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Abstract
One way of interpreting a left Kan extension is as taking a kind of “partial colimit”, whereby
one replaces parts of a diagram by their colimits. We make this intuition precise by
means of the partial evaluations sitting in the so-called bar construction of monads. The
(pseudo)monads of interest for forming colimits are the monad of diagrams and the monad
of small presheaves, both on the (huge) categoryCATof locally small categories. Throughout,
particular care is taken to handle size issues, which are notoriously delicate in the context of
free cocompletion. We spell out, with all 2-dimensional details, the structure maps of these
pseudomonads. Then, based on a detailed general proof of how the restriction-of-scalars
construction of monads extends to the case of pseudoalgebras over pseudomonads, we con-
sider a morphism of monads between them, which we call image. This morphism allows in
particular to generalize the idea of confinal functors, i.e. of functors which leave colimits
invariant in an absolute way. This generalization includes the concept of absolute colimit as
a special case. The main result of this paper spells out how a pointwise left Kan extension
of a diagram corresponds precisely to a partial evaluation of its colimit. This categorical
result is analogous to what happens in the case of probability monads, where a conditional
expectation of a random variable corresponds to a partial evaluation of its center of mass.

Keywords Kan extensions · Colimits · Presheaves · Partial evaluations

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
2 The Monad of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

2.1 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
2.2 Unit and Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

2.2.1 The Unit: One-Object Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
2.2.2 Diagrams of Diagrams are Lax Cocones . . . . . . . . . . . . . . . . . . . . . . . . . . 691
2.2.3 The Multiplication: the Grothendieck Construction . . . . . . . . . . . . . . . . . . . . 692

Communicated by Maria Manuel Clementino.

B Paolo Perrone
paolo.perrone@cs.ox.ac.uk

1 Department of Computer Science, University of Oxford, Oxford, England, UK

2 Department of Mathematics and Statistics, York University, Toronto, ON, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10485-021-09671-9&domain=pdf
http://orcid.org/0000-0002-9123-9089


686 P. Perrone, W. Tholen

2.2.4 Functoriality and Naturality of the Multiplication . . . . . . . . . . . . . . . . . . . . . 694
2.3 Unitors and Associators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

2.3.1 Left Unitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
2.3.2 Right Unitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
2.3.3 Associator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

2.4 Higher Coherence Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
2.4.1 Unit Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
2.4.2 Pentagon Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

2.5 Cocomplete Categories are Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
2.5.1 Structure Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
2.5.2 Structure 2-Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
2.5.3 Coherence Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
2.5.4 Not All Algebras are of this Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

3 Image Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
3.1 Diagrams and Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

3.1.1 The Category of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
3.2 Connecting Confinal Functors and Absolute Colimits . . . . . . . . . . . . . . . . . . . . . . 714

3.2.1 Refining the Comprehension Factorization . . . . . . . . . . . . . . . . . . . . . . . . . 715
3.2.2 Mutually Confinal Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
3.2.3 Absolute Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

4 The Monad of Small Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
4.1 Small Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
4.2 The Pseudofunctor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

4.2.1 Unitor and Compositor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
4.2.2 Naturality of the Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

4.3 Unit and Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
4.3.1 The Unit: the Yoneda Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
4.3.2 The Multiplication: Free Weighted Colimits . . . . . . . . . . . . . . . . . . . . . . . . 725

4.4 Unitors, Associators, Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
4.5 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
4.6 The Image is a Morphism of Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

4.6.1 The Pullback Functor of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
5 Partial Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

5.1 Partial Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
5.2 Partial Evaluations of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
5.3 Partial Evaluations of Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
5.4 Comparison with Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
A. Some 2-Dimensional Monad Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

A.1. Pseudomonads and Their Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
A.2. Pseudoalgebras and Their Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
A.3. Restriction of Scalars for Pseudomonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

1 Introduction

Kan extensions are a prominent tool of category theory, to the extent that, already in the
preface to the first edition of [21], Mac Lane declared that “all concepts of category theory
are Kan extensions”, a claim reinforced more recently in [27, Chapter 1]. However, they are
also considered to be a notoriously slippery concept, especially by newcomers to the subject.
One of the most powerful pictures that help understanding how they work may be the idea
that Kan extensions, especially in their pointwise form, “replace parts of a diagram with their
best approximations, either from the right or from the left”. In other words, Kan extensions
can be seen as taking limits or colimits of “parts” of a diagram. The scope of this paper is
making this intuition mathematically precise.
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Wemake use of the concept of partial evaluation, which was introduced in [9], and which
is a way to formalize “partially computed operations” in terms of monads. The standard
example is that “1 + 2 + 3 + 4” may be evaluated to “10”, but also partially evaluated to
“3 + 7”, whereby parts of the given sum have been replaced by their sums.

Just as monads on sets may be seen as encoding different algebraic structures and opera-
tions, here we consider pseudomonads on categories which encode the operation of taking
colimits. We are in particular interested in two pseudomonads: the monad of diagrams and
the monad of small presheaves (also known as the free (small) cocompletion monad). Both
monads are known in the literature, but certainly not presented in sufficient detail as needed
for our purposes. To make the paper more accessible, we therefore decided to spell out their
definition in full detail, in Sects. 2 and 4.

There is a functor connecting diagrams and presheaves, which we call the image presheaf,
and which appears in the literature under the name of connected component functor [23] (at
least for the case of small categories). This construction takes a diagram and forms a presheaf
that can be considered the “free colimit” of the diagram.We describe the construction in detail
in Sect. 3, taking care of the size issues we face when the codomain of diagrams is not small.

The definitions of pseudomonads, pseudoalgebras, and their morphisms are also hard to
find in the literature in sufficient detail. For this reason, to avoid any ambiguity,wehave given a
detailed account of them in Appendix A. Readers who are familiar with these pseudomonads,
andwith the concepts of pseudomonads in general,may skip these sections,with the exception
of Sects. 2.5, 4.6 and Appendix A.3, which contain new results.

Here is what the novel content of this work consists of. First of all, we show that the
image presheaf induces a morphism of monads from the monad of diagrams to the monad of
small presheaves, which in turn gives a pullback functor between the categories of algebras
(we prove the 2-dimensional version of this statement in Appendix A.3). This morphism
of monads is not injective in any sense. Indeed, it turns out that diagrams with isomorphic
image presheaves have the same colimit, in a very strong sense, analogous to “differing by
a confinal functor”. We indeed generalize the theory of confinal functors, and connect it to
the theory of absolute colimits – both because we need that in order to prove the subsequent
statements, and because it should be interesting for its own sake.

We then turn to the central topic of this paper and study partial evaluations for bothmonads.
We prove that partial evaluations for the monad of diagrams correspond to pointwise left Kan
extensions along split opfibrations, by invoking the Grothendieck correspondence between
split opfibrations and functors into Cat. For the monad of small presheaves, we show that
partial evaluations correspond to pointwise left Kan extensions along arbitrary functors. This
result may be summarized in the following way: given small presheaves P and Q on a
locally small, small-cocomplete category, Q is a partial colimit of P if and only if they can
be written as image presheaves of small diagrams D and D′, in such a way that D′ is the left
Kan extension of D along some functor. More concisely,Kan extensions are partial colimits,
as claimed by the paper’s title.

This result is analogous to, and was motivated by, an analogous result in measure theory
involving probability monads, where partial evaluations (or “partial expectations”) corre-
spond exactly to conditional expectations (Theorem 5.13). Indeed, one could say that “if
coends are like integrals, thenKan extensions are like conditional expectations”. (SeeSect. 5.4
for more on this.)

As usual, when one talks about free cocompletion, one has to be very careful with size
issues. This is why some parts of this work, such as the proof of Lemma 5.12, appear to be
rather technical. The payoff is that the main theorems of this work will hold for arbitrary
(small) colimits in arbitrary (locally small) categories, beyond the trivial case of preorders.
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688 P. Perrone, W. Tholen

Outline. In Sect. 2 we study the category of diagrams in a given category, and show that the
construction gives a pseudomonad on the 2-category of locally small categories. While this
construction seems to be known, its details don’t seem to have been spelled out previously.
The content of Sect. 2.5, however, seems to be entirely new. We show that cocomplete
categories, equipped with a choice of colimit for each diagrams, are pseudoalgebras over this
pseudomonad, and that not all pseudoalgebras are of that form.

In Sect. 3 we study the concept of image presheaf, which can be seen as a “free colimit of
a diagram”, or as a “colimit blueprint”. We show that having the same image presheaf is a
strong and consistent generalization both of the theory of confinal functors (Proposition 3.9),
and of the concept of absolute colimit (Proposition 3.13). The main ideas are already known
in the literature for the case of small categories. We restate some of them to take care of the
size issues we face (since some of our categories are only locally small).

In Sect. 4we study small presheaves and show that they forma pseudomonad.Again, this is
known, but here we spell out the construction in much greater detail than previous accounts
have done. This enables us to establish the new result presented in Sect. 4.6: the image
presheaf construction forms a morphism of pseudomonads from diagrams to presheaves.

Theprincipal new results of this paper appear inSect. 5. Theorem5.5 andTheorem5.6 state
that partial colimits for the monad of diagrams correspond to pointwise left Kan extensions
of diagrams along split opfibrations. In Theorem 5.10 we prove that partial colimits for the
free cocompletion monad correspond to pointwise left Kan extensions of diagrams along
arbitrary functors. Then, in Sect. 5.4, we compare this categorical result to the analogous
measure-theoretic fact that partial expectations for probability monads correspond (in some
cases) to conditional expectations of randomvariables. This is in linewith the famous analogy
between coends and integrals.

Finally, in Appendix A we recall the (known) definition of pseudomonads and pseudoal-
gebras, and of the categories they form, which we use in the rest of the paper. We also provide
a 2-dimensional version of the restriction of scalars construction (Theorem A.7), where a
morphism of monads induces a functor between the categories of their algebras in opposite
direction. As far as we know, this 2-dimensional version has not appeared in the literature
previously.

Categorical setting, notation, and conventions. As it is to be expected when one talks about
generic colimits, size issues are relevant. Here are our conventions.

All the categories in this work (except CAT) are assumed locally small. We denote by Cat
the 2-category of small categories, and by CAT the 2-category of possibly large, locally small
categories. Note that CAT is itself larger than a large category (some authors call it a huge
category).

When we say “category”, without specifying the size, we will always implicitly refer to
a possibly large, locally small category.

Similarly, by “cocomplete category” we always mean a possibly large, locally small cat-
egory which admits all small colimits.

2 TheMonad of Diagrams

In this section we define the monad of diagrams. The first source for it that we are aware of
is Guitart’s article [12], but without an explicit construction, and some concepts date back
at least to Kock’s PhD thesis [16] (without the higher-dimensional aspects yet). We give
in detail all the structure maps, and in Sect. 2.5 we prove that cocomplete categories with
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Kan Extensions are Partial Colimits 689

a choice of colimits are pseudoalgebras (but not all pseudoalgebras are in this form). The
notions of pseudomonad and pseudoalgebra that we use are given in detail in Appendix A.

Note that, differently from some of the literature, we use the following slightly generalized
notion of morphism of diagrams (also used in Guitart’s original work [12], and dating back
to the origins of category theory [7, Section 23]). Moreover, in order to avoid size issues, we
require every diagram to be small.

Definition 2.1 Let C be a locally small category.

• We call a diagram in C a small category J together with a functor D : J → C. Throughout
this work, all the diagrams will be implicitly assumed to be of this form (i.e. be small).

• Given diagrams (J, D) and (J’, D′) in C, we call a morphism of diagrams a functor
R : J → J’ together with a natural transformation ρ : D ⇒ D′ ◦ R, i.e. a diagram in CAT
as the following.

J

C

J’

D

R

D′
ρ

• Given diagrams (J, D) and (J’, D′) in D and morphisms of diagrams (R, ρ), (R′, ρ′) :
(J, D) → (J’, D′), we call a 2-cell of diagrams a natural transformation α : R ⇒ R′
such that the following 2-cells are equal.

J

C

J’

D

R′
R

D′
ρα

=

J

C

J’

D

R′

D′

ρ′

We denote by Diag(C) the 2-category of diagrams in C, their morphisms, and their 2-cells.
(Sometimes we will still denote by Diag(C) the underlying 1-category.)

Note that the definition of morphism of diagrams is slightly more general than just a
natural transformation between parallel functors. This is still compatible with the traditional
intuitive picture of “deforming a diagram into another one”, provided that one notices the
following. In principle Rmay be not essentially surjective, so one should visualize the natural
transformation ρ as “deforming” the figure drawn by D into a subfigure of the one drawn by
D′.

Note moreover that:

• For C locally small, Diag(C) is locally small too;
• The forgetful functor Diag(C) → Cat given by the domain is a fibration (via precompo-

sition), and it is an opfibration (via left Kan extensions) if and only if C is cocomplete
(see for example [26, Proposition 2.8]).

In the rest of this section we show that C � Diag(C) is part of a pseudomonad on CAT, and
that cocomplete categories with a choice of colimit for each diagram are pseudoalgebras, with
the structure map given by such chosen colimits. For the precise definitions of pseudomonads
and pseudoalgebras, see Appendix A.
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690 P. Perrone, W. Tholen

2.1 Functoriality

We show that the assignment C � Diag(C) is part of a 2-functor on CAT. First of all, let C
and D be locally small categories, and let F : C → D be a functor.

Consider nowDiag(C) andDiag(D) as 1-categories. There is a (1-)functor F∗ : Diag(C) →
Diag(D) induced by F via postcomposition and whiskering, as follows.

J CD � J C DD F

J

C

J’

D

R

D′
ρ

�
J

C D

J’

D

R F

D′
ρ

Therefore, Diag is an endofunctor of CAT.
The functor F∗ : Diag(C) → Diag(D) extends to 2-cells giving a 2-functor, but we will

not need this in order for Diag to be a pseudomonad on CAT.
On the other hand, we need to extend Diag to the 2-cells of CAT. So let C and D be

locally small categories, let F,G : C → D be functors, and let α : F ⇒ G be a natural
transformation. We have an induced natural transformation α∗ : F∗ ⇒ G∗ induced via
whiskering, as follows. To each diagram (J, D) in C, we assign the morphism of diagrams
(idJ, αD) of D, i.e.

J CD � J C DD
F

G

α

Naturality follows from naturality of α. This makes Diag a strict 2-functor CAT → CAT.

2.2 Unit andMultiplication

2.2.1 The Unit: One-Object Diagrams

The unit of the monad is a map constructing “one-object diagrams”. In detail, let C be a
locally small category. We construct the functor ηC : C → Diag(C) as follows.

C � 1 CC

C C ′f �
1

C

1

C

id

C ′
f
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For brevity, we will denote ηC simply by η. This is (strictly) natural in the category C: given
a functor F : C → D, the following diagram commutes strictly.

C D

Diag(C) Diag(D)

η

F

η

F∗

Indeed, both paths in the diagram give the following assignment,

C � 1 C DC F

C C ′f �
1

C D

1

C

id F

C ′
f

using the fact that F(C) = F ◦C if we view C as a functor 1 → C, and that analogously F f
is given by whiskering f (seen as a natural transformation) with F .

2.2.2 Diagrams of Diagrams are Lax Cocones

Let’s now turn to the multiplication. We first notice that an object of Diag(Diag(C)) is the
same as a lax cocone in CAT with tip C, where the indexing category and all the categories
appearing in the cone except C are required to be small. Let’s see how. Let J be a small
category. A functor D : J → Diag(C) assigns to each object J of J a diagram in C, i.e. a small
category D0 J together with a functor D1 J : D0 J → C:

J � D0 J C
D1 J

and to each morphism j : J → J ′ of J a morphism of diagrams, which amounts to a functor
D0 j : D0 J → D0 J ′ together with a natural transformation D1 j as below:

J

J ′
j �

D0 J

C

D0 J ′

D1 J

D0 j

D1 J ′

D1 j

Moreover, since we want D to be a functor, we need it to preserve identities and composition,
i.e. D0 needs to be a functor, and D1 needs to satisfy the conditions D1(idJ ) = idD1 J and
D1( j ′ ◦ j) = D1 j ′D0 j ◦D1 J , which are exactly the conditions of lax naturality. In pictures,

J

J

id �

D0 J

C

D0 J

D1 J

id

D1 J

id
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692 P. Perrone, W. Tholen

J

J ′

J ′′

j

j ′

�

D0 J

D0 J C

D0 J ′′

D1 JD0 j

D1 J ′

D0 j ′

D1 j

D1 J ′′

D1 j ′

In other words, a functor D : J → Diag(C) consists of a functor D0 : J → Cat ⊆ CAT,
together with a lax cocone D1 in CAT under D0 with tip C. A lax cocone is a lax natural
transformation D1 : D0 ⇒ �C, where �C is the constant functor at C. For brevity, we will
also write constant functors simply as objects.

2.2.3 The Multiplication: the Grothendieck Construction

Given now D = (D0, D1) as above, take the Grothendieck construction
∫
D0 of D0 : J →

Cat ⊆ CAT, which we recall.

• An object of
∫
D0 consists of a pair (J , X) where J is an object of J and X is an object

of the category D0 J ;
• A morphism (J , X) → (J ′, X ′) of

∫
D0 consists of a pair ( j, f ) where j : J → J ′ is a

morphism of J, and f : D0 j(X) → X ′ is a morphism of the category D0 J ′.

The short integral sign does not denote a coend here, it is standard for the Grothendieck
construction (we use different sizes to avoid confusion, since both symbols are standard
notation). Note that since J and all the D0 J are small,

∫
D0 is small too. Its set of objects is

given by
∐

J∈J
D0 J .

Moreover:

• For each object J of J, the inclusion maps i J : D0 J → ∫
D0 defined by the coproduct

above can be canonically made into functors via

X

X ′
f �

(J , X)

(J , X ′)
(idJ , f )

We will call the images of the i J the fibers of
∫
D0.

• For each morphism j : J → J ′ of J, there is a natural transformation

D0 J

∫
D0

D0 J ′

i J

D0 j

i J ′

i j
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Kan Extensions are Partial Colimits 693

whose component at each object X of D0 J is given by

(J , X) (J ′, D0 j(X))
( j,idD0 j(X))

• The i J and i j assemble into a lax cocone D0 ⇒ �
∫
D0, i.e. the identity and composition

conditions are satisfied.

It is well known that
∫
D0 is the oplax colimit of D0 in Cat, with the universal lax cocone

given by the i J . We now show that it is so also in CAT, and we also give a strict version of
the universal property.1

Proposition 2.2 Let D0 : J → Cat ⊆ CAT be a small diagram of small categories. Let
D1 : D0 ⇒ �C be a lax cocone over D0 in CAT, with tip C locally small (but not necessarily
small). There is a unique functor

∫
D0 → C such that

• For all objects J of J, the following triangle commutes (strictly);

D0 J

∫
D0 C

i J
D1 J (2.1)

• For all morphisms j : J → J ′ of J, the following 2-cells coincide.

D0 J

C

D0 J ′

D1 J

D0 j

D1 J ′

D1 j =

D0 J

∫
D0 C

D0 J ′

D1 Ji J

D0 j

i J ′ D1 J ′

i j
(2.2)

Denote this functor byμ(D0, D1), or more briefly byμ(D). It is a diagram in C. This will
give the multiplication of the monad Diag.

Proof of Proposition 2.2 Since we want the diagram 2.1 to commute strictly, the only possi-
bility to define μ(D) on objects is as follows. For every object J of J, and for every object X
of D0 J ,

μ(D)(J , X):=D1 J (X).

Just as well, for all the morphisms of
∫
D0 in the fiber, i.e. in the form (idJ , f ) for a morphism

f : X → X ′ of D0 J , we are forced to define

μ(D)(idJ , f ):=D1 J ( f ).

Moreover, since we want the condition (2.2) to hold, for all morphisms j : J → J ′ of J
we have to require that μ(D) on the components of i j has to give the respective component
of D1 j . Explicitly, for each object X of D0 J ,

μ(D)(i j )X = μ(D)( j, idD0 j(X)):=(D1 j)X .

1 By “strict” here we mean “we give an isomorphism of hom-categories, not just an equivalence”. The colimit
is still oplax, not strict.
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The generic morphism ( j, f ) : (J , X) → (J ′, X ′), for j : J → J ′ and f : D0 j(X) →
X ′ can be decomposed as

(J , X) (J ′, D0 j(X)) (J ′, X ′)
( j,idD0 j(X)) (idJ , f )

and so we have determined the action of μ(D) for all morphisms of
∫
D0.

Functoriality of this assignment is routine. 	


2.2.4 Functoriality and Naturality of the Multiplication

We now have to show that the assignment (D0, D1) �→ μ(D0, D1) is functorial, and that it
is natural in the category C.

To address functoriality, we need to look at morphisms in Diag(Diag(C)).
Given diagrams D : J → Diag(C) and E : K → Diag(C), where J and K are small

categories, a morphism of diagrams from D to E amounts to a functor F : J → K together
with a natural transformation

J

Diag(C)

K

D

F

E

φ

Explicitly, D consists of a functor D0 : J → Cat ⊆ CAT and a lax cocone D1 : D0 ⇒ �C,
and E has an analogous form. The natural transformation φ amounts to the following. For
each object J of J, we have a morphism of diagrams

D0 J

C

E0F J

φ0 J

D0 J

E1 J

φ1 J

and for each morphism j : J → J ′ of J, the following diagrams have to commute. First of
all, this diagram of functors has to commute strictly.

D0 J E0F J

D0 J ′ E0F J ′
D0 j

φ0 J

E0F j

φ0 J ′

Moreover, the following composite 2-cells have to coincide, forming a commutative pyramid
with 2-cells as lateral faces, whose square base is the commutative square just described
above.
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C

D0 J E0F J ′

D0 J
D0 j

D1 J E1F J ′

D1 j

D1 J ′

φ0 J ′

φ1 J ′

=

C

E0F J

D0 J E0F J ′

D0 J

E1F J

E0F jφ0 J

D0 j

D1 J E1F J ′
E1F j

φ0 J ′

φ1 J

(2.3)

Form now the Grothendieck construction of E0. We can form a lax cocone over D0 with
tip

∫
E0 as follows.

J � D0 J E0F J
∫
E0

φ0 J iF J

J

J ′
j �

D0 J E0F J

∫
E0

D0 J ′ E0F J ′

φ0 J

D0 j

iF J

E0F j

φ0 J ′ iF J ′

iF j

Note that this is a lax cocone D0 ⇒ �
∫
E0. By the universal property of the Grothendieck

construction as an oplax colimit (Proposition 2.2), there is a unique functor
∫
D0 → ∫

E0

such that

• for all objects J of J, the following square commutes;

D0 J E0F J

∫
D0

∫
E0

i J

φ0 J

iF J (2.4)

• for all morphisms j : J → J ′ of J, the following composite 2-cells coincide.

D0 J E0F J

∫
E0

D0 J ′ E0F J ′

φ0 J

D0 j

iF J

E0F j

φ0 J ′ iF J ′

iF j =

D0 J E0F J

∫
D0

∫
E0

D0 J ′ E0F J ′

D0 j

i J

φ0 J

iF J

i j

i J ′

φ0 J ′

iF J ′
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Denote this functor by μ0(F, φ). This gives a triangle
∫
D0

C

∫
E0

μ(D)

μ0(F,φ)

μ(E)

which does not necessarily commute. In order to get a morphism of diagram μ(D) → μ(E)

we need to fill the triangle above with a 2-cell which we form as follows. Consider the object
(J , X) of

∫
D0, where J is an object of J and X is an object of D0 J . Note that, by the

diagram (2.1),μ(D)(J , X) = D1 J (X). Analogously, using the diagram (2.1) for E together
with the diagram (2.4),

μ(E)(μ0(J , X)) = μ(E)(J , φ0 J (X)) = E1F J (φ0 J (X)).

We now assign to the object (J , X) the morphism of C given by the component of φ1 J at
X ,

μ(D)(J , X) = D1 J (X) E1F J (φ0 J (X)) = μ(E)(μ0(J , X)).
(φ1 J )X

Let’s now show that this assignment is natural. We will again test this first along the fibers,
and then on the opcartesian morphisms of

∫
D0. So let f : X → Y be a morphism of D0 J .

The following diagram commutes simply by naturality of φ1 J .

μ(D)(J , X) D1 J (X) E1F J (φ0 J (X)) μ(E)(μ0(J , X))

μ(D)(J , D0 j(X)) D1 J (X) E1F J (φ0 J (X)) μ(E)(μ0(J , X))

μ(D)(idJ , f ) D1 J ( f )

(φ1 J )X

E1F J (φ0 J ( f )) μ(E)(μ0(idJ , f ))
(φ1 J )X

Let now j : J → J ′ be a morphism of J. We have to prove that the following diagram
commutes.

D1 J (X) E1F J (φ0 J (X))

D1 J ′(D0 j(X)) E1F J ′(φ0 J ′(D0 j(X)))

(D1 j)X

(φ1 J )X

(E1F j)φ0 J (X)

(φ1 J ′)D0 j(X)

This is however exactly Equation (2.3), written out in components. Therefore we have a
natural transformation, which we denote by μ1(F, φ), and we get a morphism of diagrams

∫
D0

C

∫
E0

μ(D)

μ0(F,φ)

μ(E)

μ1

which makes μ functorial. (The identity and composition conditions follow by uniqueness.)
Note that in particular this shows functoriality of the Grothendieck construction not only
on strictly commutative triangles of functors (i.e. in Cat/C), but also more in general for
lax-commutative triangles.

Proposition 2.3 The functor μ : Diag(Diag(C)) → Diag(C) is strictly natural in C.
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Proof Let F : C → D be a functor. The induced functor

Diag(Diag(C)) Diag(Diag(D))
F∗∗

maps a lax coconewith tip C to the lax coconewith tipD obtained simply via postcomposition
with F .

D0 J

C

D0 J ′

D1 J

D0 j

D1 J ′

D1 j �

D0 J

C D

D0 J ′

D1 J

D0 j
F

D1 J ′

D1 j

In other words, F∗∗(D0, D1) = (D0, F ◦ D1). If we take the Grothendieck construction in
both cases we get morphisms μ(D) : ∫

D0 → C and μ(F∗∗D) : ∫
D0 → D. By uniqueness

(Proposition 2.2), necessarily μ(F∗ ∗ D) = F ◦ μ(D), and therefore μ is strictly natural. 	


2.3 Unitors and Associators

2.3.1 Left Unitor

Let D : J → C be a diagram. We can apply to it the unit ηDiag(C) : Diag(C) → Diag(Diag(C))
to form the diagram

1 Diag(C)
(J,D)

corresponding to the following (rather trivial) lax cocone in CAT with tip C .

J CD

We view this as a lax cocone over the diagram J : 1 → CAT which maps the unique object
of 1 to J. If we form the Grothendieck construction as prescribed by the multiplication of the
monad, we get the category

∫
J which is isomorphic to J, explicitly given as follows:

• Objects are pairs (•, X), where • is the unique object of 1 and X is an object of J;
• A morphism (•, X) → (•, Y ) is simply a morphism f : X → Y of J.

The functor μ(η(D)) maps then (•, X) to DX and f : (•, X) → (•, Y ) to Df in C.
The functor

∫
J → J given by (•, X) �→ X is an isomorphism of categories. This defines

an isomorphism of diagrams μC(ηDiag(C)(D)) → D, in the category Diag(C). Denote this
isomorphism by �. This is the map that we take as left unitor.

Proposition 2.4 The map � induces a modification μ ◦ (ηDiag) � id.

Proof Let’s first show that � is natural in the diagram D. If (R, ρ) : (J, D) → (K, E) is a
morphism of diagrams, it’s easy to see that this diagram commutes strictly,

∫
J J

∫
K K

R̃

�

R

�
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where R̃ is the functor mapping (•, X) to (•, RX), and acting similarly on morphisms. This
commutative diagram induces an analogous commutative diagram in Diag(C), so that � is a
natural isomorphism of functors

Diag(C) Diag(Diag(C))

Diag(C)
id

η

� μ

In order to show that � is a modification, we have to show that � is natural in the category
C as well, in the sense that for each functor F : C → D the following composite 2-cells are
equal,

Diag(D) Diag(Diag(D))

Diag(C) Diag(Diag(C)) Diag(D)

Diag(C)

η

μ

η

F∗

id

F∗∗

μ�
F∗

=

Diag(D) Diag(Diag(D))

Diag(C) Diag(D)

Diag(C)

id

η

� μ
F∗

id F∗

where the squares without a 2-cell commute (by naturality).
Explicitly, we have to check that given a diagram D : J → C, the following parallel

functors coincide.

μ(η(F∗D)) F∗D
F∗�

�

Note however that F∗ acts on the codomain of the diagram, by postcomposing with F , while
� acts on the domain of the diagram, mapping J to its isomorphic copy

∫
J. Therefore both

arrows give the same morphism of diagrams, explicitly the following commutative diagram
of CAT,

∫
J

C D

J

D

∼= F

D̃

where D̃(•, X) = D(X), and the action on morphisms is similarly defined. Therefore � is a
modification. 	


2.3.2 Right Unitor

Let D : J → C be a diagram. This time we apply to it the map η∗ : Diag(C) → Diag(Diag(C))
given by the functor image of η under Diag. Explicitly, the result is the following lax cocone
in CAT, with tip C, indexed by J via the constant functor �1 : J → CAT at 1. In pictures,

J

J ′
j �

1

C

1

DJ

DJ ′

j
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If we form the Grothendieck construction, this time we get the category
∫
Δ1 which is

again isomorphic to J, explicitly given as follows:

• Objects are pairs (X , •), where X is an object of J and • is the unique object of 1;
• A morphism (X , •) → (Y , •) is simply a morphism f : X → Y of J.

The functor μ(η∗(D)) maps (X , •) to DX and f : (X , •) → (Y , •) to Df in C.
Analogously to the left unitor case, we have a functor

∫
�1 → J given by (X , •) �→ X

which induces an isomorphismof categories. This defines in turn an isomorphismof diagrams
μ(η∗(D)) → D, which we denote by r−1 (and its inverse by r . See Definition A.1 for the
convention we are using). The map r is the one that we take as right unitor.

Proposition 2.5 The map r induces a modification id � μ ◦ η∗.

We omit the proof, since it is analogous to the case of �.

2.3.3 Associator

In order to define the associator, we have to look at Diag(Diag(Diag(C))). So let D : J →
Diag(Diag(C)) be a diagram which assigns to each object J of J a diagram of diagrams
D1 J : D0 J → Diag(C), itself mapping the object K of D0 J to the diagram (D1 J )1 :
(D1 J )0K → C, which, in turn, maps an object L of (D1 J )0K to the object (D1 J )1(L) of
C. We could depict the situation as follows. For brevity we omit the action on morphisms,
which is similarly constructed.

J Diag(Diag(C))

J �
{

D0 J Diag(C)
}

K �
{

(D1 J )0K C
}

L � ((D1 J )1K )(L)

D

D1 J

(D1 J )1K

We can now take the Grothendieck construction at two different depths, which we can think
of as “joining levels J and K ” and “joining levels K and L”. The former way, which is
μ(D) ∈ Diag(Diag(C)), gives the following diagram of diagrams (only two levels).

∫
D0 Diag(C)

(J ∈ J, K ∈ D0 J ) �
{

(D1 J )0K C
}

L � ((D1 J )1K )(L)

μ(D)

(D1 J )1K

The latter way, which is μ∗D ∈ Diag(Diag(C)), gives instead the following diagram of
diagrams, which is in general not isomorphic to the former.

J Diag(C)

J �
{

∫
(D1 J )0 C

}

(K ∈ D0 J , L ∈ (D1 J )0K ) � ((D1 J )1K )(L)

μ∗D

μ(D1 J )

123



700 P. Perrone, W. Tholen

If we apply once again the Grothendieck construction to the two, we do obtain isomorphic
diagrams:

∫
μ(D) C

((J ∈ J, K ∈ D0 J ), L ∈ (D1 J )0K ) � ((D1 J )1K )(L)

and
∫
μ∗D C

(J ∈ J, (K ∈ D0 J , L ∈ (D1 J )0K )) � ((D1 J )1K )(L)

These are isomorphic as diagrams through the map
∫
μ∗D

∫
μ(D)

(J , (K , L)) � ((J , K ), L)

and so the following diagram commutes up to isomorphism.

Diag(Diag(Diag(C))) Diag(Diag(C))

∼=
Diag(Diag(C)) Diag(C)

μ∗

μ μ

μ

We call this isomorphism the associator, and denote it by a. Again, analogously as for the
unitors, we have:

Proposition 2.6 The associators assemble to a modification μ ◦ μ∗ � μ ◦ μ.

2.4 Higher Coherence Laws

The associator and unitors satisfy coherence conditions that are analogous to the ones of
monoidal categories (see Definition A.1 for the precise definition). We spell them out in
detail for this case.

2.4.1 Unit Condition

Instantiating the unit condition of Definition A.1 in our case, we get the following statement,
which reminds us of the unit condition of monoidal categories.

• Consider a diagram of diagrams as follows.

J Diag(C)

J �
{

D0 J C
}

K � (D1 J )(K )

D

D1 J

Applying directly the Grothendieck construction we would have a diagram (J , K ) �→
(D1 J )(K ). However, we instead want to insert a “bullet” via the unitor, and this can be
done in two ways.
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• We can either apply the (inverse of the) left unitor � at depth K , and then take the
Grothendieck construction, obtaining the following diagram.

∫
(μ∗η∗D)0 C

(J , (•, K )) � (D1 J )(K )

μ(μ∗η∗D)

• Alternatively, we can apply the right unitor r at depth J , and again take the Grothendieck
construction, obtaining the following isomorphic diagram.

∫
(μ(η∗D))0 C

((J , •), K ) � (D1 J )(K )

μ(μ(η∗D))

• Now, not only are the two diagrams isomorphic, but the isomorphism relating them is
exactly the associator,

(J , (•, K )) � ((J , •), K )

which we can view as “rebracketing”.

2.4.2 Pentagon Equation

Instantiating the pentagon condition of Definition A.1 in our case, we get the following
statement, which reminds us of the analogous condition for monoidal categories. Consider a
four-level diagram, as follows.

J Diag(Diag(Diag(C)))

J �
{

D0 J Diag(Diag(C))
}

K �
{

(D1 J )0K Diag(C)
}

L �
{

((D1 J )1K )0L C
}

M � (((D1 J )1K )1L)(M)

D

(D1 J )1K

((D1 J )1K )1L

There are several ways of obtaining a depth-one diagram via applying the Grothendieck
construction three times, and they are related to one another via the associators. In particular,
we can apply the Grothendieck construction repeatedly starting from the deepest (rightmost)
level,

∫
μ∗μ∗∗D C

(J , (K , (L, M))) � (((D1 J )1K )1L)(M)

μ(μ∗μ∗∗D)

or we can start from the outermost (leftmost) level.

∫
μ(μ(D)) C

(((J , K ), L), M) � (((D1 J )1K )1L)(M)

μ(μ(μ(D)))
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There are now two ways of obtaining the former from the latter via associators, and they are
equal. They are induced by the following rebracketings, which form a commutative pentagon
(analogous to the one of monoidal categories).

(J , ((K , L), M))

(J , (K , (L, M)))

((J , (K , L)), M)

((J , K ), (L, M))

(((J , K ), L), M)

a

a

a∗
a

a

2.5 Cocomplete Categories are Algebras

In this section we prove the following statements.

Theorem 2.7 Every cocomplete category C equipped with a choice of colimit for each dia-
gram has the structure of a pseudoalgebra over Diag.

As shown in Sect. 2.5.4, the converse of the theorem does not hold: not all pseudoalgebras
are in this form.

A definition of pseudoalgebra over a pseudomonad is given in Appendix A.

2.5.1 Structure Map

Let C be a cocomplete category. For each diagram D : J → C, choose a colimit (they are all
isomorphic, pick one in each equivalence class). Let’s see why this construction is functorial.
A colimit does not just consist of an object of C, but also of the arrows of the colimiting
cocone. Denote by c(D) the (chosen) colimit object of D, and by h(D) : D ⇒ c(D) the
colimiting cocone. In components, the cocone consists of arrows

DJ c(D)
h(D)J

for each object J of J. Now consider a morphism of diagrams as follows.

J

C

J’

D

R

D′
ρ

Using ρ and the colimit cocone h(D′) : D′ ⇒ c(D′) we can construct a cocone under D,
with tip c(D′): the one of components

DJ D′RJ c(D′)ρJ h(D′)RJ
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for each J of J. This coconemust then factor uniquely through c(D) by the universal property
of c(D) as a colimit:

DJ

D′RJ

c(D) c(D′)

h(D)J

ρJ

h(D′)RJ

Denote the resulting map c(D) → c(D′) by c(R, ρ). It is the unique map that makes the
diagram above commute for each J of J. By uniqueness, this assignment preserves identities
and composition, and so c is a functor Diag(C) → C. Technically speaking, for each diagram
one can choose many possible colimits within the same equivalence class. However, once
c(D) and c(D′) are fixed, the map c(D) → c(D′) is unique. So any choice of such colimit
objects gives rise to a functor, and all these functors will be naturally isomorphic, again by
uniqueness.

We can say even more: the map c : Diag(C) → C is even 2-functorial if we view Diag(C)
as a 2-category (as in Definition 2.1), and C (which is a 1-category) as a locally discrete
2-category. This is made precise by the following lemma.

Lemma 2.8 Let C be a cocomplete category and c : Diag(C) → C a choice of colimit
for each diagram. Consider diagrams (J, D) and (J’, D′) in C, morphisms of diagrams
(R, ρ), (R′, ρ′) : (J, D) → (J’, D′), and suppose there exists a 2-cell of diagrams
α : (R, ρ) ⇒ (R′, ρ′). Then c(R, ρ) = c(R′, ρ′).

Proof Recall that α consists of a natural transformation α : R ⇒ R′ such that

J

C

J’

D

R′
R

D′
ρα

=

J

C.

J’

D

R′

D′

ρ′

This way, for each object J of J, the following diagram commutes,

D′RJ

DJ c(D′)

D′R′ J

DαJ

h(D′)R′ JρJ

ρ′
J h(D′)RJ

where h(D′) : D′ ⇒ c(D′) denotes the colimit cone of c(D′) under D′. The maps c(R, ρ)

and c(R′, ρ′) : c(D) → c(D′) are both defined as the unique maps making the following
diagram commute,

DJ

c(D) c(D′)

h(D′)R′ J ◦ρJ = h(D′)RJ ◦ρ′
J

h(D)J

and are therefore equal. 	
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2.5.2 Structure 2-Cells

We now give the structure 2-cells of the pseudoalgebras, namely the unitor and the multipli-
cator.

Lemma 2.9 The following diagram commutes up to a canonical natural isomorphism.

C Diag(C)
∼=

C

id

η

c

We denote the natural isomorphism by ι : c ◦ η ⇒ idC .

Proof LetC be anobject ofC. The diagramη(C) is the one-object diagramwhose unique node
is given by C . A colimit cocone over η(C) consists of an object C ′ together with a specified
isomorphism C → C ′. Therefore, for any choice of c, we get canonically an isomorphism
ιC : C → c(η(C)). The maps ιC assemble to a natural isomorphism ι : c ◦ η ⇒ idC , since
for each f : C → C ′ of C the following diagram commutes,

C C ′

c(η(C)) c(η(C ′))

f

ιC ιC ′
c(η( f ))

since the map c(η( f )) is defined (by definition of how c acts on morphisms) as the unique
map making the diagram above commute. 	

Lemma 2.10 The following diagram commutes up to a canonical natural isomorphism.

Diag(Diag(C)) Diag(C)

∼=
Diag(C) C

μ

c∗

c

c

Denote the natural isomorphism by γ : c ◦ c∗ ⇒ c ◦ μ.
This statement is known in the literature, see for example [4, Section 40], as well as [26,

Theorem 3.2]. Here we present a direct proof. In the proof we can see how the objects in the
top right corner of the square are, in some sense, partial colimits of the objects in the bottom
left corner. This will be made precise in Sect. 5.

Proof Let D : J → Diag(C). The diagram c∗D : J → C is given by the following postcom-
position.

J Diag(C) C

J D0 J c(DJ )

� C �

J ′ D0 J ′ c(D1 J ′)

D c

j

D1 J

D0 j c(Dj)

D1 J ′

D1 j
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In other words, the nodes of D are diagrams (one for each object of J), and c∗ replaces them
by their (chosen) colimit, obtaining a diagram in C indexed by J.

Recall thatμ is given by theGrothendieck construction, so thatμ(D) is a diagramobtained
by the union of the diagrams DJ for each J of J, plus additional arrows between those
subdiagrams, induced by the morphisms of J. Specifically, for every morphism j : J → J ′
of J and for every f : X → Y of D0 J , the following square commutes.

D1 J (X) D1 J ′(D0 j(X))

D1 J (Y ) D1 J ′(D0 j(Y ))

D1 J f

(D1 j)X

D1 J ′(D0 j( f ))
(D1 j)Y

The object c(μ(D)) is a colimit of the resulting diagram involving all the j and the f as
above. Recall now the universal property of the Grothendieck construction, and in particular
diagrams (2.1) and (2.2). For each object J of J, the morphism of diagrams given by the
inclusion i J of the fiber over J ,

D0 J

C

∫
D0

i J

D1 J

μ(D)

induces a map between their (chosen) colimits c(i J , id) : c(DJ ) → c(μ(D)). The maps
c(i J , id) : c(DJ ) → c(μ(D)), for each J , assemble to a cocone under c∗D : J → C,
with tip c(μ(D)), meaning that for each morphism j : J → J ′ of J, the following diagram
commutes.

c(DJ )

c(μ(D))

c(DJ ′)

c(Dj)

c(i J ,id)

c(i J ′ ,id)

(2.5)

Indeed, we can rewrite (2.2) as follows,

D0 J

C

∫
D0

D1 J

i J ′ ◦D0 j
i J

μ(D)

i j
=

D0 J

C

∫
D0

D1 J

i J ′ ◦D0 j

μ(D)

D1 j

which is exactly the condition for a 2-cells of diagrams (i J , id) ⇒ (i J ′ ◦ D0 J , D1 j) (see
Definition 2.1). By Lemma 2.8, then, c(i J , id) = c(i J ′ ◦ D0 J , D1 j), which means that (2.5)
commutes.

As we said, the maps c(i J , id) : c(DJ ) → c(μ(D)), assemble to a cocone under c∗D :
J → C, with tip c(μ(D)). Therefore, by the universal property of c(c∗D) as a colimit, there
exists a unique arrow c(c∗D) → c(μ(D)), which we denote by γD , making the following
diagram commute for all J of J,
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706 P. Perrone, W. Tholen

c(DJ )

c(c∗D) c(μ(D))

c(i J ,id)
h(c∗D)J

γD

where the h(c∗D)J denote the arrows of the colimiting cocone. Note that for each object X
of D0 J we can extend the diagram above to the following commutative diagram,

D1 J (X)

c(DJ )

c(c∗D) c(μ(D))

h(DJ )X h(μ(D))X

c(i J ,id)
h(c∗D)J

γD

(2.6)

where h(DJ )X and h(μ(D))X are the components at X of the colimiting cocones of c(DJ )

and c(μ(D)).
To show that γD is an isomorphism, we invoke the Yoneda embedding. Let K be any

object of C. We want to show that the function

HomC
(
c(μ(D)), K

)
HomC

(
c(c∗D), K

)

f f ◦ γD,

γD∗
(2.7)

which is natural in K , is a bijection. To this end, we note that by the universal property of
colimits, the set on the left is naturally isomorphic (via composing with the components of
h(μ(D))) to the subset

S ⊆
∏

J∈J

∏

X∈D0 J

HomC
(
D1 J (X), K

)

whose elements are families of arrows (kJ ,X : D1 J (X) → K ) such that for each j : J → J ′
of J and each f : X → Y of D0 J the following diagram commutes.

D1 J (X) D1 J ′(D0 j(X))

K

D1 J (Y ) D1 J ′(D0 j(Y ))

kJ ,X

kJ ,Y

D1 J ( f ) D1 J (D0 j( f ))

(D1 j)X

(D1 j)Y

kJ ′,D0 j(X)

kJ ′,D0 j(Y )

Now, for each J of J, the quantity appearing in S given by

SJ ⊆
∏

X∈D0 J

HomC
(
D1 J (X), K

)
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and whose elements are arrows (kJ ,X : D1 J (X) → K ) such that f : X → Y of D0 J the
following diagram commutes,

D1 J (X)

K

D1 J (Y )

kJ ,X

kJ ,Y

D1 J ( f )

is in natural bijection with

HomC
(
c(DJ ), K

)

by universal property of the colimit, via composing with the cocones h(DJ ). In other words,
S is in natural bijection with the subset of

S′ ⊆
∏

J∈J
HomC

(
c(DJ ), K

)

whose elements are arrows (k′
J : c(DJ ) → K ) such that the following diagram commutes.

c(DJ ) C(DJ ′)

K

c(Dj)

k′
J k′

J ′

The subset S′, again by the universal property of the colimit, is in bijection (via composing
with h(c∗D)) with HomC

(
c(c∗D), K

)
, which is exactly at the right side of (2.7). Since (2.6)

commutes, composing with γD has the same effect as applying the bijections given by (the
inverse of) composing with h(c∗D) and h(DJ )X (all the bijections are invertible), and then
composing with h(μ(D))X . Therefore (2.7) is a bijection too. By the Yoneda lemma, then,
γD is an isomorphism. 	


2.5.3 Coherence Laws

In order to prove Theorem 2.7 it remains to be checked that the unit and multiplication
coherence conditions of Definition A.4 hold. Intuitively, such coherence conditions hold by
the “uniqueness property of maps between colimits”. In other words, not only do objects
satisfying the same universal property admit an isomorphism between them, but they admit
a unique one compatible with the universal property (in our case, the cocone): while colimit
objects of a diagram may have many automorphisms (as objects), colimit cocones over the
same diagram form a contractible groupoid.

Let’s see this more explicitly. The unit condition of DefinitionA.4, instantiated in our case,
says the following. Let C be a cocomplete locally small category, and construct (choose) the
functor c : Diag(C) → C as before. Consider nowadiagram D : J → C.We can apply themap
η∗ : Diag(C) → Diag(Diag(C)) as in Sect. 2.3.2 and obtain the diagram η∗D : J → Diag(C)
as follows.
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J Diag(C)

J �
{

1 C
}

• � DJ

η∗D

DJ

Now we can either

• apply to η∗D the map c∗, which replaces each one-object diagram DJ with its chosen
colimit c(DJ ) (isomorphic to DJ via the unitor ι), giving the diagram c(D−) : J → C;
or

• form the Grothendieck construction and obtain the diagram (J , •) �→ DJ , with exactly
the same image in C as D, but indexed by a nominally different category, and isomorphic
to D via the counit ρ .

Both ways give isomorphic diagrams in C, which then have isomorphic colimits. The iso-
morphism between the colimits can be written a priori in two ways:

• It is the one induced by γ : c ◦ c∗ ⇒ c ◦ μ;
• It is the one induced by the isomorphism of diagrams of components ι : DJ → c(DJ )

for each object J of J.

The unit condition of pseudoalgebras says that these two isomorphism should be equal. This
is indeed the case, by uniqueness of the morphism γ : forming the colimit cocones of D and
of c(D−), which are isomorphic diagrams via ι, we have a unique morphism making the
following diagram commute for all J of J,

DJ c(DJ )

c(D) c(c(D−))

ι−1

h(D) h(c(D−))

which can be seen as either the map γ (by definition), or as the map induced by ι, after
suitably translating D into (J , •) �→ DJ via the right unitor r .

The multiplication condition of Definition A.4, again instantiated in our case, says the
following. As in Sect. 2.3.3, let D ∈ Diag(Diag(Diag(C))) be a diagram as follows.

J Diag(Diag(C))

J �
{

D0 J Diag(C)
}

K �
{

(D1 J )0K C
}

L � ((D1 J )1K )(L)

D

D1 J

(D1 J )1K

We can now take the colimit progressively, a priori in two ways: first of all, “from the inside
out”, that is,
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Kan Extensions are Partial Colimits 709

• For each J of J and K of D0 J , take the (chosen) colimits of the diagrams (D1 J )1K ,
obtaining the following diagram of diagrams;

J Diag(C)

J �
{

D0 J C
}

K � c((D1 J )1K )

c∗∗D

c∗(D1 J )

• Then, for each J of J, take the (chosen) colimit of the remaining innermost level diagram
c∗(D1 J ), obtaining the following diagram;

J C

J � c(c∗(D1 J ))

c∗c∗∗D

• Finally, take the colimit c(c∗(c∗∗D)) of the diagram just obtained.

Alternatively, we could

• Form the Grothendieck construction of D joining levels J and K , obtaining the following
diagram of diagrams;

∫
D0 Diag(C)

(J ∈ J, K ∈ D0 J ) �
{

(D1 J )0K C
}

L � ((D1 J )1K )(L)

μ(D)

(D1 J )1K

• Form again the Grothendieck construction, joining level L as well;

∫
μ(D) C

((J ∈ J, K ∈ D0 J ), L ∈ (D1 J )0K ) � ((D1 J )1K )(L)

μ(μ(D))

• Finally, take the colimit c(μ(μ(D))) of the resulting diagram.

The colimits constructed this way are isomorphic, a priori, in two different ways, using the
maps obtained by γ in different orders (first inner level, then outer, or vice versa). However,
the different ways coincide, since both colimits come equipped with the following cocones,

((D1 J )1K )(L) c((D1 J )1K ) c(c∗(D1 J ))

c(μ(μ(D))) c(c∗(c∗∗D))

h((D1 J )1K ) h(c∗(D1 J ))

h(c∗(c∗∗D))h(μ(μ(D)))

and there is a unique map making the diagram above commute for all J , K and L .
This finally proves that cocomplete categories are pseudoalgebras of Diag (Theorem 2.7).

2.5.4 Not All Algebras are of this Form

We now want to show the following statement.

Proposition 2.11 Not every pseudoalgebra over Diag is in the form of Theorem 2.7.
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We use the following known result [26, Theorem 2.7].

Theorem 2.12 Let C be a cocomplete category. Then the category Diag(C) is cocomplete too.
Moreover, the functor Diag(C) → Cat which assigns to each diagram D : J → C its domain
J preserves colimits.

We are now ready to prove the proposition. We will prove it by showing that for free
pseudoalgebras, in the form (Diag(C), μ), the map μ is in general not taking colimits of
diagrams (of diagrams).

Proof of Proposition 2.11 Let C be a cocomplete category with at least two non-isomorphic
objects X and Y and a morphism f : X → Y . Consider now the morphism η( f ) of Diag(C),
which can be seen as the morphism of diagrams,

1

C

1

X

id

Y

f

and so, in particular, also as a diagram of diagrams (indexed by the walking arrow 2).
Denote by D : 2 → Diag(C) this diagram of diagrams. We have that μ(D), as given by
the Grothendieck construction, is a diagram indexed again by 2. Instead, by Theorem 2.12,
the colimit of D in Diag(C) is a diagram whose domain must be the colimit of id : 1 → 1 in
Cat, which is 1. In particular, this colimit is not isomorphic to μ(D) .

Therefore, for the free algebra (Diag(C), μ), the algebra structure mapμ is not in the form
of Theorem 2.7. (See the end of Appendix A.2 for why (Diag(C), μ) is indeed a pseudoalge-
bra.) 	


A structural reason for why not allDiag-algebras arise this way will be given in Sect 4.6.1.
Conjecturally, the generic Diag-algebras may be given by taking oplax colimits, instead of
strict (in 2-categories rather than categories).

3 Image Presheaves

In this section we define the notion of image presheaf of a diagram, whichmay be interpreted
as its “free” or “prototype colimit”. As far as we can tell, it was first introduced by Paré under
the name “connected component functor” [23]. This concepts allows to extend and gener-
alize the theory of cofinal functors (which we call confinal, see Sect 3.2), giving conditions
for when certain diagrams have isomorphic colimits even after applying a functor to them
(Proposition 3.9), and it incorporates absolute colimits as a special case (see Proposition 3.13
and the subsequent discussion).

3.1 Diagrams and Presheaves

Given a diagram D : J → C, we obtain a presheaf Im D on C canonically, as follows.

Definition 3.1 The image presheaf of the diagram D, whichwe denote by Im D, is the colimit
of the following composite functor,

J C [Cop, Set]D y
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where y denotes the Yoneda embedding.

We can view the image as a “free colimit”, the presheaf obtained as the colimit of
representables indexed by the diagram D. As usual, by the universal property of colimits
this assignment is functorial. The terminology “image” is motivated by a factorization (see
Sect 3.2.1), as well as by analogy with random variables (see Sect 5.4).

Equivalently, Im D is the (pointwise) left Kan extension

Im D:=LanDop1,

as in the following diagram,

Jop

Set

Cop

1

Dop

Im D

λD

where 1 : Jop → Set is the constant presheaf at the singleton set 1, and λD denotes the
universal 2-cell. Thiswayone could generalize the definition to the case ofweighteddiagrams,
which is however beyond the scope of the present paper.

Concretely, given an object C of C, the set (Im D)(C) is the set

colim
J∈J

(
HomC(C, DJ )

)
.

Its elements are the equivalence classes of arrows of C of the formC → DJ , for some object
J of J, where we identify any two arrows f : C → DJ and f ′ : C → DJ ′ whenever there
exists a morphism g : J → J ′ of J such that f ′ = Dg ◦ f , as in the following diagram.

J DJ

� C

J ′ DJ ′

g Dg

f

f ′

Functoriality of Im, as a functor Diag(C) → [Cop, Set], is given by pasting arrows and
commutative diagrams.

In general, two arrows f : C → DJ and f ′ : C → DJ ′ are identified if there is a zig-zag
of arrows of J connecting J and J ′, which we write as J � J ′, such that the following
diagram “commutes”.

J DJ

� C

J ′ DJ ′

f

f ′

By convention, we say that a triangle containing a zig-zag as the one above commutes if and
only if each arrow in the zig-zag gives a commutative triangle. For later use, we denote by
[J , f ] the equivalence class in Im D represented by f : C → DJ .

This description in terms of equivalence classes of arrows can be stated more concisely
as follows: the presheaf Im D applied to the object C is the set of connected components
of the comma category C/D. This is how this construction was first introduced (for small
categories) in [23, Section 2], where it is called the “connected component functor” or π0.
The equivalence of the two definitions is already proven in [23, Theorem 2.1].
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3.1.1 The Category of Elements

Let P : Cop → Set be a presheaf. Recall the discrete fibration given by the category of
elements

∫ o P → C.

Note that we use again the short integral sign, as we had used for the Grothendieck construc-
tion – but here it denotes the category of elements, as we are using the contravariant version.
The category

∫
o P is the category where

• Objects consist of pairs (C, x), where C is an object of C and xC is an element of the set
PC .

• A morphism (C, x) → (C ′, y) is a morphism g : C → C ′ of C such that the function
Pg : PC ′ → PC sends y ∈ PC ′ to x ∈ PC .

IfC is small (resp. locally small),
∫
o P is small too (resp. locally small). The functor

∫
o P →

C , which is a discrete fibration, maps (C, x) to C and a morphism of
∫
o P to the underlying

morphism of C . The category of elements is functorial in the following way. Let α : P → Q
be a morphism of presheaves, i.e. a natural transformation

Cop Set.

P

Q

α

we can construct a functor
∫
oα : ∫

o P → ∫
oQ which makes the following diagram com-

mute,

∫
o P

∫
oQ

C

∫
oα

where the morphisms into C are the canonical discrete fibrations. The functor
∫
oα is con-

structed as follows.

• Itmaps the object (C, p), whereC is an object ofC and p ∈ PC , to the object (C, αC (p)).
Note that αC (p) ∈ QC ;

• It maps the morphism (C, P f (q)) → (C ′, q) induced by the morphism f : C → C ′ of
C to the morphism (C, Q f (αC ′(q))) → (C ′, αC ′(q)) again induced by f . Note that the
following naturality diagram commutes.

PC ′ QC ′

PC QC

αC ′

P f Q f
αC

Consider now a diagram D : J → C, take its image presheaf Im D and form its category
of elements

∫
o Im D. Let’s see what we get explicitly.

• An object of
∫
o Im D consists of an object C of C together with an equivalence class

[J , f ] represented by an object J of J and a morphism f : C → DJ of C.
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• A morphism (C, [J , f ]) → (C ′, [J ′, f ′]) consists of a morphism g : C → C ′ of C
such that (Im D)(g)([J ′, f ′]) = [J , f ]. This means that there is a zig-zag of arrows of
J connecting J and J ′, which we write as J � J ′, such that the following diagram
commutes.

J C DJ

�

J ′ C ′ DJ ′
g

f

f ′

Proposition 3.2 Given a morphism of diagrams

J

C

K

F

R

F ′
ρ

the 2-cell ρ factors in the following form,

J
∫
o Im F

C

K
∫
o Im F ′

R

F̃

F̃ ′

ρ̃

where the triangle on the right commutes, with the vertical arrow given by
∫
o Im(R, ρ)

(recall that both
∫
o and Im are functorial).

Before the proof, let’s see what the functor
∫
o Im(R, ρ) : ∫

o Im F → ∫
o Im F ′ looks

like. It maps an object

(C, [J ,C
f−→ F J ])

of
∫
o Im F to the object

(C, [RJ ,C
f−→ F J

ρJ−→ F ′RJ ])
of

∫
o Im F ′. On morphisms, given g : C → C ′ in C and a zig-zag J � J ′ in J making the

diagram on the left commute, we get the diagram on the right.

C F J

C ′ F J ′
g

f

f

�
C F J F ′RJ

C ′ F J ′ F ′RJ ′
g

f ρJ

f ρ′
J

The right-most square commutes by naturality of ρ applied to the zig-zag.

Proof Let J be an object of J. Let’s give the component of ρ̃ at J explicitly. Note first that

∫ o Im(R, ρ)(F̃(J )) = (J , [F J
id−→ F J

ρJ−→ F ′RJ ])
and that

F̃ ′(R(J )) = (RJ , [F ′RJ
id−→ F ′RJ ]).
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The morphism ρ̃J : ∫
o Im(R, ρ)(F̃(J )) → F̃ ′(R(J )) is then given by the following dia-

gram,

F J F J F ′RJ

F ′RJ F ′RJ

ρ

id ρ

id

with the zig-zag given by the identity. By construction,whiskering ρ̃ with the forgetful functor
to C we get back ρ. 	


3.2 Connecting Confinal Functors and Absolute Colimits

As shown in [23, Section 3], the concept of image presheaf allows us to extend a bit the
theory of confinal functors, 2 and unifies it with the theory of absolute colimits. Here we
restate some of those ideas, since we have slightly different size conditions. A reference for
the standard theory is for example given in [2, Section 2.11] (note that there the term “final
functor” is used instead, for limit-invariant functors, rather than colimit-invariant).

Definition 3.3 A functor F : C → D is called confinal if for every object D of D, the comma
category D/F is non-empty and connected.

Note that, if we view F as a (possibly large) diagram, Im F(D) for an object D of D can
be seen as the set of connected components of D/F . Therefore F is confinal if and only if
Im F(D) is the terminal presheaf. (See also [23, Corollary 3.4].)

The importance of confinal functors is due to the following well-known statement, which
is actually an equivalent characterization of confinality.

Proposition 3.4 If F : C → D is confinal, for every functor G : D → E admitting a colimit,
the functor G ◦ F : C → E admits a colimit too, and the map between colimits

colim
C∈C G(F(C)) → colim

D∈D G(D)

induced by the following morphism of (possibly large) diagrams

C D

E

F

G◦F G

is an isomorphism.

For a proof, see for example the proof of the very similar statement [2, Proposition 2.11.2]
(again, note the different conventions there).

2 These are known in the literature also as “cofinal”, “coinitial” and “final”, terms whichmay cause confusion.
The “co” in “cofinal” (e.g. in “cofinal subnet”) does not denote duality, but rather, follows the Latin particle
“cum” which means “with, together”. As such, we feel that “confinal” is both closer to the original etymology,
and less prone to cause confusion. The term “confinal” (or in German, “konfinal”) was introduced byHausdorff
for the case of ordered sets [13, Section IV.4, page 86], and it has been in use at least until [10, Definition
2.12].
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3.2.1 Refining the Comprehension Factorization

We would like now to prove the following statement.

Proposition 3.5 Let C be (small-)cocomplete. The (large) colimit of the fibration

π : ∫ o Im F → C

exists, and it coincides with the (small) colimit of the diagram F : J → C.

This is almost an instance of the following known result, sometimes called the “compre-
hension factorization schema”.

Theorem 3.6 [28] There is an orthogonal (E, M)-factorization system on Cat, where E are
the confinal functors and M are the discrete fibrations.

However, in our case we are not requiring C to be small, only locally small. Because of
this, and because we need the construction explicitly, we give a dedicated proof.We construct
a functor F̃ : J → ∫

o Im F as follows.

• For each object J of J, define

F̃ J := (F J , [J , idF J ]),
i.e. assign to J the equivalence class represented by the identity arrow F J → F J of C.

• For each morphism f : J → J ′, take the map F f : F J → F J ′. Notice that we have
the following commutative diagram,

F J F J

F J ′ F J ′
F f

id

F f

id

so that we have a well-defined morphism of
∫
o Im F (the zig-zag is simply given by the

morphism f ).

Proposition 3.7 The functor F̃ : J → ∫
o Im F is confinal.

This suffices to deduce Proposition 3.5, since the following diagram commutes.
∫
o Im F

J C

πF̃

F

Proof of Proposition 3.7 We need to show that for every object (C, [J , f ]) of ∫
o Im F , the

comma category (C, [J , f ])/F̃ is non-empty and connected. This is guaranteed by the way
the category

∫
o Im F is constructed, as follows.

First, since F̃ J is the equivalence class represented by the identity F J → F J , we can
consider f as an arrow (C, [J , f ]) → F̃ J of

∫
o Im F and, hence, an object of (C, [J , f ])/F̃ ,

as we have the trivially commuting diagram

C F J

F J F J

f

f

id
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with the zig-zag given by the identity. Now, given any other arrow f ′ : (C, [J , f ]) → F̃ J ′ in∫
o Im F , we have [J ′, f ′] = Im F( f ′)([J ′, 1DJ ′ ]) = [J , f ]. So there is a zig-zag J � J ′

in J, which actually links f ′ with f in the comma category (C, [J , f ])/F̃ , as required. 	


3.2.2 Mutually Confinal Diagrams

We will make use of the following well-known fact:

Lemma 3.8 Consider the functors

A B CF G

where A, B and C are locally small categories. If G ◦ F is confinal and G is fully faithful,
then F and G separately are confinal too.

Proposition 3.9 Let C be a locally small category. Let D : J → C and E : K → C be small
diagrams. The following conditions are equivalent.

(a) Im D and Im E are naturally isomorphic;
(b) for every locally small category D and every functor F : C → D, the composite diagram

F ◦ D : J → D admits a colimit if and only if F ◦ E : K → D does, and in that case the
two colimits are isomorphic;

(c) D and E are connected by a zigzag in Cat/C such that all the arrows of the underlying
zigzag J � K in Cat are confinal functors.

Definition 3.10 If the diagrams D : J → C and E : K → C satisfy any (and, hence, all) of
the conditions above, we call them mutually confinal.

One should view the property of being mutually confinal as the absolute coincidence of
their colimits: existence granted, their colimits remain the same even after applying any other
functor.

This idea, minus the size issues, appears already in [23, Theorem 3.2].

Proof of Proposition 3.9 The statement (c)⇒(b) is part of the standard theory of confinal
functors (see the references). The statement (b)⇒(a) follows from choosing for F : C → D
the Yoneda embedding η : C → PC.

The real work is to prove (a)⇒(c). To this end, suppose that α is an isomorphism Im D ∼=
Im E . We have an isomorphism between the corresponding categories of elements,

∫
o Im D

∫
o Im E

C

∫
oα

∼=

together with functors D̃ : J → ∫
o Im D and Ẽ : K → ∫

o Im E which are confinal by
Proposition 3.7. We have the following diagram of confinal functors.

J K

∫
o Im D

∫
o Im E

D̃ Ẽ∫
oα

∼=
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Denote now by S the full subcategory of
∫
o Im E given by the joint full image of the two

functors
∫
oα ◦ D̃ and Ẽ . The situation is depicted in the following commutative diagram.

J K

∫
o Im D S

∫
o Im E

D̃
Ẽ

∫
oα

By construction, S is small, since its cardinality is bounded by the one of the disjoint union
of the sets of objects of J and K, which are small. Moreover, the resulting functors J → S and
K → S are confinal by Lemma 3.8. The resulting diagram

J S K

C
D E

gives the desired zigzag (of length 2). 	


3.2.3 Absolute Colimits

An absolute colimit is a colimit which is preserved by every functor [24]. We can redefine
the concept of absolute colimits in terms of mutually confinal functor as follows. As we will
see, this is equivalent to the usual definition. Again, these ideas, minus size issues, already
appear in [23], see Corollary 3.3 therein and the subsequent discussion.

Definition 3.11 Let C be a locally small category, and let D : J → C be a small diagram. An
absolute colimit of D is an object X of C such that the diagrams D : J → C and X : 1 → C
are mutually confinal.

The image presheaf of a one-object diagram is the one given by the Yoneda embedding
y : C → [Cop, Set], as the following proposition show.

Proposition 3.12 For each locally small category C, the following diagram commutes up to
natural isomorphism.

C

Diag(C) [Cop, Set]
η y

Im

Proof Using the definition of image in terms of Kan extensions, and recalling that η(X) is
the diagram X : 1 → C that picks out the object X , we have that Im(η(X)) is given by the
following Kan extension,

1

Set

Cop

1

X

LanX1

λ

which is isomorphic to HomC(−, X), i.e. the image of X under the Yoneda embedding. The
isomorphism is moreover natural in X , by the universal property of (free) colimits. 	
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718 P. Perrone, W. Tholen

Therefore, equivalently, an object X is an absolute colimit of the diagram D : J → C if
and only if Im D is naturally isomorphic to the representable presheaf HomC(−, X).

If we instance Proposition 3.9 for this case, we get the following statement.

Proposition 3.13 Let C be a locally small category. Let D : J → C and be a small diagram,
and let X be an object of C. The following conditions are equivalent.

(a) X is an absolute colimit of D (i.e. Im D ∼= HomC(−, X) naturally);
(b) for every locally small category D and every functor F : C → D, the object F(X) is the

colimit in D of the composite diagram F ◦ D : J → D;
(c) D : J → C and X : 1 → C are connected by a zigzag in Cat/C such that all the arrows

of the underlying zigzag J � 1 in Cat are confinal functors.

Note that condition (b) implies, in particular, that indeed X is a colimit of D (take F to
be the identity). Denote the colimit cone by h : D ⇒ X .

We can now rewrite condition (c) in a more elementary way. Recall that in the proof of
Proposition 3.9 we had obtained condition (c) from (a) by forming the category of elements
of the (common) image presheaf, and taking the joint image of the confinal functors from
J and from 1 to this category of elements. The category of elements of the representable
presheaf HomC(−, X) is isomorphic to the slice category C/X . We therefore have to take the
joint image in C/X of the two functors at the top of this diagram,

J C/X 1

C
D

π
X

where the functor J → C/X maps an object J ∈ J to the arrow of the colimit cone hJ : DJ →
X . Just as in the proof of Proposition 3.9, denote this joint full image by S. Now, the resulting
functor 1 → S is trivially confinal, since it maps the unique object of 1 to idX ∈ C/X .
More interestingly, the proof of Proposition 3.9 says that also the resulting functor J → S is
confinal. The condition is nontrivial for the only object of S that does not come from J, which
is the one coming from 1, namely idX ∈ C/X . For this object, the confinality condition of
the functor J → S says the following:

(d) There exist an object J of J and an arrow f : X → DJ of C such that the following
diagram commutes:

X DJ

X
id

f

h J

and such that moreover, for each object J ′ of J and arrow f ′ : X → DJ ′ making a similar
diagram commute, there exists a zigzag J � J ′ in J making the following diagram in
C commute.

DJ ′

X DJ

X

h′
J

id

f ′

f

h J
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Intuitively, we can interpret this condition as “the colimit cone eventually has a section,
which is in some sense unique”. This is similar to verywell-known statements in the literature,
see for example Theorems 2.1 and 4.1 in [24]. Therefore we can view our theory of mutually
confinal functors as a joint generalization both of confinal functors and of absolute colimits.

4 TheMonad of Small Presheaves

In this section we study small presheaves, and show that they also form a pseudomonad.
Moreover, the image map of the previous section gives a morphism of pseudomonads (also
explicitly defined in Appendix A). Again, cocomplete categories are pseudoalgebras of this
monad, but this time, every pseudoalgebra is of this form. Indeed, considering the long history
of (co)completion theory of categories (see [14,18] for early contributions), one should view
the monad of small presheaves as the “free small-cocompletion monad”. The fact that Diag
admits cocomplete categories as algebras is then to be thought of as an instance of the
“restriction of scalars” construction, where algebras of a monad can be pulled back along a
morphism of monads, see Appendix A.3.

It is known that small presheaves form a pseudomonad [6]. However, we did not find an
explicit construction in the literature, so we give one in the present section. Compared to
the pseudomonad of Sect. 2, this one is weaker: the underlying pseudofunctor is not a strict
2-functor. A short review of the relevant basic definitions can be found in Appendix A. The
fact that Im defines a morphism of pseudomonads (Sect. 4.6) seems to be new.

4.1 Small Presheaves

Definition 4.1 A presheaf is called small if it is (naturally isomorphic to) the image presheaf
of a small diagram.

Denote by PC the full subcategory of [Cop, Set] whose objects are small presheaves.

The image presheaf of a (small) diagram is by definition a small presheaf, so that the
functor Im : Diag(C) → [Cop, Set] actually lands in PC. We denote the resulting functor
Diag(C) → PC again by Im. This will not cause confusion, since from now on we will only
consider small presheaves.

Despite the slightly new terminology, this is a known concept, see for example [6]. We
recall the following facts.

• A presheaf is small if and only if it can be written as a small colimit of representables
[6, Section 2]. Therefore we can think of small presheaves as of forming the free small
cocompletion of a category.

• The category PC of small presheaves on a locally small category C is itself locally small.
This allows us to avoid several size issues when talking about the free cocompletion.

Notice also the following fact.

Remark 4.2 Let C be a locally small category, and let P : Cop → Set be a small presheaf.
Then we know (Proposition 3.7) that there exist a small category S and a confinal functor
F̃ : S → ∫

o P . By Lemma 3.8, we can assume that F̃ is fully faithful, or equivalently that it
is the inclusion of a full subcategory.
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720 P. Perrone, W. Tholen

For later use in this section, we recall the following known statement, sometimes called
the co-Yoneda lemma (see [15, Section 3.10], as well as [19, Section 2.2]).3

Proposition 4.3 Let C be a category, and let H : C → Set be a functor. There is an isomor-
phism

H(C) ∼=
∫ C ′∈C

HomC(C
′,C) × H(C ′),

for each object C of C and natural in C, given by mapping each element x ∈ H(C) to the
equivalence class in the coend above the ordered pair (idC , x) ∈ HomC(C,C) × H(C).

4.2 The Pseudofunctor

Given locally small categories C and D and a functor F : C → D, we would like to find an
assignment PC → PD, which maps small presheaves to small presheaves.

Definition 4.4 Let F : C → D be a functor between locally small categories, and let P be
a small presheaf on C. The pushforward of P along F is the presheaf on D given by the
following left Kan extension.

Cop

Set

Dop

P

Fop

LanFop P

λ

We denote the resulting presheaf by F�P .

Equivalently, F�P is given by the free colimit of F , weighted by P . By the universal
property of (weighted) colimits, it is therefore functorial in F . Note that this definition
specifies F�P only up to isomorphism. As usual, the choice of a particular object within its
isomorphism class is de facto irrelevant.

Recall the following fact, which says that Kan extension diagrams can be pasted vertically.
While the statement is folklore and a consequence of the simple fact that universal arrows
[21] compose in an obvious sense, we provide a proof because the explicit isomorphism
given in the proof will be of use later.

Proposition 4.5 Let A, B, C and D be categories, and let F : A → B, G : B → C, H : A → D
be functors. The left Kan extensionsLanG(LanF H) andLanG◦F H are naturally isomorphic.

A

B D

C

HF λF

LanF H

G
LanG (LanF H)

λG

∼=

A

B D

C

HF

G
LanG◦F H

λG◦F
(4.1)

3 Often a stronger statement is called “co-Yoneda lemma”, see Proposition 4.14.
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Proof By the universal property of LanF H , the natural transformation λG◦F on the right of
(4.1) factors uniquely through λF , i.e. there exists a unique 2-cell ν : LanF H ⇒ LanG◦F H ◦
G such that the following 2-cells are equal.

A

B D

C

HF λF

LanF H

G
LanG◦F H

ν

=

A

B D

C

HF

G
LanG◦F H

λG◦F

Moreover, by the universal property of LanG(LanF H), the natural transformation ν fac-
tors uniquely through λG , meaning that there exists a unique natural transformation κ :
LanG(LanF H) ⇒ LanG◦F H such that the following 2-cells are equal,

B

D

C

LanF H

G

LanG◦F H

λG

κ

=

B

D

C

LanF H

G

LanG◦F H

ν

where the unlabeled arrow (for reasons of space) denotes LanG(LanF H). We now show that
κ is an isomorphism, by providing an inverse. By the universal property of LanG◦F H , the
composite natural transformation on the left of (4.1) factors uniquely through λG◦F , meaning
that there exists a unique natural transformation δ : LanG◦F H ⇒ LanG(LanF H) such that
the following 2-cells are equal.

A

B D

C

HF

G

LanG (LanF H)

λG◦F

δ

=

A

B D

C

HF λF

LanF H

G

LanG (LanF H)

λG

(4.2)

where this time the unlabeled arrow denotes LanG◦F H . By the universal properties of the
respective Kan extensions, we then have that κ ◦δ has to be the identity natural transformation
at LanG◦F H , and δ ◦ κ has to be the identity natural transformation at LanG(LanF H). 	


Corollary 4.6 Pushforwards of small presheaves exist, are given by pointwise left Kan exten-
sions, and are small.

Remark 4.7 Since we are dealing with pointwise Kan extensions, we can also express this
vertical pasting law in terms of coends, where it is an instance of the co-Yoneda lemma
(Proposition 4.3). In particular, let A and B be locally small categories, let F : A → B be a
functor, and let P : Aop → Set be a small presheaf. Then

F�P(B) ∼=
∫ A∈A

P(A) × HomB(B, FA).
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Let moreover C be locally small, and G : B → C be a functor. Then

G�F�P(C) ∼=
∫ A∈A ∫ B∈B

P(A) × HomB(B, FA) × HomC(C,GB)

∼=
∫ A∈A

P(A) × HomC(C,GFA)

∼= (G ◦ F)�P(C),

where the middle isomorphism, which in the proof Proposition 4.5 was denoted by κ , is given
by the co-Yoneda lemma.

Now, given F : C → D, we have a (chosen) mapping F� : PC → PD. For P to be a
pseudofunctor, we first of all need F� to be a functor. To this end, let α : P → Q be a natural
transformation between small presheaves on C. By the universal property of F�P as a Kan
extension, there is a unique 2-cell F�P ⇒ F�Q, which we denote by F�α, which makes the
following 2-cells equal.

Cop

Set

Dop

P

QFop

F�Q

λQ

α =

Cop

Set

Dop

P

Fop

F�Q

F�P

λP

F�α

(4.3)

This makes F� a functor PC → PD, where functoriality holds by uniqueness of the cell F�α.
Uniqueness of such cell holds once a choice of F� has been made. (One can obtain this 2-cell
also using the pointwise characterization of F� as a coend.)

4.2.1 Unitor and Compositor

The left Kan extension of P ∈ PC along the identity functor id : C → C is naturally
isomorphic to P itself, and this isomorphism is natural in P as well. In other words, id� :
PC → PC is naturally isomorphic to id : PC → PC. Since we are free to choose id�P
within its isomorphism class, we can in particular pick id�P = P , so that the unitor of our
pseudofunctor is the identity (one speaks of a normal pseudofunctor).

With composition, the matters are not so simple. By Proposition 4.5, or by Remark 4.7,
we know that Kan extensions preserve compositions up to a specified natural isomorphism,
whichwe had denoted by κ . In generalwe cannot assume that κ is the identity,we cannotmake
that choice consistently across the whole category. However, we can show that κ satisfies all
the properties of a compositor, and so it makes P pseudofunctorial.

As in Remark 4.7, let A, B and C be locally small categories, and let F : A → B and
G : B → C be functors. Let moreover P be a small presheaf on A. The isomorphism
κ : G�(F�P) → (G ◦ F)�P of PC given by the co-Yoneda lemma, as in Remark 4.7, is
(strictly) natural in P , in F , and in G, by the universal property of coends.

In order to have pseudofunctoriality it remains to be shown that the compositor κ is
associative and unital. Unitality is guaranteed by our choice of unitor (identities), we now
prove associativity.
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Proposition 4.8 The following “associativity” diagram commutes for all locally small cate-
gories A, B, C and D and functors F : A → B, G : B → C and H : C → D.

H� ◦ G� ◦ F� (H ◦ G)� ◦ F�

H� ◦ (G ◦ F)� (H ◦ G ◦ F)�

κ◦id

id◦κ κ

κ

One could again invoke the co-Yoneda lemma, but it may be instructive to give a proof
by explicitly pasting Kan extensions vertically. For simplicity, we equivalently prove the
statement in terms of the inverse κ−1.

Proof Let P be a small presheaf on A. By iterating (4.2), both composite cells

Aop

Bop

Set

Cop

Dop

Fop

P

Gop

Hop

λH◦G◦F

(H◦G◦F)�P

(H◦G)�F�P H�G�F�P

κ−1

κ−1

and

Aop

Bop

Set

Cop

Dop

Fop

P

Gop

Hop

λH◦G◦F

(H◦G◦F)�P

H�(G◦F)�P H�G�F�P

κ−1

κ−1

are equal to the following composition.

Aop

Bop

Set

Cop

Dop

Fop
P

Gop
F�P

λF

Hop

G�F�P

λG

H�G�F�P

λH

By the universal property of (H ◦ G ◦ F)�P as a Kan extension, then, the two composite
2-cells (H ◦ G ◦ F)�P ⇒ H�G�F�P are equal. 	


This proves that P is a pseudofunctor CAT → CAT.

4.2.2 Naturality of the Image

Consider a functor F : C → D between locally small categories, and let D : I → C be a
(small) diagram in C. One can either form the image presheaf of D and then push it forward
along F , or one can first form the diagram F ◦ D : I → D, and then take the image presheaf.
As we will see shortly, the result is the same, up to coherent isomorphism.

Proposition 4.9 The functors Im : Diag(C) → PC form a pseudonatural transformation
Diag ⇒ P.
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Proof First of all, for each functor F : C → D of CAT we need a natural isomorphism in the
following form.

Diag(C) PC

Diag(D) PD

F∗

Im

F�ν

∼=

Im

(4.4)

Let now D : I → C be a small diagram. Using the definition of image in terms of Kan
extensions, the two routes of Equation (4.4) are given by the following Kan extensions,
respectively,

I

C Set

D

1
D

F
LanF◦D1

λF◦D

I

C Set

D

1
D λD

LanD1

F
LanF (LanD1)

λF

which we know are naturally isomorphic via the map κ of Proposition 4.5 and Sect. 4.2.1,
which is also natural both in D and in F . The unit and multiplication conditions correspond
to the unitality and associativity condition for κ . 	


4.3 Unit andMultiplication

4.3.1 The Unit: the Yoneda Embedding

Let C be a locally small category. By Proposition 3.12, the Yoneda embedding y : C →
[Cop, Set] lands inPC: representable presheaves are small.Wedenote again byη : C → PC the
functor induced by the Yoneda embedding C �→ HomC(−,C). When this causes confusion
because both monads Diag and P are present, we will denote the two units by ηDiag and ηP.

Proposition 4.10 The unit η : C → PC is canonically pseudonatural in C.

Proof Let C and D be locally small, and let F : C → D be a functor. We have to prove that
the following diagram commutes up to coherent isomorphism.

C PC

D PD

F

η

F�

η

In practice, using the coend description of F� (via Kan extensions), this amounts to a natural
isomorphism of presheaves,

HomD(−, FC) ∼=
∫ C ′∈C

HomC(C
′,C) × HomD(−, FC ′)

which is givenby the co-Yoneda lemma (Proposition4.3), by settingH(C) = HomD(−, FC).
In particular, the isomorphism is given pointwise, for each object D of D by mapping
f : D → FC to the equivalence class of (idC , f ) ∈ HomC(C,C) × HomD(D, FC). It
can be checked that, defined this way, the isomorphism respects identities and composition.
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4.3.2 The Multiplication: Free Weighted Colimits

Let’s now turn to the multiplication of the monad. One could define it as the left-adjoint to the
unit, since the monad turns out to be lax idempotent (a.k.a. Kock-Zöberlein). Here, instead,
we define the multiplication directly.

Definition 4.11 Let C be locally small, and let � be an object of PPC (i.e. a small presheaf
on small presheaves). We define μ(�) as the object of PC specified, up to isomorphism, by
the following “free weighted colimit”,

μ(�)(C):=
∫ P∈PC

�(P) × P(C)

for each object C of C.

Remark 4.12 By functoriality of colimits, μ(�) is a presheaf Cop → Set. Since PC is in
general not small, let’s show why the coend exists. Since � is small, there exists a small
diagram D : I → PC such that Im(D) ∼= �. In other words,

μ(�)(C) ∼=
∫ P∈PC ∫ I∈I

HomPC(P, DI ) × P(C),

which by Fubini and by the co-Yoneda lemma (Proposition 4.3) is naturally isomorphic to
∫ I∈I

DI (C).

This coend exists, since it is a coend in Set indexed by a small category, and it gives a small
presheaf (since PC is cocomplete).

Therefore μ is a functor PPC → PC (as usual, defined up to natural isomorphism).

Proposition 4.13 The functor μ : PPC → PC is pseudonatural in the category C.

Proof We have to prove that the following diagram commutes up to coherent natural isomor-
phism.

PPC PC

PPD PD

F��

μ

F�

μ

Given � ∈ PPC , the top right path gives the presheaf
∫ C∈C ∫ P∈PC

HomD(−, FC) × �(P) × P(C),

which (by Fubini) is isomorphic to
∫ P∈PC

�(P) × F�P. (4.5)

The bottom left path gives the presheaf
∫ Q∈PD ∫ P∈PC

HomPD(Q, F�P) × �(P) × Q,

which by the co-Yoneda lemma (Proposition 4.3) is isomorphic to (4.5). One can check that
this isomorphism respects identities and composition. 	
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4.4 Unitors, Associators, Coherence

The left unitor

PC PPC∼=

PC

ηPC

μC
id

is given as follows. Startingwith a presheaf P in PC, we can apply the unit to get the following
representable presheaf on PC,

HomPC(−, P),

and then, applying the multiplication, we get the following presheaf,

∫ Q∈PC
HomPC(Q, P) × Q(−) ∼= P,

where the last isomorphism, filling the diagram above, is given by the co-Yoneda lemma
(Proposition 4.3), and defines the left unitor �. Naturality in P follows from naturality of
the co-Yoneda isomorphism. The modification property for � against functors F : C → D
is again an instance of the coherence of colimits (uniqueness of the isomorphism), just as in
Sect. 2.5.3 and Proposition 4.8, this time for weighted colimits.

The right unitor

PC PPC∼=

PC

(ηC)�

μC
id

is given as follows. Again start with a presheaf P in PC. This time we apply the map η�, to
get the following presheaf.

Q �→
∫ C∈C

PC × HomPC(Q, ηC(C)) =
∫ C∈C

PC × HomPC(Q,HomC(−,C))

(Note that we cannot apply the Yoneda lemma to simplify the expression on the right.) We
now apply the multiplication again, to obtain

X �→
∫ Q∈PC ∫ C∈C

PC × HomPC(Q,HomC(−,C)) × Q(X)

∼=
∫ C∈C

P(C) × HomC (X ,C)

∼= P(X),

where both isomorphisms are given again by the co-Yoneda lemma (Proposition 4.3). This
gives the right unitor r , and the reason why it’s a modification is analogous to the one for the
left unitor �.

123



Kan Extensions are Partial Colimits 727

The associator

PPPC PPC

∼=
PPC PC

(μC )�

μC

μCμPC

is again an instance of the co-Yoneda lemma (Proposition 4.3). Namely, given � ∈ PPPC,
the top-right path of the diagram gives the following presheaf

C �→
∫ P∈PC ∫ �∈PPC

P(C) × �(�) × HomPC

(

P,

∫ Q∈PC

�(Q) × Q(−)

)

while the bottom-left path gives the following,

C �→
∫ �∈PPC ∫ Q∈PC

�(�) × �(Q) × Q(C)

and the two differ by one application of the co-Yoneda lemma (over P). This gives the
associator a, which is a modification for reasons analogous to the above.

Again, the higher coherence conditions hold by the uniqueness of isomorphisms given by
the universal property, as in Sect. 2.5.3.

4.5 Algebras

It iswell-known that the pseudoalgebras of the pseudomonadP are cocomplete categorieswith
a choice of (weighted) colimit, and pseudomorphisms of pseudoalgebras are cocontinuous
functors [6]. Differently from the case of Diag, this is a complete characterization. Let’s see
in detail how the structure maps look.

Given a small-cocomplete, locally small category C, let e : PC → C be a choice of
weighted colimits, that is,

e(P) ∼=
∫ X∈C

P(X) ⊗ X , (4.6)

where ⊗ denotes the copower (also known as tensor, see for example [15, Section 3.7]).
The copower satisfies a (more general) version of the “co-Yoneda lemma” of Proposi-

tion 4.3, as follows. See again [15, Section 3.10] for more details.

Proposition 4.14 Let C be a category, let D be a cocomplete category, and let H : C → D be
a functor. There is an isomorphism

H(C) ∼=
∫ C ′∈C

HomC(C
′,C) ⊗ H(C ′),

for each object C of C and natural in C, given by selecting the component of idC ∈
HomC(C,C) in the copower.

A similar argument as Remark 4.12 shows then that the coend in (4.6) exists. The action
of e on morphisms is the one given by the universal property, as usual.
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The unitor and multiplicator of the algebras are given as follows. First of all, the unitor

C PC

C
id

ηC

ι e

is the canonical isomorphism given by the general co-Yoneda lemma (Proposition 4.14),
∫ X∈C

HomC(X ,C) ⊗ X ∼= X .

for all C ∈ C.
The multiplicator

PPC PC

PC C

μC

e�

e
γ

e

is also given by the generalized co-Yoneda lemma, as follows,
∫ Y∈C ∫ P∈PC

�(P) × HomC

(

Y ,

∫ X∈C
P(X) ⊗ X

)

⊗ Y

∼=
∫ P∈PC ∫ X∈C

�(P) × P(X) ⊗ X

for all � ∈ PPC. This can be seen as a “generalized Fubini” for coends or weighted colimits,
analogous to Lemma 2.10.

Again, the coherence conditions can be seen as a matter of uniqueness of the isomorphism
by the universal property of weighted colimits.

4.6 The Image is a Morphism of Monads

Here we want to show that the image is a (pseudo)morphism of (pseudo)monads, following
Definition A.2. The unit modification u is given by the isomorphism of Proposition 3.12.
Again, the fact that this gives a modification comes from the universal property.

The multiplication modification m is in the following form,

Diag(Diag(C)) PPC

Diag(C) PC

(Im Im)C

μ
Diag
C

μP
C

ImC

mC
(4.7)

where Im Im is shorthand for the following composite.

Diag(Diag(C)) Diag(PC) P P C
(ImC )∗ ImPC

(Note that, since the interchange lawof pseudonatural transformations holds only up to natural
isomorphism, a priori horizontal composition is not uniquely defined, as in aweak bicategory.
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The choice wemake, which will be consistent throughout the document, is motivated by later
convenience.)

Explicitly, m is given as follows. Let D : J → Diag(C) be the following diagram of
diagrams.

J � D0 J C
D1 J

Then, for every C ∈ C, writing images and μ in terms of coends, the two paths of diagram
(4.7) are the following objects,

∫ P∈PC ∫ J∈J
HomPC

(

P,

∫ K∈D0 J

HomC(−, D1 J (K ))

)

× P(C)

and
∫ J∈J ∫ K∈D0(J )

HomC(X , D1 J (K ))

and they are again isomorphic by the co-Yoneda lemma (Proposition 4.3), over P . This
isomorphism iswhatwe take as themultiplicatorm. Again, the fact that it forms amodification
follows from uniqueness, and so do the higher coherence conditions of Definition A.2.

4.6.1 The Pullback Functor of Algebras

In algebra, given a ring morphism f : R → R′, every R′-module is canonically an R-module
too, via the map f , and morphisms of R′-modules are morphisms of R-modules too. The
resulting “pullback” functor between the categories of R′-modules and R-modules is known
as the “restriction of scalars” [3, Chapter II], or “Weil restriction” in algebraic geometry [29,
Section 1.3]. Not every R-module arises this way if f is not an isomorphism (for example,
R itself, seen as an R-module, does not).

More generally, given amorphism ofmonads λ : T → T ′, every T ′-algebra is canonically
a T -algebra via λ, andmorphisms of T ′-algebras are automaticallymorphisms of T -algebras.
This is well known (see, for example, [1, Theorem 3 in Section 3.6]), and the pullback functor
is again called “restriction of scalars”, after its instance for the case of rings. Again, not every
T -algebra arises this way (if λ is not an isomorphism), for example, the free algebra (T X , μ),
where X is any object, in general does not.

With Im : Diag → P we are witnessing an instance of this phenomenon in higher
dimensions: every P-algebra, i.e. a cocomplete category, is also a Diag-algebra, via the map
Im, which is a morphism of monads. As we have seen in Sect. 2.5.4, not every Diag-algebra
arises this way, for example, in general free algebras do not. The 2-dimensional restriction-
of-scalars theorem is given in Appendix A.3 as Theorem A.7.

To see that cocomplete categories as Diag-algebras indeed arise in this way, note that the
following diagram commutes up to natural isomorphism for each cocomplete category C
(and any choices of colimits c and coends e).

Diag(C) PC
∼=

C

ImC

e
c
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Indeed, the fact that this diagram commutes is, for the last time, an instance of the general
co-Yoneda lemma (Proposition 4.14): given D : J → C,

∫ X∈C ∫ J∈J
HomC(X , DJ ) ⊗ X ∼=

∫ J

DJ ,

which is indeed just the colimit of D, given up to isomorphism by c. (Compare this with the
analogous “free” case of Remark 4.12.)

5 Partial Colimits

We review here the basic ideas of partial evaluations, which are a categorical formalization
of the idea of “computing only pieces of an operation”. We will apply this to the operation
of colimit encoded by the monads Diag and P. We will then show that, for both monads, we
have a correspondence betweenKan extensions and partial evaluations of colimits (Theorems
5.5, 5.6 and 5.10). Intuitively, these results may be interpreted as the fact that “a left Kan
extension is a partially computed colimit”. While the statement for the Diagmonad is rather
straightforward, the corresponding statement for P requires quite more work.

5.1 Partial Evaluations

Partial evaluations were introduced in [25, Chapter 4] for the case of probability monads,
and defined for the general case in [9]. A detailed study of their compositional structure (in
general they don’t form a category) is given in [5].

Definition 5.1 Let (T , μ, ν) be a monad on Set, and let (A, e) be a T -algebra. Consider the
parallel pair of maps

T T A T A
μA

T e

of which e : T A → A is the coequalizer. Given elements p, q ∈ T A, a partial evaluation
from p to q is an element r ∈ T T A such that μA(r) = p and T e(r) = q .

If such a partial evaluation exists, we also say that q is a partial evaluation of p and that
p can be partially evaluated to q.

Example 5.2 Let (T , μ, ν) be the free commutative monoid monad. Given a set X , the ele-
ments of T X can be thought of as formal sums of elements of X , for example in the form
x + y + z with x, y, z ∈ X . Natural numbers with addition form a commutative monoid, and
so N forms a T -algebra. The formal sum

3 + 4 + 5 + 6,

seen as an element of TN, can be partially evaluated to the formal sum

7 + 11

via the element [3 + 4] + [5 + 6] ∈ T TN. The interpretation is that “we haven’t summed
everything together, but only some of the terms”.
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An essential property of partial evaluations is that “they don’t change the total result”.
This is reflected by the multiplication diagram of the algebra,

T T A T A

T A A

Te

μ

e

e

which can be seen as saying that evaluating (via the map e) two formal expressions which
differ by a partial evaluation, the (total) result of the evaluation is the same. In the example
above, both formal sums evaluate to 18.

Let’s also remark that “total evaluations are a special case of partial evaluations”. We refer
the interested reader to [9] and [5] formore details and examples. In our casewe need a higher-
dimensional, weaker analogue of the concept, since we are dealing with pseudomonads on
CAT rather than monads on Set.

Definition 5.3 Let (T , μ, ν) be a pseudomonad on CAT, and let (A, e) be a T -pseudoalgebra.
Given objects P, Q ∈ A, a partial evaluation from P to Q is an object R of T T A such that
μA(R) ∼= P and T e(R) ∼= Q.

If such a partial evaluation exists, we also say that Q is a partial evaluation of P and that
P can be partially evaluated to Q.

5.2 Partial Evaluations of Diagrams

Wenow instanceDefinition 5.3 for the case of themonadDiag, keeping inmind the following
multiplication square, which commutes up to isomorphism.

Diag(Diag(C)) Diag(C)

∼=
Diag(C) C

μ

c∗

c

c

(5.1)

Definition 5.4 Let C be a cocomplete category, and let D : J → C and D′ : K → C be
small diagrams. A partial evaluation from D to D′ for the monad Diag is an object E of
Diag(Diag(C)) such that μ(E) ∼= D and c∗E ∼= D′. If such an object exists, we also say that
D′ is a partial colimit of D for the monad Diag.

Aswe see shortly,wenowestablish an equivalence betweenpartial evaluations of diagrams
and left Kan extensions along split opfibrations. There are now two ways of talking about the
correspondence. One, which is probably the easiest to state, is as an equivalence of properties.

Theorem 5.5 Let C be a cocomplete category, and let D : J → C and D′ : K → C be small
diagrams. Then D′ is a partial colimit of D (for the monad Diag) if and only if D′ can be
written as the (pointwise) left Kan extension of D along a split opfibration.

Instead of an equivalence of properties we can also write the result as an equivalence of
structures, as follows.

Theorem 5.6 Let C be a cocomplete category, and let D : J → C and D′ : K → C be small
diagrams. There is a bijection between partial evaluations of colimits from D to D′ and split
opfibrations F : J → K exhibiting D′ as a (pointwise) left Kan extension of D along F.
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J

C

K

D

F

D′ ∼= LanF D

λ

In particular, if K is the terminal category 1, the Kan extension is an ordinary colimit. This
is an instance of the fact that “total evaluations are a special case of partial evaluations”.

Wewill prove the latter statement, Theorem 5.6, since it clearly implies the former.Wewill
use the following property of Kan extensions along opfibrations, which can be interpreted
as “fiberwise colimits”. The following two statements are well known (see for example the
nLab page on Kan extensions).

Proposition 5.7 Let F : E → B be an opfibration between small categories. For each object
E of E, the inclusion of the fiber F−1(E) into the comma category F/E has a left adjoint.
Hence, it is a confinal functor.

Corollary 5.8 Let F : E → B be an opfibration between small categories, and let C be
cocomplete and locally small. The (pointwise) left Kan extension of a functor G : E → C
along F at B can then be computed by a colimit labeled by the fiber of F at B:

LanFG(B) ∼= colim
E∈F−1(B)

G(E).

We are now ready to prove the theorem. The crucial point of the theorem is the correspon-
dence between split opfibrations and (strict!) functors into Cat.

Proof of Theorem 5.6 First of all, suppose that we have a partial evaluation from D to D′.
That is, let E = (E0, E1) be an object of Diag(Diag(C)) such that μ(E) = D and c∗E = D′.
Note that this implies that E0 is necessarily indexed by K (up to isomorphism), it is a functor
K → Cat.Wecannowexpress c∗(E) as the leftKan extensionofμ(E) along theGrothendieck
fibration π : ∫

E0 → K. Indeed, using Corollary 5.8, we have that for each object K of K,

Lanπμ(E)(K ) ∼= colim
(K ,X)∈π−1(K )

μ(E)(K , X)

= colim
X∈E0K

E1K (X)

∼= c∗(E)(K ).

Conversely, let F : J → K be a split opfibration and suppose that D′ is the left Kan
extension of D along F .

J

C

K

D

F

D′

λ

Let now E0 : K → Cat ⊆ CAT be the functor associated with the opfibration F . Concretely,
this is the functor mapping each object K of K to its preimage F−1(K ), and each morphism
k : K → K ′ to the functor F−1(K ) → F−1(K ′) given by the opcartesian lifts. Define also,
for each object K of K, the functor E1K : E0K → C to be given by

E0K = F−1(K ) J C.
D
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For each morphism k : K → K ′, define E1 j ′ to be the 2-cell given by the opcartesian
lifts in J, whiskered by D. We have that, by construction, μ(E0, E1) = D. Moreover, by
Corollary 5.8, D′ = c∗(E0, E1). 	


Note also that, in the hypotheses above, D and D′ must necessarily have isomorphic
colimits, either because “Kan extensions can be stacked vertically” (Proposition 4.5), or
because of the multiplication square (5.1). A different but related picture is given in [26,
Proposition 2.9].

5.3 Partial Evaluations of Presheaves

We now give and prove a similar statement for the monad P. Let’s instance Definition 5.3 for
the case of the monad P.

Definition 5.9 Let C be a cocomplete category, and let P and Q be small presheaves on C. A
partial evaluation from P to Q for the monad P is a presheaf on presheaves � in PPC such
that μ(�) ∼= P and e�� ∼= Q. If such an object exists, we also say that Q is a partial colimit
of P for the monad P.

This time we establish a correspondence with Kan extensions along any functor, not just
along a split opfibration.Moreover,weonly have aweak statement, analogous toTheorem5.5,
an equivalence of properties rather than of structures.

Theorem 5.10 Let C be a cocomplete category, and let P, Q ∈ PC. The following conditions
are equivalent.

(a) There exists a small diagram D : J → C such that Im D ∼= P, and a small category K
with a functor F : J → K such that Im(LanF D) ∼= Q.

J

C

K

D

F

LanF D

λ

(b) There exists a partial evaluation from P to Q for the monad P, i.e. an object � ∈ PPC
such that μ(�) ∼= P and e�(�) ∼= Q.

� ∈ PPC

P ∈ PC Q ∈ PC

μ e�

In other words, Q is a partial colimit of P if and only if it can be written as the image
presheaf of the left Kan extension of a diagram with image presheaf P .

Again, if K is the terminal category 1, the Kan extension is an ordinary colimit (“total
evaluations are a special case of partial evaluations”).

The proof of the theorem, which can be considered the main result of this paper, requires
more work than the analogous statement forDiag, and will have to use two auxiliary lemmas.

Lemma 5.11 Let F : J → K be a functor between small categories. There exist a small
category H, a confinal functor G : H → J, and a split opfibration π : H → K such that
for every locally small category C and every diagram D : J → C, the pointwise left Kan
extension of D ◦G along π exists if and only if the one of D along F exists, and in that case
the two Kan extensions are naturally isomorphic.
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734 P. Perrone, W. Tholen

We can depict the situation as follows:

H J C

K
π

G

F

D

Lanπ (D◦G) ∼= LanF D

Note that the diagram above does not necessarily commute, nor does any of its two subdia-
grams.

Proof of Lemma 5.11 Given an object K of K, the comma category F/K has

• As objects, pairs (J , k) where J is an object of J and k : F J → K is a morphism of K;
• As morphisms, commutative diagrams in the following form,

F J F J ′

K

F j

k k′

where j : J → J ′ is a morphism of J.

Now define the functor F/− : K → Cat as follows.

• To each object K of K assign the comma category F/K ;
• To each morphism � : K → K ′ of K, assign the functor F/K → F/K ′ given by

post-composition with �.

Choose now as H the Grothendieck construction
∫
F/−, and notice that it is small. Up to

isomorphism,

• Its objects are triplets (K , J , k) where K is an object of K, J is an object of J, and
k : F J → K is a morphism of K;

• Each morphism � : K → K ′ of K defines an “opcartesian” morphism �∗ : (K , J , k :
F J → K ) → (K ′, J , � ◦ k : F J → K ′);

• For each object K of K, a morphism j : (J , k : F J → K ) → (J ′, k′ : F J ′ → K ) of
F/K (i.e. a morphism j : J → J ′ of J with k′ ◦ F j = k) defines a morphism “in the
fiber” (K , J , k) → (K , J ′, k′), which we denote again by j .

• Any other morphism of H is a composition of two morphisms in the two forms above.

The forgetful functor π : H → K which maps (K , J , k) to K is a split opfibration. We can
also construct the forgetful functor G : H → J which maps (K , J , k) to J . This functor is
confinal: indeed, let J be an object of J.

• The category J/G is nonempty: it always contains

J J = G(F J , J , idF J );idJ

• The category J/G is connected: let (K ′, J ′, k′ : F J ′ → K ′) and (K ′′, J ′′, k′′ : F J ′′ →
K ′′) be objects of H, and let f : J → J ′ and g : J → J ′′ be morphisms of J. We can
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then form the following zigzag in H:

(F J , J , idF J )

(F J ′, J , F f ) (F J ′′, J , Fg)

(K ′, J , k′ ◦ F f ) (K ′′, J , k′′ ◦ Fg)

(K ′, J ′, k′) (K ′′, J ′′, k′′).

(F f )∗ (Fg)∗

k′∗ k′′∗

f g

Suppose now the pointwise left Kan extension

H

C

K

D◦G
π

Lanπ (D◦G)

λ

exists. We claim that Lanπ D ◦ G ∼= LanF D. To see this, let K be an object of K. Since π

is an opfibration, by Corollary 5.8 we can write Lanπ (D ◦ G)(K ) up to isomorphism as the
colimit of the following composite functor.

π−1(K ) H J CG D

Recall now that H = ∫
F/−, so that π−1(K ) ⊆ H is isomorphic to F/K , and the following

diagram commutes,

F/K
∫
F/−

D
U

G

where U is the forgetful functor mapping (J , k : F J → K ) to just J . Therefore we can
rewrite Lanπ (D ◦ G)(K ) up to isomorphism as the colimit of this simpler composition,

F/K J CU D

which gives the pointwise left Kan extension of D along F . 	


Lemma 5.12 Let C be a locally small category. The functor Im Im : Diag(Diag(C)) → PPC
is essentially surjective on objects.

Recall that the following diagram commutes only up to natural isomorphism,

Diag(Diag(C)) Diag(PC)

∼=
P(Diag(C)) PPC

Im

Im∗

Im

Im�

and that, by convention, we denoted by Im Im the top-right path.
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Proof of Lemma 5.12 Since Im is essentially surjective, it suffices to prove that Diag Im is as
well. In other words, we have to prove that every small diagram of small presheaves can be
obtained from a diagram of diagrams (by taking the image presheaf of each subdiagram).

Let I be a small category, and let D : I → PC be a diagram. Explicitly, for each object
I of I we have a small presheaf DI : Cop → Set, and for each morphism of I we have a
morphism of presheaves. We can now take the category of elements of each DI , as described
in Sect. 3.1.1. For each I of I we have a discrete fibration πI : ∫

oDI → C, and for each
morphism i : I → J of I we have a commutative triangle as follows.

∫
oDI

∫
oDJ

C
πI

∫
oDi

πJ

However, the categories
∫
oDI are large in general, and so they do not form the desired

diagram of (small) diagrams yet. We then proceed as follows. Since each presheaf DI is
small, for each I of I there exists (Remark 4.2) a small full subcategory SI of

∫
oDI , such that

the inclusion functor is confinal. Denote by FI : SI → C the composition (or restriction)

SI
∫
oDI C.

πi

By construction, Im(Fi ) ∼= DI . The assignment I �→ SI is not functorial in I : for each
morphism i : I → J of I, we get the following commutative diagram.

SI SJ

∫
oDI

∫
oDJ

C
πI

∫
oDi

πJ

However, in principle we cannot lift
∫
oDi to get a commutative square, that is, a priori the

restriction of
∫
oDi to SI does not necessarily land in SJ . We now extend the SI , as follows.

Let I be an object of I, and consider the slice category I/I , whose objects are pairs (H , h)

where H is an object of I, and h : H → I is an arrow of I. This category is small, since its
set of objects is given by

∐

H∈Ob(I)
HomI(H , I ),

which is a small union of small sets. Now define TI to be the full subcategory of
∫
oDI whose

set of objects is given by

⋃

(H ,h)∈I/I
Image

⎛

⎜
⎜
⎜
⎝

SH

∫
oDH

∫
oDI

∫
oDh

⎞

⎟
⎟
⎟
⎠

.

That is, an object of EI is in the form
∫
oDh(C, x) for some object (C ∈ C, x ∈ DH(C))

in SH and some morphism h : H → I of I. The category TI is small, since its set of objects
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is a small union of small sets. Moreover, since we can pick h to be the identity I → I , the
category SI is fully embedded into TI , i.e. we have a commutative diagram of inclusions

SI TI

∫
oDI

which are all confinal by Lemma 3.8. In particular, if we denote by EI : TI → C the
composition (or restriction)

TI
∫
oDI C,

πi

we have again that Im(EI ) ∼= DI .
This time, the assignment I �→ TI is functorial. To see this, let i : I → J be a morphism

of I, and form the following commutative diagram.

TI TJ

∫
oDI

∫
oDJ

C
πI

∫
oDi

πJ

We claim that the restriction of
∫
oDi to the subcategory TI lands in TJ . Any object of TI is

of the form
∫
oDh(C, x) for some (C, x) in SH and some h : H → I of I. We then have

∫ oDi
(∫ oDh(C, x)

) = ∫ oD(i ◦ h), (C, x),

which lies in TJ since i ◦h : H → J belongs to the slice category I/J . We can then complete
the diagram to a commutative diagram

TI TJ

∫
oDI

∫
oDJ

C

Ti

πI

∫
oDi

πJ

or equivalently
TI TJ

C

Ti

EI EJ

The assignment I �→ TI , i �→ Ti is a functor I → Cat, and the corresponding assignment
I �→ (TI , EI : EI → C) gives a functor E : I → Diag(C).

This functor E : I → Diag(C) is the diagram of diagrams that we want. Indeed,
Diag(Im)(E) is given by the postcomposition with the image

I Diag(C) PC ,
E Im

and we know that for each I of I, Im(EI ) ∼= DI . To show that Diag(Im)(E) ∼= D, and hence
conclude the proof, we have to show that the isomorphism Im(EI ) → DI is natural in I .
So let i : I → J be a morphism of I. We have to show that the following diagram of PC
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commutes,

Im(EI ) Im(EJ )

DI DJ

Im(Ei )

∼= ∼=
Di

(5.2)

where the isomorphisms are the ones given in Proposition 3.4. Diagram (5.2) commutes since
the vertices are the colimits of the functors η ◦ Ei , η ◦ EJ , η ◦ πI and η ◦ πJ obtained by the
following commutative diagram of CAT,

TI TJ

∫
oDI

∫
oDJ

C PC

EI

Ti

EJ

πI

∫
oDi

πJ
η

(5.3)

and the induced maps between their colimits are the arrows of (5.2). Since the square in (5.3)
commutes, (5.2) commutes too (by uniqueness of the induced map). 	


We are now finally ready to prove the theorem.

Proof of Theorem 5.10 Since Im is a morphism of monads, the following diagram commutes
up to natural isomorphism.

Diag(C) Diag(Diag(C)) Diag(C)

PC PPC PC

Im

μ Diag colim

Im Im Im
μ Pk

(5.4)

In particular, this can be interpreted as “Im, as a morphism of monads, preserves partial
evaluations”. With this and the previous lemmas in mind, let’s proceed with the proof.

• (a)⇒(b): Consider D : J → C and F : J → K as in (a). By Lemma 5.11 there exists
a diagram D : H → C together with a confinal functor G : H → J and an opfibration
π : H → K with Lanπ D ◦ G ∼= LanF D. Since G is confinal, by Proposition 3.9 we
have that Im(D ◦ G) ∼= Im D ∼= P . Now, by Theorem 5.5, there exists a diagram of
diagrams E ∈ Diag(Diag(C)) such thatμ(E) ∼= D◦G andDiag colim(E) ∼= Lanπ D ◦ G.
Chasing diagram (5.4), we see that Im Im(E) is the desired partial evaluation between
Im(D ◦ G) ∼= Im D ∼= P and Im(Lanπ D ◦ G) ∼= Im(LanF D) ∼= Q.

• (b)⇒(a): Let� be a partial evaluation from P to Q. By Lemma 5.12, Im Im is essentially
surjective on objects, so that there exists E ∈ Diag(Diag(C)) with Im Im(E) ∼= �.
Chasing diagram (5.4), let D = μ(E) and D′ = Diag colim(E), so that Im D ∼= P and
Im D′ ∼= Q. By Theorem 5.5, D′ can be written as the pointwise left Kan extension of
D along a split opfibration.
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5.4 Comparison with Measure Theory

Coends, in particular when they denote weighted colimits, are often considered similar to
integrals in analysis, which is why they are normally denoted by an integral sign. The corre-
spondence can roughly be summarized in terms of monads, by saying that the monad P on
CAT behaves similarly to the Giry monad P on the category of (say) measurable spaces [11],
and to other probability and measure monads. In particular,

• Small presheaves on a category are similar to measures on a measurable space;
• Cocomplete categories (categories where one can take colimits) are similar to algebras

over probability monads (spaces where one can take integrals or expectation values, such
as the real line);

• In a (sufficiently) cocomplete category C, given a small presheaf P ∈ PC the following
coend

∫ X∈C
PX

⊗
X

is similar to the following integral of a measure p on, say, real numbers,
∫

R

x dp(x);

• As Kleisli morphisms, (small) profunctors are similar to Markov kernels.

An introduction to probability monads, for the interested reader, can be found in [25,
Chapter 1] as well as in [9, Section 6].

We now wish to emphasize that Theorem 5.10 adds a further analogy between integrals
and coends: just like Kan extensions can be thought of as “partial colimits”, conditional
expectations can be thought of as “partial expectations”. In particular, we compare Theo-
rem 5.10 to a similar theorem for a probability monad on the category of metric spaces, the
Kantorovich monad (see [8] as well as the more introductory material in [9, Section 6]).

The following statement is known ([9, Theorem 6.13] or [25, Theorem 4.2.14]).

Theorem 5.13 Let (A, e) be a Banach space (an algebra of the Kantorovich monad). Let
p, q ∈ PA be Radon probability measures on A of finite first moment. The following condi-
tions are equivalent:

• There exist probability spaces (�,μ) and (�′, μ′), random variables f : � → A and
g : �′ → A with image measures p and q respectively, and a measure-preserving
map m : � → �′ such that g is the conditional expectation of f along (the pull-back
sigma-algebra induced by)m – as in the following not necessarily commutative diagram:

�

A

�′

f

m

g=E( f |m)

(5.5)

• There is a partial evaluation k ∈ PPA from p to q (for the Kantorovich monad).

k

p q

E Pe
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The similarity to Theorem 5.10 is evident. One could say intuitively that if coends are
analogous to integrals, Kan extensions are analogous to conditional expectations. The former
can be interpreted as partial (weighted) colimits, and the latter as partial (weighted) averages.
Notice also that the diagram (5.5) does not commute, but the conditional expectation map,
just like a Kan extension, can be thought of as the one “making the diagram as close as
possible to commuting”.

It has to be noted that, while we proved Theorem 5.10 by invoking an analogous (but
simpler and stronger) statement for themonadof diagrams,Theorem5.13was provendirectly,
using measure-theoretic methods. In the statement of the Theorem 5.13 it seems that random
variables play somewhat the role that diagrams play in Theorem 5.10 (or at least, of diagrams
equipped with weights, analogous to the measures on � and �′). However, currently it is not
clear whether random variables, or related structures, may form a monad analogous to Diag,
and on which category such a structure could be found.
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Appendix

A. Some 2-Dimensional Monad Theory

Here we recall some definitions of 2-dimensional monad theory, and spell out explicitly the
definitions that we use in the rest of this work. We also prove a result, Theorem A.7, which
extends to pseudomonads the “restriction of scalars” construction. We follow the definitions
given in [20, Section 2.12]. We refer the interested reader to that article, as well as [17] and
[22], for further details.

A.1. Pseudomonads and Their Morphisms

Definition A.1 A pseudomonad on a strict 2-category K consists of

• A pseudofunctor T : K → K, together with
• Pseudonatural transformations η : idK ⇒ T and μ : T T ⇒ T , which we call unit and

multiplication respectively, and
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• Invertible modifications

T T T

T

ηT

id
μ�

T T T

T

Tη

id
μr

T T T T T

T T T

Tμ

μT μ

μ

a

which we call (left and right) unitors and associator, respectively, such that
• the following two coherence laws are satisfied,

μ ◦ Tμ ◦ TηT μ ◦ μT ◦ TηT

μ ◦ idT T

a(TηT )

μ(T̂ �) μ◦rT

μ ◦ Tμ ◦ T Tμ

μ ◦ μT ◦ T Tμ μ ◦ Tμ ◦ TμT

μ ◦ Tμ ◦ μT T μ ◦ μT ◦ TμT

μ ◦ μT ◦ μT T

a(T Tμ) μ(T̂ a)

μ(μμ) a(TμT )

a(μT T ) μ(aT )

which we call the unit and pentagon4 condition, respectively, where T̂ � = υ−1 ◦ T �◦ κ ,
T̂ a = κ−1 ◦ Ta ◦ κ , and κ and υ are the compositor and unitor, respectively, of the
pseudofunctor T . The arrowμμ is the invertible 3-cell filling the pseudonaturality square
of μ along the morphism μ itself, of (2-cell) components

T T T T X T T T X

T T T X T T X

μT T X μT X

TμX

T TμX

(μμ)X

for each object X of K.

For some readers it may be easier to interpret the coherence conditions above if we
express them as 2-dimensional diagrams. In particular, the unit and pentagon conditions can
be expressed as the following commutative cubes, respectively,

T T T T T

T T

T T T T T

T T T

TηT

TηT
id

Tμ

Tμ

μ

μT

μT μ

μ

T̂ �

rT =

T T T T T

T T T T T

T T T

T T T

TηT

TηT
TηT

Tμ

Tμ

μT μ

μT

μ

a

4 This name comes from the theory of monoidal categories, where the diagram has the shape of a pentagon
(in that case, the analogue of μ is strictly natural, and so the arrow corresponding to μμ is an identity).
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742 P. Perrone, W. Tholen

where the unfilled 3-cells are identities, and T̂ � denotes the following composite cell,

T T T

T T T T

TμTηT

T (μ◦ηT )

T id

id

κ

T �

υ−1

and

T T T T T T T

T T

T T T T T

T T T

TTμ

μT T

Tμ

μT

μ
Tμ

μT

μ

μ

μμ

a

a

=

T T T T T T T

T T T T T

T T T

T T T

TTμ

μT T

TμT Tμ

Tμ

μT μ

μT

μ

T̂ a

aT

a

where T̂ a denotes the following composite cell.

T T T

T T T T T T

T T T

TμT Tμ

TμT

T (μ◦Tμ)

T (μ◦μT )

Tμ

κ

Ta

κ−1

We now give the definition of a morphism of pseudomonads (over the same category).

Definition A.2 Let K be a strict 2-category. Let (T , μ, η, �, r , a) and (T ′, μ′, η′, �′, r ′, a′) be
pseudomonads on K. A (pseudo-) morphism of pseudomonads consists of

• A pseudonatural transformation λ : T ⇒ T ′, together with
• Invertible modifications as follows,

idK

T T ′

η′η

λ

u

and

T T T ′T ′

T T ′

λλ

μ μ′

λ

m

where we recall that λλ, as in Section 4.6, is shorthand for the following composition,

T T T T ′ T ′T ′ ,
Tλ λT ′

such that

123



Kan Extensions are Partial Colimits 743

• the following diagrams commute,

μ′ ◦ (η′T ′) ◦ λ μ′ ◦ λλ ◦ ηT

λ λ ◦ μ ◦ ηT

�′ λ

μ′ ûT ′η

m (ηT )

λ(�)

λ λ ◦ μ ◦ Tη

μ′ ◦ (T ′η′) ◦ λ μ′ ◦ λλ ◦ Tη

r ′ λ

λ(r)

μ′ T̂ uλ

m (Tη)

μ′ ◦ T ′μ′ ◦ λλλ

μ′ ◦ μ′T ′ ◦ λλλ μ′ ◦ λλ ◦ Tμ

μ′ ◦ λλ ◦ μT λ ◦ μ ◦ Tμ

λ ◦ μ ◦ μT

a′(λλλ) μ′ T̂ mλ

μ′ m̂T ′μ m (Tμ)

m (μT ) λa

which we call left unitality, right unitality, and associativity conditions, respectively,
where

– ûT ′η denotes (λT ′ ηλ) ◦ (uT ′ λ),
– T̂ uλ denotes λT ′ (κ−1 ◦ Tu) ◦ λ−1

η′ ,

– m̂T ′μ denotes (λT ′ μλ) ◦ (mT ′ T Tλ), and
– T̂ mλ denotes (λT ′ (κ−1 ◦ Tm ◦ κκ)) ◦ (λ−1

μ′ TλT ′ T Tλ).

We can write the coherence conditions 2-dimensionally, as follows. The unitality conditions
are the following two commutative prisms,

T ′ T ′T ′

T T ′

T

id

η′T ′

μ′λ

id λ

�′

=

T ′ T ′T ′

T T T T ′

T

η′T ′

μ′

ηT

λ

id

λλ

μ
λ

�

ûT ′η
m

where ûT ′η denotes the following composite,

T T ′

T T T T ′ T ′T ′

λ

ηT η′T ′ηT ′
ηλ

Tλ

uT ′

λT ′
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and

T ′

T T ′T ′ T ′

T T T

T ′η′
id

Tη

λ

μ′

λλ

μ

λ

r ′

T̂ uλ

m

=

T ′

T T ′

T T T

id

η

λ

id

μ

λ
r

where T̂ uλ denotes the following composite and the unfilled 3-cells are intended to be
identities;

T T ′

T T T T ′ T ′T ′

λ

Tη Tη′

T (λ◦η)

T ′η′
λ−1

η′

Tλ

κ−1

λT ′

Tu

associativity is the following commutative cube,

T T T T ′T ′T ′

T ′T ′

T T T ′T ′

T T ′

λλλ

μT μ′T ′

T ′μ′

m̂T ′μ

μ′
a′

μ

λλ

μ′
m

λ

=

T T T T ′T ′T ′

T T T ′T ′

T T

T T ′

Tμ

λλλ

μT

T ′μ′

T̂ mλ

μ

λλ

a

μ′
m

μ

λ

where m̂T ′μ and T̂ mλ denote the following compositions, respectively,

T T T T T T ′ T T ′T ′ T ′T ′T ′

T T T T ′ T ′T ′

μT

T Tλ TλT ′

μT ′
μλ

λT ′T ′

μ′T ′
mT ′

Tλ λT ′

and

T T T T T T ′ T T ′T ′ T ′T ′T ′

T T T T ′ T ′T ′

Tμ

T Tλ

T (μ′◦λT ′◦Tλ)

T (Tλ◦μ)

TλT ′

Tμ′

λT ′T ′

T ′μ′
λ−1

μ′

Tλ λT ′

κκ

Tm

κ−1

Finally, 2-cells of pseudomonads are defined as follows.
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Definition A.3 Let K be a strict 2-category. Let (T , μ, η, �, r , a) and (T ′, μ′, η′, �′, r ′, a′) be
pseudomonads on K. Let (λ, u,m) and (ξ, v, n) be (pseudo)morphisms T → T ′. A 2-cell of
monads is a modification

T T ′
λ

ξ

t

such that the following diagrams commute,

λ ◦ η

η′

ξ ◦ η

t η

u

v

μ′ ◦ (λλ) λ ◦ μ

μ′ ◦ (ξξ) ξ ◦ μ

m

μ (t t) t μ

n

which we call “unit” and “multiplication” conditions, respectively.

As above, it may be helpful to write the conditions 2-dimensionally. The unit condition
forms the following commutative “cone”,

idK

T T ′

η′η

λ

ξ

t

u =
idK

T T ′

η′η

ξ

v

and the multiplication condition forms the following commutative “cylinder”,

T T T ′T ′

T T ′

λλ

μ μ′
λ

ξ

m

t

=
T T T ′T ′

T T ′

λλ

ξξμ μ′

ξ

t t

n

In line with our usual convention for horizontal composition, t t denotes the following 3-cell.

T T T T ′ T ′T ′
Tλ

Tλ

λT ′

λT ′

T t tT ′

A.2. Pseudoalgebras and Their Morphisms

Definition A.4 Let (T , μ, η, �, r , a) be a pseudomonad on K. A pseudoalgebra over the pseu-
domonad T consists of

• an object A of K, together with
• a morphism e : T A → A, and
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• invertible 2-cells

A T A

A
id

ηA

ι e and

T T A T A

T A A

μA

T e

e
γ

e

such that
• the following diagrams commute,

e ◦ T e ◦ TηA e ◦ μA ◦ TηA

e ◦ idT A

γ (TηA)

e (T̂ ι) e rA

e ◦ T e ◦ T T e

e ◦ μA ◦ T T e e ◦ T e ◦ TμA

e ◦ T e ◦ μT A e ◦ μA ◦ TμA

e ◦ μ ◦ μT A

γ (T T e) e (T̂ γ )

eμe γ (TμA)

γ μA e aA

which we call unit and multiplication conditions, respectively, where T̂ ι = υ−1 ◦ T ι ◦ κ ,
and T̂ γ = κ−1 ◦ T γ ◦ κ .

We call the pseudoalgebra normal if the 2-cell ι is the identity.

We can write the coherence diagrams 2-dimensionally as well, as follows. Here is the unit
condition,

T A T T A

T A

T T A T A

T A A

Tη

Tη
id

T e

T e

e

μ

μ
e

e

T̂ ι

r =

T A T T A

T T A T A

T T A

T A A

Tη

Tη
Tη

T e

T e

μ e

μ

e

γ
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where the unfilled 2-cells are identities, and T̂ ι denotes the following composite cell,

T T A

T A T A

TeTη

T (e◦η)

T id

id

κ

T ι

υ−1

and here is the multiplication condition,

T T T A T T A

T A

T T A T A

T A A

TTe

μ

T e

μ

eT e

μ
e

e

γ

γ

μe =

T T T A T T A

T T A T A

T T A

T A A

TTe

μ
Tμ

T e

T e

μ e

μ

e

T̂ γ

a

γ

where T̂ γ denotes the following composite cell.

T T A

T T T A T A

T T A

TeT T e

Tμ

T (e◦T e)
T (e◦μ)

T e

κ

T γ

κ−1

Definition A.5 Let (A, eA, ιA, γA) and (B, eB , ιB , γB) be pseudoalgebras over the pseu-
domonad (T , μ, η, �, r , a). A (strong) morphism of pseudoalgebras consists of

• a morphism f : A → B of K, together with
• an invertible 2-cell

T A T B

A B

eA

T f

eB
φ

f

such that
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748 P. Perrone, W. Tholen

• the following diagrams commute,

eB ◦ ηB ◦ f eB ◦ T f ◦ ηA

f f ◦ eA ◦ ηA

ιB

eB η f

φ ηA

f ιA

eB ◦ T eB ◦ T T f

eB ◦ μB ◦ T T f eB ◦ T f ◦ T eA

eB ◦ T f ◦ μA f ◦ eA ◦ T eA

f ◦ eA ◦ μA

eB (T̂φ)γB (T T f )

eB μ f φ (T eA)

φ μA f γA

which we call the unit and multiplication condition, respectively, where T̂φ = κ−1 ◦
Tφ ◦ κ .

As above, it may be helpful to draw the coherence conditions in a 2-dimensional way. The
unit condition is the following commutative prism,

B T B

A B

A

η

id
eBιB

f

id f

=

B T B

A T A B

A

η

η f eB

φ

f

η

id

T f

eAιA
f

where again the unfilled 2-cell is an identity, and the multiplication condition is the following
commutative cube,

T T A T T B

T B

T A T B

A B

μ

T T f

μ

T eB

μ f

eB

γBT f

eA

eB
φ

f

=

T T A T T B

T A T B

T A

A B

TeA
μ

T T f

T eB

T̂φ

T f

eA

γA
eB

φ

eA

f

where T̂φ denotes the following composite cell.

T T B

T T A T B

T T A

TeBT T f

T eA

T (eB◦T f )
T ( f ◦eA)

T f

κ

Tφ

κ−1

Definition A.6 Let (A, eA, ιA, γA) and (B, eB , ιB , γB) be pseudoalgebras over the pseu-
domonad (T , μ, η, �, r , a). Let ( f , φ) and (g, χ) be strong morphisms of pseudoalgebras.
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A 2-cell of pseudoalgebras is a 2-cell

A B

f

g

α

such that the following diagram commutes.

eB ◦ T f f ◦ eA

eB ◦ Tg g ◦ eA

φ

eB Tα α eA
χ

If we draw the condition in a 2-dimensional way, we get the following commutative
“cylinder”:

T A T B

A B

T f

eA eB

φ

f

g

α

=
T A T B

A B

T f

TgeA eB

Tα

χ

g

It is immediate from the definitions to check that, given any object X of K, the object
T X is canonically a pseudoalgebra, with structure morphism μX : T T X → T X and 2-cells
�X : μX ◦ ηT X ⇒ idT X and aX : μX ◦ TμX ⇒ μX ◦ μT X . We call this a “free algebra”,
analogously to the 1-dimensional case. Moreover, by naturality of μ, for any morphism
f : X → Y of K, the morphism T f : T X → TY gives a morphism of pseudoalgebras.
Similarly, for every f , g : X → Y andα : f ⇒ g, the 2-cell Tα : T f ⇒ Tg is automatically
a 2-cell of algebras.

A.3. Restriction of Scalars for Pseudomonads

It is very well known that in the one-dimensional context, a morphism of monads induces
a pullback functor between the algebras, sometimes named “restriction of scalars” after its
instance in ring theory [1, Theorem 3 in Section 3.6]. A similar phenomenon occurs in two
dimensions, as follows.We use this statement in Sect. 4.6.1, see there also for further context.

Theorem A.7 Let K be a (strict) 2-category. Let (T , μ, η, �, r , a) and (T ′, μ′, η′, �′, r ′, a′)
be pseudomonads on K, and let (λ, u,m) be a pseudomorphism of monads from T to T ′.
Each T ′-pseudoalgebra (A, e′, ι′, γ ′), defines canonically a T -pseudoalgebra structure on
A with the following structure 1- and 2-cells.

e:=

T A

T ′A

A

λA

e′

ι:=

T A

A T ′A

A

λA

id

η′
A

ηA

e′

u−1
A

ι′

γ :=

T T A T T ′A T A

T ′T ′A T ′A

T A T ′A A

TλA

μA

λT ′ A

T e′

m
λA

λe′

μ′
A

T ′e′

e′
γ ′

λA e′

(A.1)

Moreover, this construction defines a 2-functor between the categories of pseudoalgebras
λ∗ : KT ′ → KT .
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In analogy with the 1-dimensional case, we call λ∗ the restriction of scalar functor.

Proof The unit diagram for (A, e, ι, γ ), obtained by plugging (A.1) into the unit diagram of
Definition A.4, can be decomposed in the following way, where the whiskerings have been
suppressed for reasons of space.

e′ ◦ λA ◦ T e′ ◦ TλA ◦ TηA e′ ◦ T ′e′ ◦ (λλ)A ◦ TλA e′ ◦ μ′
A ◦ (λλ)A ◦ TλA e′ ◦ λA ◦ μA ◦ TηA

e′ ◦ λA ◦ T e′ ◦ Tη′
A e′ ◦ T ′e′ ◦ λT ′A ◦ Tη′

A e′ ◦ μ′
A ◦ λT ′A ◦ Tη′

A

e′ ◦ T ′e′ ◦ T ′η′
A ◦ TλA e′ ◦ μ′

A ◦ Tη′
A ◦ λA

e′ ◦ λA

γ ′λe′ mA

Tu−1
A ◦κ

Tu−1
A ◦κ

λe′

λη′

γ ′
Tu−1

A ◦κ

λη′
γ ′

r ′A
̂T ′ι′ÂT ι′A

rA

Now,

• the region on the right commutes by the right unit condition of (λ, u,m), as in Defini-
tion A.2 (recall that all the arrows of the diagram are invertible);

• the triangle in the center bottom is the right unitality condition of the algebra (A, e′, ι′, γ ′),
as in Definition A.4;

• the region on the bottom left commutes by pseudonaturality of λ;
• finally, the remaining parallelograms commute by the interchange law.

The multiplication diagram for (A, e, ι, γ ), analogously obtained by plugging (A.1) into
the multiplication diagram of Definition A.4, can be decomposed as follows, where again
the whiskerings have been suppressed, and the hat denotes the suitable application of the
compositors.

e′ ◦ λA ◦ T e′ ◦ TλA ◦ T T e′ ◦ T TλA

e′ ◦ T e′ ◦ (λλ)A ◦ T T e′ ◦ T TλA e′ ◦ λA ◦ T e′ ◦ T T e′ ◦ TλT ′A ◦ T TλA

e′ ◦ μ′
A ◦ (λλ)A ◦ T T e′ ◦ T TλA e′ ◦ T e′ ◦ λT ′A ◦ T T e′ ◦ TλT ′A ◦ T TλA e′ ◦ λA ◦ T e′ ◦ Tμ′

A ◦ TλT ′A ◦ T TλA

e′ ◦ λA ◦ μA ◦ T T e′ ◦ T TλA e′ ◦ μ′
A ◦ λT ′A ◦ T T e′ ◦ TλT ′A ◦ T TλA e′ ◦ λA ◦ T e′ ◦ TλA ◦ TμA

e′ ◦ T e′ ◦ T ′T ′e ◦ (λλλ)A e′ ◦ T ′e′ ◦ λT ′A ◦ Tμ′
A ◦ TλT ′A ◦ T TλA

e′ ◦ μ′
A ◦ T ′T ′e ◦ (λλλ)A e′ ◦ T ′e′ ◦ T ′μ′

A ◦ (λλλ)A e′ ◦ T ′e′ ◦ (λλ)A ◦ TμA

e′ ◦ μ′
A ◦ λT ′A ◦ Tμ′

A ◦ TλT ′A ◦ T TλA

e′ ◦ λA ◦ T e′ ◦ μT ′A ◦ T TλA e′ ◦ T ′e′ ◦ μ′
T ′A ◦ (λλλ)A e′ ◦ μ′

A ◦ T ′μ′
A ◦ (λλλ)A e′ ◦ μ′

A ◦ (λλ)A ◦ TμA

e′ ◦ T ′e′ ◦ (λλ)A ◦ μT A e′ ◦ μ′
A ◦ μ′

T ′A ◦ (λλλ)A

e′ ◦ λA ◦ T e′ ◦ Tλa ◦ μT A e′ ◦ μ′
A ◦ (λλ)A ◦ μT A e′ ◦ λA ◦ μA ◦ TμA

e′ ◦ T ′e′ ◦ (λλ)A ◦ μT A

e′ ◦ μ′
A ◦ (λλ)A ◦ μT A

e′ ◦ λA ◦ μA ◦ μT A

λe′

γ ′

mA

T̂λe′

̂T γ ′

T̂ mA

T̂λe′ λe′

T̂λe′

mA

γ ′

λe′

T̂ mA

λe′

γ ′

λ
μ′

a′
A

γ ′

λ
μ′

γ ′μ′
e′

γ ′

λT ′e′

γ ′

λT ′e′
̂T ′γ ′

T̂ mA

aA

γ ′

λe′

mA

mT ′Aλe′

μλ

mT ′A

μλ

γ ′

μλ

μe′

Now,

• the bottom right region commutes by the associativity condition of (λ, u,m), as in Def-
inition A.2;

• the top right hexagon commutes by pseudonaturality of λ;
• the center hexagon commutes by themultiplication condition of the algebra (A, e′, ι′, γ ′),

as in Definition A.4;
• the top left hexagon commutes by the modification property for m;
• all the remaining parallelograms commute by the interchange law.

123



Kan Extensions are Partial Colimits 751

Therefore, (A, e, ι, γ ) is a T -pseudoalgebra.
For functoriality, consider now T ′-pseudoalgebras (A, e′

A, ι′A, γ ′
A) and (B, e′

B , ι′B , γ ′
B),

and a morphism of T ′-pseudoalgebras ( f , φ) from A to B. The composite 2-cell

T A T B

T ′A T ′B

A B

T f

λA λB
λ f

T ′ f

e′
A e′

B
φ

f

makes f a morphism between the T -pseudoalgebra structures defined above. Indeed, the unit
condition, obtained by plugging (A.1) into Definition A.5, can be decomposed as follows,
again omitting the whiskering.

e′
B ◦ λB ◦ ηB ◦ f e′

B ◦ λB ◦ T f ◦ ηA

e′
B ◦ η′

B ◦ f e′
B ◦ T ′ f ◦ η′

A e′
B ◦ T ′ f ◦ λA ◦ ηA

f f ◦ e′
A ◦ η′

A f ◦ e′
A ◦ λA ◦ ηA

u−1
B

ι′B

ι′A u−1
A

λ f

φ

η f

u−1
A

φ

η′
f

Now

• the top region commutes by the modification property for u;
• the bottom left rectangle commutes by the unit condition for ( f , φ) as in Definition A.5;
• the bottom right rectangle commutes by the interchange law.

Similarly, the multiplication condition can be decomposed as follows, where again the
whiskerings are omitted.

e′B ◦ λB ◦ T e′B ◦ TλB ◦ T T f

e′B ◦ T ′e′B ◦ (λλ)B ◦ T T f e′B ◦ λB ◦ T e′B ◦ T T ′ f ◦ TλA

e′B ◦ μ′
B ◦ (λλ)B ◦ T T f e′B ◦ T ′e′B ◦ λT ′B ◦ T T ′ f ◦ TλA e′B ◦ λB ◦ T f ◦ T e′A ◦ TλA

e′B ◦ λB ◦ μB ◦ T T f e′B ◦ μ′
B ◦ λT ′B ◦ T T ′ f ◦ TλA

e′B ◦ T ′e′B ◦ T ′T ′ f ◦ (λλ)A e′B ◦ T ′ f ◦ λA ◦ T e′A ◦ TλA

e′B ◦ μ′
B ◦ T ′T ′ f ◦ (λλ)A e′B ◦ T f ◦ T ′e′A ◦ (λλ)A

f ◦ e′A ◦ λA ◦ T e′A ◦ TλA

e′B ◦ λB ◦ T f e′B ◦ T ′ f ◦ μ′
A ◦ (λλ)A f ◦ e′A ◦ T ′e′A ◦ (λλ)A

e′B ◦ T ′ f ◦ λA ◦ μA f ◦ e′A ◦ μ′
A ◦ (λλ)A

f ◦ e′A ◦ λA ◦ μA

T̂λ f

T̂φ

φ

λe′A

γ ′
A

λ f

mA

λe′B

γ ′
B

mB

μ f

λ f

φ

T̂λ f

λ f

μ′
f

mA

T̂λ f

γ ′
B

λ f

γ ′
B

φ

̂T ′φ

φ

λe′B

λe′A

Now,

• the region on the far left commutes by the modification property for m;
• the hexagon on the bottom commutes by the multiplication condition for ( f , φ) as in

Definition A.5;
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• the hexagon on the top right commutes by pseudonaturality of λ;
• all the remaining parallelograms commute by the interchange law.

This makes ( f , φ λ) a pseudomorphism of T -pseudoalgebras.
Finally, to prove 2-functoriality, let ( f , φ) and (g, χ) be pseudomorphisms of T ′-

pseudoalgebras A → B, and let α : f ⇒ g be a 2-cell of T ′-pseudoalgebras. We have
that α is canonically also a 2-cell of T -pseudoalgebras, since the relevant diagram can be
decomposed as follows,

e′
B ◦ λB ◦ T f e′

B ◦ T ′ f ◦ λA f ◦ e′
A ◦ λA

e′
B ◦ λB ◦ Tg e′

B ◦ T ′g ◦ λA g ◦ e′
A ◦ λA

Tα

λ f φ

T ′α α

λg χ

again omitting the whiskerings, and now

• the left square commutes by pseudonaturality of λ;
• the right square commutes since α is a 2-cell of pseudoalgebras, as in Definition A.6.

This action on pseudoalgebras, their morphisms and their 2-cells defines then a 2-functor
from the 2-category of T ′-pseudoalgebras to the 2-category of T -pseudoalgebras (notice the
direction). 	


We encourage the readers more familiar with 2-dimensional diagrams to rewrite the proof
using 2-cells and, for clarity, we suggest to dedicate one direction in each diagram to the
transformation λ.
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