant microbiome 

16S composition beta-diversity decreased significantly in the HD phase (Figure 4B, paired 

Wilcoxon signed rank test, p < 0.001). One caveat is that the two BD timepoints are 

separated by 14 days, whereas the HD timepoints are only 3 days apart. To assess the impact 

of the interval between time points on beta diversity, we compared additional timepoints 

where diet varies as controls and observed no relationship between time and b-diversity, 

supporting the impact of HD, rather than the time interval, on reduced b-diversity. Overall 

microbiota Shannon alpha diversity, a measure of species richness and diversity, did not 

decrease during the HD study phase or change cohort-wide over the study (Figure S4). 

These data are in keeping with the individuality and temporal stability of microbiome 

alpha and beta diversity of other short-term dietary interventions studies(David et al., 2013; 

Johnson et al., 2019).

Decreased dietary fiber consumption results in a shift in carbohydrate utilization within 

the microbiome towards mucin glycan degradation and away from plant carbohydrate 

degradation(Zhu et al., 2015; Smits et al., 2016, 2017; Sonnenburg and Bäckhed, 2016). 

Therefore, we hypothesized that the decrease in fiber during the HD phase would be 

reflected in an increased ratio of genes predicted to encode mucin- relative to plant-glycan-

degrading enzymes in participants’ metagenomes. We assigned glycoside hydrolases and 

polysaccharide lyases (i.e., carbohydrate active enzymes, or CAZymes) represented within 

participant metagenomes to mucin or plant carbohydrate degradation. An increase in the 

ratio of mucin-to-plant CAZyme genes in the HD relative to the BD study phases is 

apparent, consistent with a shift towards mucin consumption in response to the low fiber 

HD diet (Figure 4C, paired Wilcoxon signed rank test, p < 0.0001). Similar differences in 

microbiome-encoded carbohydrate genes have been found in other diet studies (Kaoutari et 

al., 2013; Smits et al., 2017).

To further characterize the relationship between the dietary intervention and MDMs, we next 

investigated intrapersonal divergence in participant fecal, urine and plasma metabolomes. 

Only three fecal metabolites decreased between the BD and HD phase, taurolithocholic 

acid, 2,6-Dihydroxybenzoic acid and indole-3-acetic acid (Figure 4D). Interestingly, two 

additional fecal metabolites, indole-3-pyruvic acid, and N-acetyl putrescine, increased in 

intrapersonal variation despite identical dietary input during HD (Figure 4E), leading us 

to hypothesize that microbiome metabolism, rather than diet, plays a large role in their 

variation. Notably, all metabolites have consistent low levels of autocorrelation suggesting 

that the observed shifts were not due to time differences between sampling timepoints. 

To distinguish between the possibility that the increase was due to normal microbiome 

temporal dynamics or those induced by the shift in microbiome capacity on the HD, 

we investigated the intrapersonal divergence in the specific microbiome encoded genes 

responsible for production of these two metabolites. We mapped participant metagenomic 

profiles to a protein database of specific microbial genes encoding aromatic amino acid 

(AAA) aminotransaminases and agmatinases. These classes of enzymes include those 

that mediate the conversion of tryptophan into indole-3-pyruvic acid and arginine to 

putrescine, respectively (putrescine is converted into N-acetyl putrescine by host enzymes). 

Agmatinases that map to Enterococcus pattens and Evtepia gabavorous increase in overall 
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intrapersonal divergence in the HD phase relative to the BD phase (Figure 4F) consistent 

with increased within-person variation in N-acetyl putrescine during HD. No similar 

pattern for aminotransaminase divergence was detected. Combined, these results suggest 

that homogenizing dietary input across healthy adults for 7 days contributes to some 

changes in microbiome composition, function, and specific MDMs, however, is insufficient 

to significantly reduce interpersonal and intrapersonal variation in many other facets of 

microbiome composition function and metabolic output.

Discussion

There is great interest in optimizing the production of microbiome-dependent metabolites 

relevant to human health, including minimizing those that contribute to uremic illness. 

For instance, microbiota generated products, p-cresol sulfate and indoxyl sulfate, derived 

from amino acids promote the progression and exacerbation of cardio-renal diseases(Koppe 

et al., 2013; Yang et al., 2017; Lim et al., 2021). The use of diet modification to alter 

specific aspects of microbiome functional output has shown some promise in previous 

studies(Suez et al., 2014; Salmean et al., 2015; Zeevi et al., 2015; Cho et al., 2017), but 

the extent to which inter-individual variation in MDM production is caused by a person’s 

microbiome vs. their habitual diet remains an open question. In this study, we employed 

a 7-day homogeneous diet (HD) modeled on an average diet in the U.S. to eliminate 

dietary variability between individuals while attempting to minimize perturbation when 

participants shifted to this dietary intervention. The homogeneous diet significantly reduced 

interpersonal variation in hippuric acid, and 76 additional fecal, plasma, and urine MDMs, 

but had no significant effect on other well studied uremic solutes including PAG, IS and 

PCS. The inability of HD to decrease the cohort-wide variability in these three uMDMs by 

25% (the primary endpoint) provides strong evidence that diet-independent individualized 

features of the microbiome and host play a critical role in dictating individual-specific levels 

of PAG, IS, and PCS.

Interestingly, we found that the diet phase of the study contributed to less than 2% of the 

overall variance found between participants microbiome composition, functional profiles, 

fecal metabolomes, plasma metabolomes, and urine metabolomes. Additional studies will 

be required to assess whether a homogenous dietary intervention that is defined by a 

greater shift in diet composition from participant baseline diets, has a greater contribution 

to variance in microbiome composition and function. Diets limited in specific uMDM 

precursors may have the potential to reduce levels of specific solutes in individuals with 

failing kidneys, who notably are subjected to burdensome dietary restrictions(Patel et al., 

2012). Of note, excretion rates of these MDMs remain widely variable in patients with 

chronic kidney disease as with individuals with functioning kidneys47–49. We hypothesize 

that given the interpersonal variability in the level of uMDMs such as PCS and IS in these 

individuals11, there is a potential for reduction given the appropriate diet.

Our finding that host identity and age, were dominant contributors to interpersonal 

variability, are consistent with other studies profiling healthy individuals(Human et al., 

2012; ‘The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host 

Omics Profiles during Periods of Human Health and Disease’, 2014; Falony et al., 2016). 
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While the overall impact of the HD intervention on interpersonal variability was limited, 

16S-based composition analysis and fecal metabolite profiles show a small but significant 

decrease in interpersonal variation during HD consistent with diet contributing to some 

measurable extent of individuality. Our analysis also reveals that a homogenous diet reduces 

interpersonal variation in a subset of MDMs. These analyses broaden our understanding 

of MDMs that are sensitive and insensitive to dietary variation. Future studies expanding 

our understanding of metabolites that are sensitive to homogenous diets and modifiable by 

dietary strategies for clinical benefits are warranted.

Previously, studies of the gut microbiome in healthy cohorts have found that microbiome-

food relationships are highly personalized(Johnson et al., 2019). Controlled feeding studies, 

which allow for the precise accounting of diet composition, can produce more reliable 

diet-microbiome interactions and associations(Wu et al., 2011, 2016; Pan et al., 2020); 

however, to date, controlled feeding studies have not specifically addressed the impact of 

homogenizing diet composition on interpersonal variation in microbiome features. Our data 

adds a stringent test to demonstrate that participants’ individualized responses to dietary 

interventions are likely governed in part by the individualized aspects of microbiome 

composition and function that are fairly recalcitrant to short-term change. The extent of 

dietary compliance depends upon self-reporting of our free-living participants, who were 

not monitored in a facility. To support dietary compliance, which was key to the study 

design, our study participants received prepared meals and had consistent interactions with a 

dietitian. A greater understanding of a participant’s habitual diet is critical to understanding 

how diet interacts with microbiome functionality to determine metabolite production, and 

the extent to which metabolite levels may respond to an intervention.

The design of our study allowed us to dissect the relative contributions of diet (i.e., 

macro nutrients) and microbiome functional potential (i.e., encoded genes) towards 

the interpersonal and intrapersonal variation in microbiome features (i.e., microbiome-

dependent uremic solutes, 16S-based composition, metagenomic functions, and metabolome 

profiles). We found that the modest reduction in protein between the BD and HD phase 

(average 82 grams per day for BD, and 67 grams per day for HD) did not correspond to a 

reduction in the protein-derived metabolites and uremic solutes, PCS, IS and PAG. Previous 

studies quantifying IS and PCS, found that a very low protein diet (20 grams per day) was 

necessary to reduce their levels(Wishart DS, 2014; Thaiss et al., 2016; Wilson, Reedy and 

Krebs-Smith, 2016). We also found that tyrosine, phenylalanine, and tryptophan, which are 

precursors for p-cresol, phenylacetylglutamine and indoxyl sulfate; respectively, were stable 

across the BD and HD phase.

How changes in the chemical composition of diet can alter microbiome metabolite output 

needs to be tested under a variety of conditions (including extreme dietary control) and 

provision of specific chemical precursors) with an emphasis on understanding participants’ 

baseline dietary habits and microbiome functional capacity (metagenomes). Furthermore, 

future studies should focus on precision manipulation of the microbiome (e.g., microbial 

therapies) in combination with dietary interventions. To develop targeted approaches to 

modulate metabolite levels, factors contributing to individual MDM level variability should 

be understood. Thus, a detailed understanding of the relationship between dietary input 
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and microbiota metabolism in shaping interpersonal variability provides a roadmap to 

develop diverse therapeutic approaches. Importantly, unifying how dietary intervention 

studies account for variation in participant habitual diets, record and characterize diet data, 

lifestyle factors, host genetics, as well as the range of metabolites measured(Hughes et al., 

no date; Leeming et al., 2021), will help fill gaps in understanding the utility of diet to 

modulate the production of specific solutes.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—All information and requests for further resources should be directed to 

and will be fulfilled by the Lead Contact, Justin Sonnenburg, jsonnenburg@stanford.edu.

Materials availability—This study did not generate new unique reagents.

Data and Code Availability—All sequencing data has been deposition to the NCBI 

Sequence Read Archive under project PRJNA776530 and are publicly available as of the 

date of the publication. Accession numbers are listed in the key resources table.

All original code has been deposited at Zenodo and is publicly available as of the date of 

publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this work paper is 

available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment and selection of participants—Participants were recruited from the 

local community through online advertisement in different community groups as well as 

emails to past research participants that consented to being contacted for future studies. The 

current study assessed 61 participants for eligibility. They completed an online screening 

questionnaire and a clinic visit between September 2018 and January 2019. The primary 

inclusion criteria included age ≥ 18 y and general good health. Participants were excluded 

if they had a history of active uncontrolled inflammatory bowel disease (IBD) including 

ulcerative colitis, Crohn’s disease, or indeterminate colitis, irritable bowel syndrome (IBS) 

(moderate or severe), infectious gastroenteritis, colitis or gastritis, Clostridium difficile 
infection (recurrent) or Helicobacter pylori infection (untreated), malabsorptive intestinal 

disease (such as celiac disease), major surgery of the GI tract, with the exception of 

cholecystectomy and appendectomy, in the past five years, or any major bowel resection 

at any time. Other exclusion criteria included a BMI ≥ 40, diabetes, renal disease, significant 

liver enzyme abnormality, pregnancy or lactation, smoking, a history of CVD, inflammatory 

disease, or malignant neoplasm. CONSORT clinical trial flow diagram of participant 

recruitment shown in Figure 1A and demographics table shown in Table 1. 21 participants 

(11 female sex and gender identifying, 10 male sex and gender identifying) were used for 

full analysis with an average age of 48 +/− 14 years. All study participants provided written 

informed consent. The study was designed as an exploratory approach toward discovery of 

changes in the microbiota and the metabolome in response to a dietary intervention. The 
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study was approved annually by the Stanford University Human Subjects Committee. Trial 

was registered at ClinicalTrials.gov, identifier: NCT04740684.

Specimen collection

Stool was collected at five study time points over a four-week period of the study and kept in 

participants’ home freezers (−20°C) wrapped in ice packs until they were transferred on ice 

to the research laboratory and stored at −80°C. 24 hour urine collection was obtained on Day 

0 and 13 (while on BD), Day 17 (while on HD), and Day 28 (during WO phase). Plasma 

and spot urine samples were obtained during research clinic visits throughout the study at 

indicated time points.

METHOD DETAILS

Intervention

The study period lasted 28 days and consisted of a 14-day period while participants 

consumed their habitual baseline diet (BD), followed by 7 days of provided homogenous 

diet (HD), and concluding with a 7-day washout period (WO) of return to their prior 

habitual dietary pattern. They were asked to keep detailed food logs for the first 3 days upon 

initiation of the study. During the HD phase of study, participants were asked to record the 

quantity of packets consumed daily. Nutrient analyses were conducted with use of FOOD 

PROCESSOR (version 11.9.0; ESHA, Salem, OR).

Formulation of Homogenous Diet (HD)

The Homogenous Diet (HD) was provided for days 15-21 for the study period (7 days total). 

It was designed to recapitulate the diet quality, and specifically the fiber and macronutrient 

ranges(Grotto and Zied, 2010), common to adults in America based on the National Health 

and Nutrition Examination surveys and additional studies (Grotto and Zied, 2010). The food 

provided was a nutritionally adequate diet, designed by a registered dietitian. It was prepared 

by a professional chef in a commercial kitchen by mixing and cooking foods purchased 

from grocery stores. The food mixture was divided into 295 g portions that included a 210 g 

portion of the homogenous diet in addition to 59 g Orange Juice and 26 g of cookies to be 

consumed with each meal. The composition of the HD is described in Table S1.

Distribution of Food and Monitoring of Consumption

Food for the 7-Day homogenous diet was distributed after collecting baseline samples. 

Subjects were allowed to eat as much of the homogeneous diet as they wanted to meet their 

caloric needs. Subjects were asked not to eat anything other than the provided HD (no candy, 

snacks, etc.) and not to drink anything except water (no coffee, tea, sodas, or alcoholic 

drinks, etc.). Participants kept logs of time of day and number of pouches consumed during 

the 7 days of the controlled diet. These records were reviewed with the study dietitian to 

ensure completeness and accuracy. The ingestion of the HD study diet in each individual 

subject terminated with the urine, stool, and blood collection on the seventh day of eating 

the diet. After termination of the HD study diet, participants returned to their habitual diet.
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Measurement of uMDMs

Solute excretion and nutrient consumption rates were corrected for body surface area 

calculated using the Mosteller formula(Mosteller, 1987).

16S amplicon sequencing

DNA was extracted from stool using the DNeasy PowerSoil HTP 96 kit according to the 

manufacturer protocol and amplified at the V4 region of the 16S ribosomal RNA (rRNA) 

subunit gene and 250 nucleotides (nt) Illumina sequencing reads were generated. 16S rRNA 

gene amplicon sequencing data from stool samples were demultiplexed using the idemp 

(https://github.com/yhwu/idemp). Amplicon sequence variants (ASVs) were identified with 

a learned sequencing error correction model (DADA2 method)(Callahan et al., 2016), using 

the dada2 package in R. ASVs were assigned taxonomy using the GreenGenes database 

(version 13.8)(DeSantis et al., 2006). ɑ-diversity was quantified as the number of observed 

ASVs, Shannon diversity, or PD whole tree, in a sample using the phyloseq package in R 

(version 4.0.2). There was an average of 46,714 reads per sample (range 17,989-70,638) 

recovered after filtering, denoising, and removing chimeras. A total 534 unique ASVs were 

observed ,with an average of 252 ASVs per sample (range 77-331), were used for further 

analysis.

Metagenomic Sequencing

DNA extraction for shotgun metagenome sequencing was done using the DNeasy PowerSoil 

HTP 96 kit as described in the 16S amplicon sequencing methods. For library preparation, 

the Nextera Flex kit was used with a minimum of 10ng of DNA as input and 6 or 8 PCR 

cycles depending on input concentration. A 12 base pair dual-unique-indexed barcode (CZ 

Biohub) was added to each sample and libraries concentration and size were quantified 

using an Agilent Fragment Analyzer. They were further size selected using AMPure XP 

beads (Beckman) targeted at a fragment length of 450bp (350bp size insert). DNA paired-

end sequencing (2x146bp) was performed on a NovaSeq 6000 using S4 flow cells (CZ 

Biohub). The average target depth for each sample was 11.4 million paired-end reads 

with an average of 11,422,190 (range 2419034 -71084760) reads per sample. Data quality 

analysis was performed by demultiplexing raw sequencing reads and concatenating data for 

samples that required multiple sequencing runs for target depth before further analysis.

BBtools suite (https://sourceforge.net/projects/bbmap/) was used to process raw reads and 

mapped against the human genome (hg19) after trimming, with masks over regions broadly 

conserved in eukaryotes (http://seqanswers.com/forums/showthread.php?t=42552). Exact 

duplicate reads (subs=0) were marked using clumpify and adapters and low-quality bases 

were trimmed using bbduk (trimq=16, minlen=55).

Plasma, Urine and Stool metabolomics

Metabolites from three sample types (plasma, urine, and stool) metabolites were profiled 

using three complementary liquid chromatography- tandem mass spectrometry (LC–

MS) methods designed to measure a broad range of microbial and microbe-host co-

metabolites(Han et al., 2021). For all three sample types, samples were incubated for 

5 minutes at room temperature and centrifugation at 5,000 x g for 10 minutes. Sample 
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supernatants were then transferred, evaporated, and reconstituted in an internal standard mix 

in (50% Methanol). A Hydrophilic Interaction Liquid Chromatography (HILIC) method was 

used for the analysis of water-soluble polar metabolites in positive (HILIC-pos) ion mode, 

and two C18 column chromatography methods for measuring metabolites of intermediate 

polarity, in positive (C18-pos) or negative (C18-neg) ion mode. Raw data were processed, 

and compounds were annotated using MSDIAL software 3.988(Tsugawa et al., 2015). 

Analyses were conducted using the data obtained from all three LC-MS methods after 

removal of features observed in <80% of the samples and imputing missing values with half 

of the minimum observed measurement for each feature.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of Alpha and Beta Diversity Measures

Alpha and beta- diversity measures were calculated using the phyloseq package(McMurdie 

and Holmes, 2013) in R. Alpha diversity was calculated at the ASV level. For ASVs, 

metagenomes, plasma metabolomes, urine metabolomes and stool metabolomes, Bray-

Curtis dissimilarity was computed at each timepoint and for each subject using the vegdist 

function in the R vegan package(Dixon, 2003). In order to investigate intra-individual 

divergence within a subject for single features, we computed a measure of divergence based 

on the difference in abundance values of each feature in the BD and HD phases, based on the 

two time points per phase.

Microbiome Functional Profiling

The assembled metagenomes were mapped against the following functional databases using 

USEARCH version 8 with an e-value cutoff of 1e-40 in order to ensure longer sequence hits 

for improved taxonomic and functional resolution: KEGG EC/KO (n = 2,000,708)(Kanehisa 

and Goto, 2000), Carbohydrate active enzyme (CAZyme) (n = 7215)(Cantarel et al., 2009), 

and a curated database of both cultured and metagenomically identified agmatinases and 

aminotransaminases developed in-house. The abundance of KEGG orthologous groups and 

modules were determined using the HUMAnN pipeline(Abubucker et al., 2012) with default 

parameters. CAZymes were classified as plant, animal, mucin, or fungal targeting based 

on the mapping file and approach described previously(Smits et al., 2017),which relies 

on a variety of sources for these categorizations(Cantarel, Lombard and Henrissat, 2012; 

Kaoutari et al., 2013).

Metabolite Chemical Class Mapping

All metabolites were mapped to their superclass, class and subclass using the ClassyFire 

automated chemical classification based on compound InChIKeys(Djoumbou Feunang et al., 

2016).

Statistical Analysis

All statistical analyses were carried out in R. The coefficient of variation and 95% 

confidence interval for each uremic solute (IS, PCS, PAG and HIPP), at each study time 

point was determined using the R cvcqv package. Statistical difference in CV or beta-

diversity between time points 1 and 4 and mean metabolite abundances between the BD and 
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HD phases were determined using a paired Wilcoxon signed rank test. The autocorrelation 

decay was determined for each metabolite with significant changes in beta-diversity using 

the autocorrelation function in the timeseries R package.

Linear Mixed Effects Modeling

To study the effect of specific dietary parameters and the microbiome on the levels of 

hippuric acid, p-cresol sulfate, phenylacetylglutamine, and indoxyl sulfate during the HD 

phase at time point 4, when diet is homogenized, we used a linear mixed effects model. All 

variables included in the model were centered and scaled using the scale function in base 

R (scale function, center=TRUE, scale=TRUE). For each metabolite, metabolite levels were 

modeled as a function of the macronutrients, fiber, diet groupings, as well as microbiome 

encoded genes. A term for biological sex was included in the model as a covariate. The 

standardized regression coefficients, which reflect a standard deviation increase or decrease, 

were computed using the lme4(Bates et al., 2015) (1.1.26) package in R.

Recursive Feature Random Forest

Random forest regression models were built of the default set of 1000 trees, with the 

caret R package(Kuhn, 2008) to predict the study phase based on microbiome features. 

Training was achieved through 10-fold cross validation with ASV data, fecal metabolome, 

plasma metabolome, urine metabolome, dietary data, and anthropometry data. For each data 

type, one time point per participant for each phase (BD or HD) in our analysis (t1 vs 

t4, t1 vs t3, t2 vs t3, t2 vs t4) was selected to avoid accuracy inflation that could result 

from autocorrelation. The feature selection was performed by using the recursive feature 

elimination algorithm of the caret R package55. For the random forest model based on 

ASVs, 534 ASVs that occurred in 80% of participants for at least one time point that 

were used for further analysis. 320 fecal metabolites, 183 plasma metabolites and 168 

urine metabolites were used to build separate models. The importance scores of features 

were determined based on the increase of prediction error when that feature was randomly 

permuted while all others were remained unchanged.

PERMANOVA

To calculate the variance explained by each of our collected study factors we performed 

an Adonis test implemented in the R vegan package (v2.5.7 using adonis) using 999 

permutations, with random permutations constrained by using the “strata” option. We used 

Bray-Curtis dissimilarity as the distance measure for all five data types independently, which 

includes participants ASVs, metagenomes, plasma metabolomes, urine metabolomes and 

stool metabolomes. The total variance for each factor was determined independently.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Diet homogeneity did not decrease inter-individual variability in uremic MDMs

Homogenous diet results in reduction of interpersonal variation in hippuric acid

Host identity and age, but not diet, are dominant contributors to variability in MDMs
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Figure 1. MISO study enrollment, design, and data collection.
(A) CONSORT Flow diagram of participant enrollment and analysis in the MISO study.

(B) The 4-week study overview timeline, sample types collected, timepoints of sample 

collection, and corresponding experimental platforms.

(C) Average diet macronutrient composition during the baseline diet (BD) across the cohort 

and intervention homogenous diet (HD) study phases represented in percent grams. No 

baseline diet was available for participant 23.
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Longitudinal microbiome (D) composition (phylum level), (E) functional category relative 

abundance, and (F) fecal, plasma and urine metabolomes categorized by chemical class 

for MISO study participants. Fecal metagenome functional profiles were derived from 

sequencing, mapping, and gene alignments. Urine and plasma metabolomes were quantified 

using a microbiome-focused metabolomics pipeline; metabolites were mapped to their 

structure-based chemical taxonomy (see Methods).
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Figure 2. HD diet results in reduction of interpersonal variation in hippuric acid but not other 
uMDMs.
(A) Coefficient of variation (CV) with 95 % confidence interval in urine uremic solutes 

indoxyl sulfate (IS), phenylacetylglutamine (PAG), p-cresol sulfate (PCS) and hippuric acid 

(HIPP) at study time points across the BD, HD, and WO phases. Error bars represent 25th 

(bottom) and 75th (upper) quartiles.

(B) Urine levels of hippuric acid (HIPP) determined by targeted LC-MS during the baseline 

diet (BD), homogenous diet (HD) and wash out (WO) (****p < 0.0001; paired Wilcoxon 

signed rank test).
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(C) Effect sizes of dietary macronutrients quantified by a mixed-effects model at time point 

4 (along with a 95% CI) show that carbohydrates (p = 0.01) support higher levels of hippuric 

acid (HIPP), whereas total protein (p = 0.02) detracts from HIPP levels. Asterisks (*) 

indicate significant of specific parameters included in the model.
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Figure 3. Interpersonal variation in microbiome composition and fecal metabolic output declines 
during HD intervention.
(A) Fecal, plasma and urine metabolites with ≥25% reduction in CV across the cohort 

comparing timepoint 1 (BD) with timepoint 4 (HD).

(B,C) Boxplots showing microbiome similarity measures for (B) ASV-level and (C) fecal 

metabolome based on Bray-Curtis dissimilarity metrics across study timepoints 1 (BD), 4 

(HD) and 5 (WO). Boxplot error bars represent 25th (bottom) and 75th (upper) quartiles. At 

time point 1, the median Bray-Curtis value for ASVs and the fecal metabolome, are 0.79 

(SD = 0.1 ) and 0.45 respectively (SD = 0.1). At time point 4, the median Bray-Curtis value 

for ASVs and the fecal metabolome, are 0.77 (SD = 0.08) and 0.38 (SD = 0.1) respectively. 

At time point 5, the median Bray-Curtis value for ASVs and the fecal metabolome, are 0.79 

(SD = 0.1) and 0.46 (SD = 0.2) respectively. (D) Accuracy of leave-one-out cross-validation 

(LOOCV) of random forest models predicting study phase using different data types from 

study time points in BD (1 or 2) versus HD (3 or 4); diet macronutrient data (yellow), 

microbe-enriched data (grey) and anthropomorphic data from the host (blue).
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(E) Percent importance of individual fecal metabolites contributing to the model. 

Metabolites are colored by their Subclass level chemical ontology.
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Figure 4. Intrapersonal variation in microbiome composition, function, and fecal metabolic 
output shifts after the HD intervention, but host identity explains most variance.
(A) Host identity followed by age are the largest factors contributing to variation 

in microbiome composition, function and metabolomes in the MISO Study based on 

PERMANOVA (*p<0.05). Additional significant study variables shown capture < 10% of 

variation. Variance explained (R2) is also indicated by blue color scale.

(B) Microbiome compositional intra-personal divergence collapses between the baseline 

(BD) and homogenous diet (HD) diet (paired Wilcoxon signed rank test,**p < 0.001;).
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(C) Microbiome mucin-to-plant carbohydrate active enzyme ratios (CAZyme) shifts 

between the BD and SD diet (paired Wilcoxon signed rank test,****p < 0.0001).

(D) Levels of fecal metabolites, taurolithocholic acid, 2,6,-dihydroxybenzoic acid and 

indole-3-acetic acid levels are more similar during the HD (metabolite beta-diversity; Bray-

Curtis distance) than the BD. Metabolite levels are based on 2 timepoints per study phase.

(E) Fecal indole-3-pyruvic acid and N-acetyl putrescine increased in intrapersonal 

divergence during the HD phase (metabolite beta-diversity; Bray-Curtis distance).

(F) Participant specific changes in beta-diversity for agmatinases from Enterococcus pallens 
(p < 0.05) and Evtepia gabavorous (p < 0.05) defined by the difference in beta-diversity 

between HD and BD phases. Specific microbial agmatinases involved in the production of 

N-acetyl putrescine increased in intrapersonal divergence during the HD phase (gene beta-

diversity; Bray-Curtis distance) based on relative abundance counts of mapped agmatinase 

protein sequences against participant metagenomes.

Boxplot error bars represent 25th (bottom) and 75th (upper) quartiles.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

105 human fecal, plasma, and urine 
samples

MISO study, NCT04740684, 
clinicaltrials.gov

NCT04740684

Critical commercial assays

DNeasy PowerSoil HTP 96 kit QIAGEN Cat. 12955-4

Deposited data

16S rRNA sequencing data This paper BioProject PRJNA776530

Metagenomic sequencing data This paper BioProject PRJNA776530

All other -omics data, analyses, and 
resources

This paper Zenodo: DOI: 10.5281/zenodo.6408914

Software and algorithms

MSDIAL software (v3.988) Tsugawa, H. et al., 2015 http://prime.psc.riken.jp/compms/msdial/main.html

FOOD PROCESSOR (v11.9.0) ESHA https://esha.com/products/food-processor/

idemp Yinghua Wu https://github.com/yhwu/idemp

GreenGenes database (v13.8) DeSantis et al., 2006 http://greengenes.lbl.gov

R(v4.0.2) R Core Team https://www.r-project.org/

RStudio(v1.3) RStudio Team https://www.rstudio.com/

BBtools suite B. Bushnell https://sourceforge.net/projects/bbmap

HUMAnN Sahar Abubucker. et al., 2012 http://huttenhower.sph.harvard.edu/humann

tidyverse(v1.3.0) Wickham et al. (2019) https://www.tidyverse.org/

cvcqv(v1.0.0) Maani Beigy https://cran.r-project.org/web/packages/cvcqv/index.html

knitr(v1.29) Yihui Xie https://cran.r-project.org/web/packages/knitr/index.html

RColorBrewer(v1.1-2) Erich Neuwirth https://cran.r-project.org/web/packages/RColorBrewer/
index.html

ggpubr(v0.4.0) Alboukadel Kassambara https://cran.r-project.org/web/packages/ggpubr/index.html

magrittr(v1.5) Stefan Milton Bache and Hadley 
Wickham

https://cran.r-project.org/web/packages/magrittr/vignettes/
magrittr.html

ggplot2(v3.3.2) Wickham, 2016 https://cran.r-project.org/web/packages/ggplot2/index.html

phyloseq(v1.32.0) McMurdie and Holmes, 2013 https://www.bioconductor.org/packages/release/bioc/html/
phyloseq.html

dada2(v1.16.0) Callahan et al. (2016) https://www.bioconductor.org/packages/release/bioc/html/
dada2.html

lme4(1.1.26) Bates et al., 2015 https://github.com/lme4/lme4

caret(v6.0.86) Max Kuhn https://cran.r-project.org/web/packages/caret/index.html

vegan(v2.5-6) Jari Oksanen et al. https://cran.r-project.org/web/packages/vegan/index.html

randomForest(v4.6-14) Leo Brieman et al. https://cran.r-project.org/web/packages/randomForest/
randomForest.pdf

devtools(v2.3.1) Wickham, 2016 https://cran.r-project.org/web/packages/devtools/index.html
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Table 1.

Participant characteristics

subject Sex Age BSA

S02 F 56 1.9

S03 F 55 2

S06 M 28 2.1

S08 F 27 1.8

S09 M 23 1.7

S10 M 46 1.8

S11 F 58 1.6

S12 F 27 1.7

S13 M 34 2.8

S15 F 30 1.9

S18 M 46 1.9

S19 M 50 2

S22 F 54 1.7

S23 F 53 1.7

S24 F 54 2

S26 F 62 1.8

S28 F 45 1.8

S29 M 58 1.7

S30 M 67 2.1

S31 M 75 2.3

S32 M 54 2.4
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Table 2.

Primary and exploratory clinical trial outcomes.

Coefficient of variation at study time points 1 (BD phase), 4 (end of HD phase) and 5 (WO phase). A percent 

reduction in CV between time points 1 and 4 of 0.25 or greater meets the endpoint.

Metabolite Time point Mean SD CV *CV % *p value

indoxyl sulfate 1 23.8 11.9 0.49901 −1.7% 0.48

indoxyl sulfate 4 21.0 10.1 0.48164

indoxyl sulfate 5 28.5 15.4 0.54070

p-cresol sulfate 1 21.9 15.8 0.71993 11.2 % 0.59

p-cresol sulfate 4 25.8 21.5 0.83168

p-cresol sulfate 5 29.6 20.2 0.68478

phenylacetylglutamine 1 84.0 55.0 0.65436 −0.05 0.78

phenylacetylglutamine 4 91.7 59.9 0.65383

phenylacetylglutamine 5 107.0 74.7 0.69846

Hippuric acid 1 261.3 194.0 0.74231 −27.9 % p < .001

Hippuric acid 4 95.0 44.0 0.46304

Hippuric acid 5 277.4 212.6 0.76654

*
Time point 1 vs time point 4
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