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ABSTRACT Despite some success in secondary brain metastases, targeted or immune-based 
therapies have shown limited efficacy against primary brain malignancies such as 

glioblastoma (GBM). Although the intratumoral heterogeneity of GBM is implicated in treatment resist-
ance, it remains unclear whether this diversity is observed within brain metastases and to what extent 
cancer cell–intrinsic heterogeneity sculpts the local immune microenvironment. Here, we profiled the 
immunogenomic state of 93 spatially distinct regions from 30 malignant brain tumors through whole-
exome, RNA, and T-cell receptor sequencing. Our analyses identified differences between primary and 
secondary malignancies, with gliomas displaying more spatial heterogeneity at the genomic and neo-
antigen levels. In addition, this spatial diversity was recapitulated in the distribution of T-cell clones in 
which some gliomas harbored highly expanded but spatially restricted clonotypes. This study defines 
the immunogenomic landscape across a cohort of malignant brain tumors and contains implications for 
the design of targeted and immune-based therapies against intracranial malignancies.

SIGNIFICANCE: This study describes the impact of spatial heterogeneity on genomic and immunologic 
characteristics of gliomas and brain metastases. The results suggest that gliomas harbor significantly 
greater intratumoral heterogeneity of genomic alterations, neoantigens, and T-cell clones than brain 
metastases, indicating the importance of multisector analysis for clinical or translational studies.
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INTRODUCTION
Malignant brain tumors consist of both primary tumors 

arising from within the central nervous system (CNS) and 
secondary metastases originating from extracranial sites. The 
most common malignant primary tumor of the CNS is 
glioblastoma (GBM), whereas secondary tumors typically 
develop from carcinomas of the lung, breast, or kidney or 
from melanoma (1, 2). Although historically both primary 
and metastatic malignancies carried poor prognoses, the use 
of checkpoint blockade immunotherapy has led to improved 
outcomes and robust intratumoral T-cell infiltration in a con-
siderable subset of patients with brain metastases (BrMET; 

refs. 3, 4). However, these treatments and other immunother-
apeutic approaches have not been effective in GBM. Indeed, 
anti–PD-1 monotherapy did not improve survival in patients 
with newly diagnosed or recurrent disease, and targeted vac-
cines and cell therapy approaches also have shown limited 
efficacy (5–9). Thus far, immunotherapy responses within 
GBM have been restricted to a selective group of patients with 
a hypermutated phenotype caused by germline deficiencies in 
DNA replication or repair (10, 11).

One cardinal feature of GBM that may be a particularly 
important contributor to therapy resistance is its exten-
sive intratumoral molecular and cellular heterogeneity (12). 
Indeed, intratumoral genetic heterogeneity is found in many 
cancer types to varying degrees (13–16). The presence of a 
complex tumor subclonal genomic architecture likely plays a 
pivotal role in limiting the efficacy of both targeted therapies 
as well as immunotherapies. Specifically, studies in non–small 
cell lung cancer (NSCLC) and melanoma showed a strong 
association between checkpoint blockade immunotherapy 
response and the frequency of clonal nonsynonymous muta-
tions, which likely serve as sources of spatially distributed 
neoantigen targets (17, 18). In GBM, extensive work has 
demonstrated that intratumoral heterogeneity of a range of 
tumor somatic changes, including mutations, copy-number 
alterations (CNA), and transcriptional signatures across spa-
tially distinct tumor regions, is also a hallmark of this disease 
(19–21). In contrast, we have a more limited understanding of 
the extent of intratumoral heterogeneity in other intracranial 
malignancies such as BrMETs, as few corresponding analyses 
have been performed in these cancers (22). Moreover, fur-
ther work is needed to understand the relationship between 
tumor genetic heterogeneity and other important features 
of the tumor ecosystem, including the immune microenvi-
ronment. Although numerous recent studies in other solid 
tumors, including NSCLC and ovarian cancer, have examined 
the relationship between tumor cell–intrinsic properties and  
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immunologic parameters such as the T-cell receptor (TCR) rep-
ertoire (23–26), this analysis has not been extended to either pri-
mary or metastatic malignant brain tumors, in which the extent 
of heterogeneity in the immune microenvironment and its inter-
play with genomic and transcriptional diversity is unknown. In 
the setting of GBM, it is also unclear how the tumor genomic 
and immunologic landscapes evolve in the hypermutated state 
seen in close to 20% of recurrent disease (27).

To address these questions, we performed systematic and 
comprehensive multisector immunogenomic analyses on 93 
samples from a cohort of 30 patients with primary or recur-
rent gliomas or metastatic brain tumors, representing the 
largest cohort of these brain cancers studied spatially to date. 
For each patient, we characterized multiple spatially dis-
tinct regions using whole-exome sequencing (WES), custom 
capture validation, RNA sequencing, and TCR sequencing. 
Our findings underscore the significant differences in clonal 
architecture between gliomas and metastatic brain tumors, 
which translates into distinct neoantigen landscapes and, 
in turn, tumor-infiltrating T-cell clonotypic diversity. These 
data therefore provide high-resolution insights into the 
immunogenomic landscapes within malignant brain tumors, 
which may inform tumor-specific therapeutic approaches.

RESULTS
Genomic Features of Glioma and BrMET Cohorts

We obtained surgically resected tumor tissue and matched 
peripheral blood from a group of 30 patients with pathologi-
cally confirmed intracranial tumors (Supplementary Fig. S1A 
and S1B). Within this cohort, 14 tumors were primary GBM, 
4 were recurrent GBM, 1 was an anaplastic oligodendro-
glioma, and 11 were BrMETs from lung, breast, or cutaneous 
malignancies. In total, 21 of these patients (15 primary glio-
mas and 6 BrMETs) were newly diagnosed and had received 
no prior therapy. The 4 patients with recurrent GBM had 
undergone standard-of-care chemoradiation therapy, whereas 
5 of the patients with BrMET had received varying treat-
ment regimens for their primary tumor (Supplementary Fig. 
S1B). Importantly, no patients had prior immunotherapy 
treatment, but all patients across the cohort were given pre-
operative steroids. Immediately following surgical resection 
via craniotomy, each sample was dissociated into multiple 
(2–4) spatially distinct tumor regions that each underwent 
comprehensive genomic and immunologic profiling includ-
ing DNA WES, RNA sequencing, neoantigen prediction, and 
TCR sequencing (Fig. 1A). Using WES at an average cover-
age depth of 156×, we identified a total of 11,923 somatic 
variants (both single-nucleotide variants and indels) across 
the tumor cohort. Because of the subclonal nature of many 
variant calls derived from tumors with significant intratu-
moral heterogeneity, we developed a customized, targeted 
validation sequencing assay with a set of probes targeting 
all initially identified variants in addition to a select group 
of noncoding sites (e.g., TERT promoter mutation sites)  
to resequence all initially detected variants to confirm their 
presence. Using this approach, 87.6% of the cohort was  
characterized at a depth of at least 250× at >90% of positions 
captured by the custom reagent. This resulted in confirma-
tion of 92% (10,254/11,181) of the original variants through 

validation sequencing after removal of those that could not 
be targeted (488 variants) or lacked sufficient minimum 
coverage (244 variants; Supplementary Table S1). These data 
allowed us to obtain high-precision estimates of the variant 
allele frequency (VAF) of each variant and provided greater 
confidence that variants were not missed owing to potential 
regional variability in neoplastic content or sequencing depth.

As expected, the median number of aggregate somatic vari-
ants per tumor was higher in BrMETs (504 variants) than in 
either primary (93 variants) or recurrent glioma (141 variants; 
Fig. 1B). Within the glioma cohort, GBM065.Re represented 
an outlier with 5,750 somatic mutations identified across four 
distinct tumor regions. Most of the variants within this sample 
displayed the characteristic mutational signature associated 
with prior temozolomide treatment (Supplementary Fig. S2A 
and S2B), suggesting a treatment-induced hypermutated phe-
notype (28, 29). Within the BrMET specimens, recurrent muta-
tions were identified in TP53 across all histologies (7/11 overall; 
3/5 NSCLC, 2/4 breast carcinoma; Fig. 1C). KRAS alterations 
were identified within two of five NSCLC tumors, and PIK3CA 
mutations were present in two of four breast carcinomas con-
sistent with their high incidence in studies of primary samples 
(30, 31). In addition, TERT promoter mutations were observed 
in both a melanoma and an NSCLC BrMET tumor. Across the 
GBM samples, we identified recurrent mutations in canonical 
GBM-associated genes such as the TERT promoter (14/18), 
TP53 (7/18), PTEN (4/18), NF1 (3/18), and EGFR (3/18; Fig. 
1D). This high frequency of TERT promoter mutations mir-
rors earlier work estimating frequencies upward of 70% to 
80% among GBM (32, 33). In addition, the frequency of TP53 
alterations is consistent with prior studies observing muta-
tions in 30% to 40% of GBM samples, whereas the frequency 
of EGFR mutations is slightly lower (21, 33). We next assessed 
the prevalence of CNAs within our cohort and identified clas-
sical GBM-associated changes such as frequent chromosome 7  
amplification encompassing EGFR (17/18), chromosome 9 
deletions of the CDKN2A locus (15/18), and chromosome 
10 deletions of the PTEN locus (17/18; Fig. 1E; Supplemen-
tary Table S2). These amplifications and deletions have been 
detected at comparably high frequencies across several other 
studies (21, 33). The metastatic tumors displayed alterations 
similar to those previously defined for their corresponding 
primary tumor such as amplifications of KRAS (3/5) in NSCLC 
and ERBB2 (2/4) in breast carcinomas (Fig. 1F and G).

Intratumoral Genomic and Transcriptional 
Heterogeneity of Gliomas and BrMETs

Having characterized all variants in our glioma and BrMET 
cohorts, we next sought to characterize the extent of intra-
tumoral genomic heterogeneity within all tumors. First, we 
categorized all variants in each sample as “clonal” (present 
in all sequenced regions of a tumor), “subclonal shared” 
(present in more than one region of a tumor but not all), or 
“subclonal private” (present in only one region of a tumor). 
We observed a striking difference between tumor types  
with a significantly (P < 0.001; unpaired t test) greater clonal 
variant fraction within the BrMETs (median = 0.88) than 
within gliomas (median = 0.41; Fig. 2A and B). Importantly, 
this observation was independent of the histology of the pri-
mary malignancy, as lung, breast, and melanoma metastases 
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Figure 1.  Genomic landscape of brain tumor cohort. A, Overview of sample collection, sequencing, and data analysis. B, Variant counts per tumor 
pooled across samples. C, Summary of top 25 recurrently mutated genes (3 or more tumors) in 11 brain metastases. D, Summary of recurrently mutated 
genes (3 or more tumors) in 19 primary and recurrent gliomas. E, Cohort-level copy number variation in gliomas determined by the GISTIC algorithm. 
Dashed lines indicate significantly recurrent amplifications (red) and deletions (blue) at an FDR <0.1. F, NSCLC brain metastasis cohort GISTIC output.  
G, Breast cancer brain metastasis cohort GISTIC output. SCLC, small cell lung cancer.
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Figure 2.  Intratumoral genomic heterogeneity of variants and CNAs. A, Variant clonality per tumor. B, Proportion of clonal, subclonal shared, and sub-
clonal private variants in brain metastases and gliomas. Significance determined by unpaired t test. *, P < 0.05; ***, P < 0.001. C, Proportion of total identified  
variants that would have been captured through the sequencing of a random single site from within each tumor. Significance determined by unpaired t test.  
*, P < 0.05; **, P < 0.01. D, Total variants identified per tumor if one, two, or three samples were pooled for analysis. Significance determined by unpaired  
t test. *, P < 0.05. NS, not significant. E, CNV clonality per tumor in the gliomas (left), NSCLC brain metastases (middle), and breast cancer brain metastases 
(right) cohorts. 
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all harbored a high fraction of clonal variants. In contrast, 
gliomas (primary and recurrent samples pooled) contained a 
higher fraction of both subclonal shared (P < 0.05; unpaired 
t test) and subclonal private (P < 0.05; unpaired t test) vari-
ants than did the BrMETs (median subclonal private variant 
fraction 0.28 vs. 0.09; Fig. 2B). Overall, approximately 43% of 
mutations within the glioma cohort were categorized as clonal. 
Although this is slightly lower than two previous studies  
have reported, almost all of those tumors had only two spa-
tially separate regions analyzed, in contrast to the three or 
four sectors sequenced in our study (21, 34). Focusing spe-
cifically on cancer driver genes, mutations in TP53, PIK3CA, 

and KRAS were clonal in all cases among BrMET samples. In 
contrast to the generalized heterogeneity of gliomas, most 
TERT promoter (13/14 clonal), TP53 (6/7), and EGFR (3/3) 
mutations were clonally distributed. However, most PTEN 
(1/4 clonal) and NF1 (0/3) alterations were not clonal within 
gliomas. These findings are largely consistent with a prior 
multisector sequencing study that noted significant clonality 
of TERT promoter and TP53 mutations (21). However, this 
same group did note that most identified EGFR mutations 
were subclonal private in contrast to our cohort (21).

To explore the translational implications of this heterogene-
ity, we calculated the fraction of total tumor variants that would 
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have been identified from sequencing a single glioma or BrMET 
tumor site, which simulates the information that would be 
obtained from a single-site biopsy at surgery. We observed that 
a higher fraction (P < 0.01; unpaired t test) of the total variants 
was identified within BrMETs (median = 0.92) compared with 
primary gliomas (median = 0.73) when sampling a single site 
(Fig. 2C). Given the limitations of single-site sampling to cap-
ture tumor-wide variant information in gliomas, we determined 
the extent to which multiregion sequencing could lead to the 
identification of additional tumor variants within our cohort. 
Among the BrMETs, sampling additional tumor regions did 
not identify significantly more variants. However, among gli-
oma samples, sequencing three regions instead of one raised 
the median number of identified variants from 61 to 98 (Fig. 
2D). Thus, multiregion sequencing in gliomas captures a more 
complete picture of the genomic landscape but provides only 
limited improvement in the characterization of BrMETs due 
to their increased comparative spatial genomic homogeneity.

Having characterized glioma and BrMET genomic archi-
tecture at the variant level, we next sought to characterize the 
intratumoral heterogeneity of CNAs to determine whether 
there is evidence for spatial architecture that is similar to that 
of the variants. Strikingly, the landscape of CNAs within glio-
mas was markedly more spatially heterogeneous than the pat-
tern observed within BrMETs (Supplementary Fig. S3). When 
we classified each CNA event as clonal, subclonal shared, or 
subclonal private, we identified a significant fraction of clonal 
CNAs within BrMETs in contrast to the predominantly sub-
clonal CNAs within gliomas (Fig. 2E). Thus, at both the vari-
ant and CNA levels, gliomas are significantly more spatially 
heterogeneous than BrMETs.

Finally, to characterize these samples at the transcriptional 
level, we made use of a previously defined gene expression–based 
molecular classification of GBM into proneural, neural, classical, 
and mesenchymal subtypes (35). We identified a distribution of 
transcriptional subtypes with 12 neural, 12 classical, 16 mes-
enchymal, and 6 proneural subtypes across the 46 primary or 
recurrent GBM tumor sectors. Intriguingly, in a majority (9/16) 
of the tumors with multiple regions analyzed, we observed 
intratumoral heterogeneity of these transcriptional subgroups 
(Supplementary Fig. S4), in line with prior reports (20).

Intratumoral Heterogeneity of Tumor Antigens in 
Gliomas and BrMETs

Numerous clinical trials developing personalized neoan-
tigen vaccines for GBM and other brain cancers are ongoing  
(8, 9). To determine the consequences of tumor genetic het-
erogeneity on immunologic features of each tumor, we applied 
the pVacSeq neoantigen prediction pipeline (36, 37) to define 
the neoantigen landscape across all glioma and BrMET sam-
ples. When we aggregated the total number of predicted neo-
antigens for each tumor from all sampled regions, BrMETs 
harbored a higher number of HLA class I neoantigens per 
tumor (median = 186) than either primary (median = 39) 
or recurrent gliomas (median = 51; Supplementary Table 
S3). Moreover, BrMET class I neoantigens were significantly  
(P < 0.001; unpaired t test) more clonal than those identified 
in gliomas (Fig. 3A and B). Of note, all EGFR mutations did 
yield predicted clonal class I neoantigens. However, despite 
all carrying the IDH1 R132H mutation, only one of the four 

IDH-mutant patients within the cohort had a predicted class 
I neoantigen from this variant, displaying the HLA haplotype 
dependence of these results. BrMETs also exhibited a greater 
number of HLA class II neoantigens (300 antigens) than pri-
mary (60 antigens) or recurrent (81 antigens) gliomas, and 
these neoantigens were significantly (P < 0.001; unpaired t test) 
more clonal in their tumor distribution (Supplementary Fig. 
S5A and S5B; Supplementary Table S4). For most patients, 
the spatial distribution of both class I and class II neoantigens 
closely mirrored the underlying variant distribution (Sup-
plementary Fig. S6A–S6C). Finally, whereas BrMET HLA class 
I neoantigens are mostly captured by single-site tissue sam-
pling, additional glioma neoantigens continue to be identified 
as additional tissue sites are sampled (Fig. 3C). Taken together, 
these data demonstrate that neoantigens are distributed het-
erogeneously in gliomas compared with BrMETs.

In addition to neoantigens, cancer/testis (CT) antigens 
represent another group of tumor-specific antigens that can 
be recognized by the immune system. These antigens have 
highly restricted expression in normal tissue, can be expressed 
in reproductive cells, and are often upregulated in malignan-
cies. Although CT antigens are targeted in a range of clinical 
trial efforts (38–41), their expression and distribution in 
brain cancers has not been described previously. We therefore 
sought to characterize CT antigen expression and spatial 
distribution within our tumor cohort. Because CT antigens 
are wild-type proteins, normal tissue expression affects both 
the degree of anticipated off-target effects from directed 
immunotherapeutic efforts as well as the extent of immu-
nologic tolerance during development. Thus, we scored each 
candidate antigen from a curated list of CT antigens based on 
its log-transformed expression relative to normal brain tissue. 
Among gliomas, some of the highest scoring CT antigens 
were BIRC5 (Survivin), PMEL (gp100), and IL13RA2 (Fig. 3D). 
Although BIRC5 was also the highest-scoring antigen among 
the BrMET samples, it displayed relatively higher expression 
of many prominent CT antigens such as the MAGE family 
proteins, gp100, MART1, and HER2/neu compared with 
gliomas. One notable exception to this was IL13RA2, which 
was the lowest-scoring antigen among BrMETs but ranked 
third among gliomas. These findings were consistent regard-
less of whether brain or matched primary site tissue was used 
to generate BrMET CT antigen scores (Supplementary Fig. 
S7A). In contrast to the marked heterogeneity of tumor neo-
antigens, we observed no significant difference in the spatial 
distribution of CT antigen scores overall between gliomas 
and BrMETs as assessed by a cosine similarity index (Sup-
plementary Fig. S7B). However, these characteristics do vary 
between CT antigens, with TERT, CTAG1B (NY-ESO-1), and 
the MAGE family trending to higher intratumoral variance 
(greater heterogeneity of expression) than the more clonal 
BIRC5 and gp100 (Fig. 3E).

Spatial Resolution of Immune Landscapes in 
Gliomas and BrMETs

We next sought to define the immune cell infiltration 
within each tumor and to describe the extent of intratumoral 
heterogeneity within the local immune microenviron-
ments. We adopted previously published immune deconvo-
lution methods that resolve immune cell populations from  
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Figure 3.  Intratumoral neoantigen and cancer/testis antigen heterogeneity. A, Class I neoantigen clonality per tumor. B, Proportion of clonal, subclonal 
shared, and subclonal class I neoantigens in brain metastases and gliomas. Significance determined by unpaired t test. **, P < 0.01; ***, P < 0.001. C, Impact 
of multiregion sequencing on total class I neoantigen load. Significance determined by unpaired t test. **, P < 0.01. D, Heat map of CT antigen scores for 
each sample calculated by normalizing tumor expression to normal “Brain-Cortex” expression (see Methods). E, Plot of the average intratumoral variation  
in CT scores between regions of the same tumor by the average cancer/testis antigen score for each gene among all brain metastases or gliomas.

Survivin

NY−ESO−1

EPHA2

HER2/Neu

IL13RA2

MAGEA3

MAGEA4

MAGEA6

MAGEA10

MART1

gp100

SART1

TERT

WT1

Survivin

NY−ESO−1

EPHA2

HER2/Neu

IL13RA2

MAGEA3

MAGEA4

MAGEA6

MAGEA10

MART1

gp100

SART1

TERT

WT1

0.0
0 2 4 6

0.5

1.0

1.5

2.0

2.5

CT antigen score

In
tr

at
um

or
al

 v
ar

ia
nc

e

BrMET Glioma

Clonal Subclonal shared Subclonal private

NS

100

200

300

1 
Site

2 
Site

s

3 
Site

sT
ot

al
 c

la
ss

 I 
ne

oa
nt

ig
en

s 
id

en
tif

ie
d BrMET

**

20

40

60

80

1 
Site

2 
Site

s

3 
Site

s

Glioma

Breast cancer

Melanoma

NSCLC

SCLC

Primary glioma

Recurrent glioma

A B

C E

D

WT1
TERT

Survivin
SART1

NY−ESO−1
MART1

MAGEA6
MAGEA4
MAGEA3

MAGEA10
IL13RA2

Her2/Neu
gp100

EPHA2

1 2 1
G

B
M

03
2 

 2 3 1
G

B
M

05
1 

 2 3 2 3
G

B
M

05
5 

  1 1
G

B
M

05
6 

  2 3
G

B
M

05
9 

  2 1
G

B
M

06
2 

  2 3 1
G

B
M

06
3 

  2 3 1
G

B
M

06
4 

  2 3 1
G

B
M

06
9 

  2 3 1 2 1
G

B
M

07
4 

 2 3 1
G

B
M

07
9 

  2 3 1
A

O
08

3 
  2 3 1

G
B

M
01

8.
R

e 
 2 3 1 2 3 4 2 3 1 2

Glioma

1 2 3 4 1
B

rM
E

T0
09

   
2 3 1

B
rM

E
T0

10
   

2 3 1
B

rM
E

T0
18

   
2 3 1

B
rM

E
T0

19
   

2 3 1

B
rM

E
T0

23
   

2 3 1
B

rM
E

T0
24

   
2 3 1 2 1

B
rM

E
T0

27
   

2 3 1
B

rM
E

T0
28

   
2 3

B
rM

E
T0

58
   

2

BrMET

−10
−5
0
5
10
15

G
B

M
03

0

G
B

M
05

2

G
B

M
07

0

G
B

M
03

1.
R

e
G

B
M

04
7.

R
e

G
B

M
06

5.
R

e

B
rM

E
T0

08

B
rM

E
T0

25

BrM
ET00

8

BrM
ET00

9

BrM
ET01

0

BrM
ET01

8

BrM
ET01

9

BrM
ET02

3

BrM
ET02

4

BrM
ET02

5

BrM
ET02

7

BrM
ET02

8

BrM
ET05

8

GBM
03

0

GBM
03

2

GBM
05

1

GBM
05

2

GBM
05

5

GBM
05

6

GBM
05

9

GBM
06

2

GBM
06

3

GBM
06

4

GBM
06

9

GBM
07

0

GBM
07

4

GBM
07

9

GBM
01

8.
Re

GBM
03

1.
Re

GBM
04

7.
Re

GBM
06

5.
Re

AO08
3

0

200

400

600

1,600
C

la
ss

 I 
ne

oa
nt

ig
en

 c
ou

nt

0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n

BrMET Glioma

***

**
NS

transcriptional data such as Danaher immune scores (42) and 
CIBERSORT (43) to characterize the 80 tumor regions for 
which there was sufficient RNA to generate RNA-sequencing  
data (Supplementary Table S5). We calculated Danaher 
immune scores for all regions and observed substantial 
intertumoral variation specifically among “CD8 T-cell” and 
“cytotoxic cell” scores (Fig. 4A). Surprisingly, we detected 

no significant difference in the aggregate immune scores 
between regions from glioma and BrMET samples.

To probe potential differences in more detail, we next 
performed differential gene expression analysis on tumor 
regions from gliomas and BrMETs. We detected significantly 
higher levels of CD274 (PD-L1) and significantly lower levels 
of CXCL9 in gliomas compared with BrMETs (q < 0.01; t test 
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Figure 4.  Spatial diversity of the immune microenvironment. A, Heat map of the immune cell scores for all samples as estimated by the method from 
Danaher and colleagues (42). Each column represents a tumor region and each row represents an immune population. Scores represent the average of 
the log-transformed expression of a collection of subset-specific genes. B, Difference in log-transformed expression of PD-L1 (left) and CXCL9 (right) 
between tumor types for all samples within cohort. Significance determined by t test with Benjamini–Hochberg multiple test correction. **, q < 0.01. 
C, Difference in macrophage polarization (left) or ontogeny (right) based on previously published gene sets (see Methods) between tumor types for all 
samples within the cohort. Significance determined by two-sided t test. *, P < 0.05; **, P < 0.01. D, Danaher scores for each sector from a tumor with three 
or more samples plotted in PC1–PC2 space following principal components analysis. DC, dendritic cell; NK, natural killer; Treg, regulatory T cell.
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with multiple comparison correction), consistent with the 
severe immunosuppression appreciated in the former (ref. 44; 
Fig. 4B). In addition, because there was a robust infiltration 
of macrophages in both gliomas and BrMETs as determined 
by CIBERSORT (Supplementary Fig. S8A), we explored two 
previously published gene sets (45, 46) to further characterize 
this population. Although we observed a slight polarization 
toward the immunosuppressive M2 phenotype characterized 
by higher expression of STAT3 and MRC1 (CD206) within 
gliomas, we identified a major distinction within macrophage 
ontogeny. Specifically, the BrMETs had a significant skewing 
toward higher expression of genes associated with monocyte-
derived macrophages relative to gliomas, which were enriched 
for microglial-specific genes (Fig. 4C). This is consistent with 
recent work in the field using single-cell analyses (47, 48).

Finally, we assessed the degree of immunologic intratu-
moral heterogeneity as estimated by the Danaher scores. 
We performed principal components analysis (PCA) on the 
Danaher immune scores for all tumors with RNA from at least 
three sectors. Plotting each region in PCA space, we observed  
that most regions from the same tumor clustered together 
(Fig. 4D). To quantify the extent of heterogeneity, we calculated 
the area in PC1–PC2 space (termed Danaher intratumoral het-
erogeneity) of the triangle with vertices corresponding to each 
region of a tumor. In contrast to the substantial differences in 
variant and neoantigen heterogeneity, we detected no differ-
ence in the degree of intratumoral immune cell heterogeneity 
between the tumor types (Supplementary Fig. S8B). A similar 
result was obtained by calculating pairwise cosine similarity 
for Danaher immune scores between regions from the same 
tumor (Supplementary Fig. S8B). Overall, these data suggest 
that the intratumoral spatial variation in the immune micro-
environment is similar between gliomas and BrMETs and 
generally is less than the intertumoral variation.

TCR Clonotypic Diversity and Heterogeneity
To evaluate the diversity, heterogeneity, and degree of clonal 

expansion of TCR clonotypes within the infiltrating T-cell 
populations of GBM and BrMET tumor samples, we per-
formed TCR sequencing on 65 regions from 22 tumors in the 
cohort. The TCR β-chain complementarity-determining region 
3 (CDR3) is highly diverse and plays a significant role in antigen 
recognition. Therefore, the TCR β-chain CDR3 sequences can 
function as unique barcodes of individual T-cell clones as they 
are activated and undergo clonal expansion within the tumor. 
We classified clonotypes within each tumor region as either 
the dominant clone (clone 1) or in predetermined clonotype 
groups based on frequency (i.e., clones 2–5, 6–20, 21–100, 101–
1,000, or more than 1,000 clones; Fig. 5A; Supplementary Fig. 
S9A). Unexpectedly, we observed substantial clonal expansion 
within GBM. For example, each region of GBM055 harbored 
a dominant clone comprising >17% of the T-cell repertoire. 
In addition, regions from GBM047.Re, GBM056, GBM059, 
GBM065.Re, and GBM079 all contained dominant clones 
present at frequencies >12%. In contrast, of the sequenced 
BrMETs, only one region from BrMET025 (NSCLC) harbored 
a dominant T-cell clone present at a frequency >10%. Overall, 
the T-cell fraction among all cells (estimated through TCR 
sequencing; see Methods) was significantly (P < 0.05; unpaired 
t test) higher within the BrMETs, whereas the TCR repertoires 

within GBM were determined to have a higher degree of clonal-
ity (P < 0.05; unpaired t test; Fig. 5B).

To investigate the degree of intratumoral heterogeneity of 
the T-cell repertoires, we next explored the distribution of 
the top 10 clones within each tumor. The distribution of the 
expanded TCRs within each tumor differed greatly between 
patients, with some exhibiting marked T-cell homogeneity 
among all examined regions, whereas others showed pro-
found intratumoral diversity (Fig. 5C). Several of the GBMs 
were particularly heterogeneous, with locally expanded T-cell 
clones present at frequencies greater than 10% within one 
region of the tumor but significantly less than 1% in all other 
regions. We then quantified this diversity at a repertoire-wide 
level through pairwise comparisons using the Morisita over-
lap index (MOI), a measure of similarity between populations 
based on the number of shared sequences and their relative 
frequencies. As expected, the MOI values approached 0 (no 
similarity) for repertoires from different patients but were 
variable within patients (Fig. 5D). Comparing the tumor 
types, we detected a higher level of intratumoral repertoire 
similarity among BrMETs than among GBMs whether the 
MOI or a similar cosine similarity index was used (Supple-
mentary Fig. S9B and S9C). Therefore, the increased spatial 
heterogeneity of variants and neoantigens within GBM is 
recapitulated at the TCR repertoire level.

Ultimately, to further validate that the expanded clones 
were specifically enriched within tumor tissue, we performed 
TCR sequencing on the peripheral blood from eight of these 
patients (five with GBM/three with BrMET). As expected, the 
T-cell repertoire from peripheral blood mononuclear cells 
(PBMC) trended toward lower clonality than the matched 
tumor-infiltrating lymphocytes (TIL; Supplementary Fig. 
S10A). Intriguingly, the degree of repertoire similarity 
between PBMCs and TILs appeared greater (P = 0.07) within 
BrMETs than within GBMs, perhaps suggestive of a stronger 
systemic immune response in patients with metastatic dis-
ease (Supplementary Fig. S10B). Tracking the most highly 
expanded intratumoral clones across each patient confirmed 
that most were detectable in peripheral blood but at sub-
stantially reduced frequencies (Supplementary Fig. S10C). In 
addition to this clonotypic diversity, we also observe differen-
tial V and J gene usage between peripheral blood and matched 
TILs, suggestive of a combination of both VJ-dependent and 
VJ-independent divergence as previously described (Supple-
mentary Fig. S11; ref. 49).

Immunogenomics of a Patient with  
Hypermutated Recurrent GBM

Given the growing literature studying the genomics of 
hypermutated GBM and the ongoing assessment of whether 
tumors exhibiting this genotype may be more responsive to 
immunotherapeutic approaches (10, 11, 27), we character-
ized the immunogenomic landscape of a tumor with this 
phenotype. GBM065.Re presented with tumor progression 
of an IDH1-mutant anaplastic astrocytoma 5 years after 
initial resection. In the interim, the patient was treated with 
four cycles of vincristine, 1-(2-chloroethyl)-3-cyclohexyl-l-
nitrosourea (CCNU), and procarbazine; proton radiotherapy; 
and six cycles of high-dose temozolomide (Fig. 6A). Using 
DNA WES of four tumor regions, we observed a substantial  
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Figure 5.  Intratumoral T-cell repertoire clonality and diversity. A, The proportion of each sample’s T-cell repertoire consisting of clones from a given 
rank position when all TCR sequences are ordered by descending frequency in the sample. B, Comparison of T-cell fraction (left) and Simpson clonality 
(right) between regions from GBMs or BrMETs. T-cell fraction and Simpson clonality were calculated as described in the Methods. P values calculated 
by two-sided t test: *, P < 0.05. C, Heat maps showing the frequencies of the 10 most expanded intratumoral β-chain sequences per tumor in different 
regions. Each row represents one unique sequence and each column a tumor region. D, Quantification of TCR intratumoral heterogeneity by calculation 
of the Morisita overlap (see Methods) between pairs of distinct tumor regions in either GBM (left) or BrMETs (right). Values range from 0 (indicating no 
similarity) to 1 (identical TCR repertoires).
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Figure 6.  Immunogenomic profile of hypermutated recurrent GBM. A, Description of clinical course. RT, radiation therapy; PCV, procarbazine, CCNU, 
and vincristine; TMZ, temozolomide. B, Total variants identified from WES for primary tumor and each analyzed region of recurrence. C, UpSet plot of the 
distribution of all identified variants grouped by the set of tumor samples in which a variant is shared. D, Alluvial plot displaying the frequency of the five 
most expanded intratumoral TCR β-chain sequences from either region of recurrent tumor across peripheral blood and tumor samples. E, UMAP dimen-
sionality reduction of the scRNA-seq data of T cells from GBM065.Re. The dashed outline delineates the general population each cell belongs to and the 
color indicates the degree of expansion for that T-cell clone (defined by α/β pair). F, Volcano plot of differentially expressed genes within hyperexpanded 
clones relative to rest of T cells.
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increase in the mutational burden across all regions of the 
recurrent tumor (mean 1,587 variants/sector) relative to the 
prior primary tumor (219 variants; Fig. 6B). Variant analysis 
revealed that two regions from the recurrent tumor con-
tained the MSH6 T1219I variant previously identified in 
Lynch syndrome and known to act in a dominant-negative 
manner (refs. 50, 51; Supplementary Fig. S12A). The other 
two regions both contained unique MSH6 mutations not 
previously reported (G1148S and G1116D) but computation-
ally predicted as “likely to impair molecular function” by a 
previously published tool for the prediction of MSH6 variant 
significance (52). Additional mutations in DNA mismatch 
repair genes such as MLH3 and POLD3 were detected in some 
but not all regions of the recurrent tumor. This heterogeneity 
of potentially pathogenic mismatch repair defects in hyper-
mutated recurrent GBM was observed in one prior patient 
and suggests either the emergence of multiple unique routes 
to hypermutation occurring within the same tumor or a com-
mon alternative mechanism unrelated to these genes (34). An 
analysis of the mutational signatures within the recurrent 
tumor revealed a significant enrichment for signature 11, 
known to be associated with prior treatment with temozo-
lomide (28, 29) and previously reported to be enriched in 
hypermutated recurrent gliomas (33).

We observed that most variants identified within each 
region of the recurrent tumor were subclonal private and not 
spatially distributed (Fig. 6C; Supplementary Fig. S12B). A 
small fraction (30 total) of variants were shared between all 
regions of the recurrent tumor, and an even smaller number 
(15 total) were shared by the primary and all sectors of the 
recurrence. Importantly, these included likely drivers of the 
tumor such as TP53 and IDH1 alterations. This remarkable 
heterogeneity is consistent with a prior report in which two 
regions of a hypermutated recurrent tumor were sequenced 
and shared less than 2% of all identified mutations (34). In 
contrast to the variant and neoantigen heterogeneity within 
this tumor, the TCR Vβ repertoires within two analyzed 
regions were more similar (MOI = 0.85) and had the highest 
clonality across all samples in the cohort. Remarkably, the 
top three T-cell clonotypes within GBM065.Re made up more 
than 37% of the intratumoral repertoire, suggesting a signifi-
cant degree of clonal expansion. In addition, these dominant 
clones were all present at substantially reduced frequencies 
(<1%) within the patient’s peripheral blood, confirming the 
specific intratumoral expansion of these cells (Fig. 6D).

Finally, to more deeply characterize the immunologic land-
scape of GBM065.Re, we performed single-cell RNA sequenc-
ing (scRNA-seq) with TCR enrichment on sorted CD45+ 
immune cells (n = 1,728) isolated from this tumor imme-
diately following surgical resection. We found that most 
of the cells were of the lymphoid lineage and were pre-
dominantly cytotoxic CD8+ T cells (59% of sequenced cells) 
with smaller populations of naïve and CD4+ regulatory-like  
T cells (Fig. 6E; Supplementary Fig. S13). The highly expanded 
T-cell clones identified through bulk TCR Vβ sequencing also 
were represented in the scRNA-seq data but were found 
dispersed throughout the CD8+ T-cell clusters, suggesting 
heterogeneous gene expression patterns among these clonal 
populations. We performed differential expression analysis 
on the hyperexpanded clonotypes and found them enriched 

for markers of activation such as KLRC3, KLRC4, and GZMK 
together with MHC class II genes classically upregulated by 
activated T cells (Fig. 6F). Thus, despite substantial heteroge-
neity at the variant and neoantigen level, the hypermutated 
GBM065.Re contains clonally expanded T cells with an acti-
vated phenotype distributed throughout the tumor.

DISCUSSION
Despite numerous advances in both targeted and immune-

based therapies, the prognosis for patients with malignant 
brain tumors such as GBM or BrMETs remains poor. Within 
GBM, one potential rationale for the high rate of treatment 
failure is the extensive intratumoral cellular and molecular 
heterogeneity (12) owing to complex tumor clonal dynam-
ics. However, the impact of this tumor cell diversity upon 
the tumor–immune microenvironment remains unclear. 
Furthermore, the spatial heterogeneity of both tumor and 
immune landscapes within BrMETs requires further study.

To address these knowledge gaps, we performed com-
prehensive immunogenomic profiling on multiple spatially 
distinct regions from a cohort of 30 patients with primary 
or secondary malignant brain tumors. We observed a strik-
ing distinction in the distribution of somatic variants, with 
most mutations usually shared by all analyzed regions within 
BrMETs, whereas gliomas were markedly heterogeneous 
and subclonal. This dichotomy extended to the distribu-
tion of candidate neoantigens within these tumors, whereas 
the intratumoral distribution of targetable CT antigens was 
more homogeneous. Furthermore, the intratumoral TCR 
repertoire was significantly more similar between spatially 
distinct regions of BrMETs than gliomas, which often har-
bored locally expanded T-cell clones.

Previous studies have reported on the significant genomic 
and transcriptional variability between spatially distinct 
regions of gliomas (19–21) and hypothesized the conse-
quences of heterogeneity on treatment resistance. However, 
our results suggest that this spatial heterogeneity of genomic 
alterations is minimal within metastatic brain tumors, which 
instead display a markedly more clonal distribution. We 
envisage that this difference may be due to the separate evolu-
tionary trajectories of these tumor types. Recent studies sug-
gest that GBMs arise from the slow accumulation of somatic 
mutations in neural stem cells, during which time multiple 
subclones can develop before presenting as a clinically appar-
ent tumor (53). However, secondary BrMETs likely develop 
quickly from the rapid growth of an already transformed 
subclone upon arrival into the CNS. This malignant clone 
will quickly develop into an apparent tumor, allowing less 
time for the development of genetically disparate subclones. 
Previous studies have shown that these metastatic clones 
can accumulate additional genomic alterations relative to 
the matched primary, thereby providing potentially unique 
therapeutic targets that are likely clonal within the meta-
static tumor (22, 54). Future work should explore whether 
this tumor spatial homogeneity represents a specific feature 
of BrMETs or is a more general characteristic of secondary 
metastatic tumors.

Importantly, the comparative distinctions we observed 
extend to the distribution of candidate class I and class II 
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neoantigens, as patients with metastatic tumors harbor a 
significantly higher proportion of clonal neoantigens. This 
dichotomy between BrMETs and gliomas could have pro-
found implications on antitumor immunity, as studies have 
reported that T-cell immunoreactivity against clonal neoan-
tigens drives sensitivity to checkpoint blockade treatment 
(17, 18). However, additional work is needed to characterize 
the degree of antitumor immunity within malignant brain 
tumors and determine the relative contributions of clonal 
and subclonal neoantigens in stimulating immune responses. 
In particular, detailed analysis of the antigenic targets of the 
T-cell clones within tumors will be critical to understanding 
how antigen clonality shapes immunogenicity.

Recent studies have broadened our understanding 
of the immune microenvironment within gliomas and 
BrMETs through methods such as mass cytometry, RNA 
sequencing, and immunofluorescence (47, 48). Our work 
builds on this by exploring the spatial heterogeneity of 
the immune response and performing a deeper analy-
sis on the TIL populations. Through immune profiling 
from RNA-sequencing data, we did not detect significant 
intratumoral differences in either the immune infiltrate 
or activation state for either tumor type, in contrast to 
the significant heterogeneity of variants and neoantigens 
within gliomas. However, many of the immune profiling 
analyses performed are to some extent limited in their abil-
ity to resolve specific immune cell populations and activa-
tion states owing to their reliance on bulk RNA-sequencing 
data. Further spatial analysis with more sensitive metrics 
such as flow cytometry, immunofluorescence, scRNA-seq, 
and/or spatial transcriptomics would be needed to clarify 
whether this is true immune homogeneity or a limitation 
of bulk RNA-sequencing analysis.

In contrast, TCR repertoire sequencing did uncover sub-
stantial spatial heterogeneity. Although both GBMs and 
BrMETs demonstrated evidence of expanded intratumoral  
T cells, many of the dominant clones within GBM sam-
ples were highly spatially restricted. These data suggest that 
tumors harbor complex immune microenvironments in which 
a given tumor may contain pockets of clonally expanded  
T cells adjacent to regions with minimally expanded T cells. 
Whether this T-cell heterogeneity is due to the recognition of 
spatially diverse subclonal antigens or the result of extrinsic 
regional features such as inflammatory cytokines that pro-
mote clonal expansion requires further study.

Tumor mutational burden has been shown to correlate 
with checkpoint blockade response in some studies (18, 
55), and hypermutated tumors resulting from germline or 
acquired DNA repair deficiencies have been shown to be 
uniquely responsive to immunotherapy across other tumor 
types (56). Within hypermutated GBM, which occurs in 
up to 20% of recurrent disease, the efficacy of checkpoint 
blockade and other immunotherapies remains an open ques-
tion. Several reports have observed clinical responses from 
checkpoint blockade in patients with hypermutant GBM 
harboring germline DNA repair defects, but a recent retro-
spective analysis found no benefit in patients with mismatch 
repair–deficient GBM treated with the PD-1 blockade (10, 
11, 27). Ongoing clinical trials are designed to address this 
question, such as the Alliance study A071702/NCT04145115 

[a study testing the effect of immunotherapy (ipilimumab 
and nivolumab) in patients with recurrent glioblastoma with 
elevated mutational burden]. Although characterization of 
more patients is needed to generalize our findings, the 
immunogenomic profiling of GBM065.Re revealed poten-
tially unique features of these tumors. First, most mutations 
and associated neoantigens within this hypermutant tumor 
were subclonal private. These data, together with our other 
findings and published work (21), indicate that single-site 
profiling analysis would be inadequate and dramatically 
underestimate both tumor complexity and neoantigen bur-
den. Second, despite this dramatic heterogeneity of vari-
ants, we observed remarkably similar TCR repertoires with 
highly expanded CD8+ T-cell clones within different regions. 
scRNA-seq analysis on these expanded clones shows evidence 
of T-cell activation, suggesting potential tumor reactivity. 
Whether these clones react to the small subset of clonal 
neoantigens, the thousands of regional neoantigens, or over-
expressed CT antigens or are responding in a nonspecific 
way to inflammatory stimuli will require further analysis. 
However, our data indicate that hypermutant tumors can 
contain highly activated and clonally expanded T cells while 
also representing an extreme of mutational and neoantigen 
heterogeneity. Ongoing work is directed at understanding 
how the immune system may direct responses to antigen 
targets in the context of this heterogeneity.

Taken together, these results carry immediate significance 
for the design and implementation of clinical studies in 
malignant brain tumors. The extensive intratumoral het-
erogeneity within gliomas indicates that single-site genomic 
analysis will not capture the totality of targetable mutations 
and neoantigens. This is of particular importance in the 
design of targeted therapy studies and/or neoantigen vac-
cines, as the analysis of multiple regions identifies a signifi-
cantly higher number of targetable neoantigens than one site 
alone. We have already begun to implement this approach in 
a trial of a personalized neoantigen vaccine in patients with 
newly diagnosed GBM (NCT03422094). An additional ben-
efit of this approach is increased confidence in the clonality 
of targeted antigens, as clonal neoantigens would presum-
ably represent ideal targets. However, it remains to be seen 
whether sampling additional regions beyond the number in 
this study and the aforementioned clinical trial would shed 
further light on the molecular landscape. Furthermore, the 
complexity of the intratumoral T-cell repertoire argues that 
multiple sites should be analyzed for the potential expansion 
of neoantigen-reactive T cells or isolation of tumor-specific 
TCRs for therapy. On the other hand, the relative homogene-
ity of BrMETs suggests that a single region is sufficient for 
genomic and immunologic phenotyping.

Overall, this study provides an immunogenomic profiling 
of malignant brain tumors in a multisector approach show-
casing substantial intratumoral heterogeneity within gliomas 
while highlighting surprising homogeneity among BrMETs. 
These distinctions hold for both cancer cell–intrinsic (genomic 
alterations) and cancer cell–extrinsic (TCR repertoire) features. 
A growing understanding of the tumor–immune microenvi-
ronment and an appreciation of its spatial complexity may 
improve the efficacy of immunotherapy in patients with malig-
nant brain tumors.
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METHODS
Patient Recruitment

All study participants were neurosurgical patients at Barnes-Jewish 
Hospital with pathologically confirmed stage III/IV glioma or meta-
static disease. Prior to surgery, we obtained written informed consent 
from the patients for a Washington University School of Medicine 
Institutional Review Board–approved protocol (#201111001) for 
the analysis of tumor tissue and peripheral blood and sharing of 
genomic data. All procedures and experiments were performed in 
accordance with the ethical standards of the 1964 Declaration of 
Helsinki. Clinical information related to each patient was collected 
at the time of surgery and is summarized in Supplementary Fig. S1.

Clinical Sample Processing and Nucleic Acid Extraction
Tumor samples were processed immediately following surgical 

resection under sterile conditions. Tissue was thoroughly washed 
in PBS to eliminate peripheral blood leukocyte contamination. For 
tumor samples that were resected en bloc, spatially distinct sectors 
were dissected out from the mass via scalpel. In other cases where 
multiple discrete regions demonstrated enhancement on MRI, tissue 
was separated at the time of surgery and a representative sample from 
each sector was chosen for analysis. In all cases, tissue was immedi-
ately flash-frozen and initially stored at −80°C or in liquid nitrogen 
until further use. Peripheral blood was separated through Ficoll-
Paque PLUS density gradient (GE), and the buffy coat was collected 
and frozen for matched normal genomic DNA.

Total RNA and genomic DNA was extracted from peripheral 
blood mononuclear cells or frozen tissue using the Qiagen AllPrep 
DNA/RNA Kit (catalog no. 80204) according to the manufacturer’s 
instructions (Qiagen). As melanin is a known inhibitor of enzymatic 
reactions and coprecipitates with RNA (57), further purification was 
performed for the melanoma sample as described (58), modified with 
an RNeasy (Qiagen) column-based cleanup to remove the additives 
used to bind the melanin. For GBM065.Re, regions 3 to 4 and the 
sample from the primary tumor came from formalin-fixed, paraffin-
embedded tissue cores. In these cases, total RNA and genomic DNA 
were extracted using the Qiagen AllPrep DNA/RNA FFPE Kit (cata-
log no. 80234).

Sequencing and Somatic Variant Detection
All sequencing was performed on the Illumina NovaSeq (S4) plat-

form. From each patient, a normal sample and two to four samples 
from a single tumor were subjected to WES. Eighty of 93 tumor 
samples had sufficient tissue to perform RNA sequencing. WES and 
RNA sequencing from 20 tumors were performed at the McDonnell  
Genome Institute, and 10 tumors underwent WES and RNA 
sequencing at the Institute for Genomic Medicine at Nationwide 
Children’s Hospital. WES was performed on two additional recur-
rent GBM065 regions and a GBM065 primary tumor by Novogene. 
Read alignment, somatic variant calling, variant filtering, variant 
effect prediction, additional variant annotation, and RNA expression 
estimation were performed using a tumor analysis pipeline defined 
in the Genome Modeling System as previously described (59). Briefly, 
all fastq files were aligned to the human reference genome build 
GRCh38 with HISAT2(RRID:SCR_015530) for RNA (60) and BWA-
MEM for DNA (61). Somatic variant calling was performed using 
Strelka (62), VarScan (63), Mutect (64), and Pindel (65). To remove 
any false-positive variants and discover TERT promoter mutations, 
custom capture validation sequencing was performed to an average 
depth of 582× for all unique variant sites using NimbleGen SeqCap 
EZ Prime Choice Probes (12,388 total probes created from 11,425 
variants and 51 genes; 1.49 Mb of sequence targeted for capture). 
Tumor purity was estimated using TPES (66) for samples with suffi-
cient variant count (>20), and for those with insufficient variants, the 

median variant allele frequency was used (2 × median VAF). SciClone 
(67) and ClonEvol (68) were used to assess the clonality of mutations 
and subclonal evolution of primary and recurrent GBM065 tumors.

CN Variation Detection
Matched tumor/normal WES data were used to predict CN vari-

ations (CNV) with CNVkit (69). Each tumor region sample was 
compared pairwise against the single matched normal data for the 
patient. CNVkit was run (via “cnvkit batch”) using default parameters. 
Regions of alignment were summarized to a resolution of 10 kb, and 
these data were subjected to segmentation using circular binary seg-
mentation. The resulting segmentation files were divided into three 
cohorts: (i) primary and recurrent GBMs, (ii) breast cancer BrMETs, 
and (iii) NSCLC BrMETs. GISTIC2 (70) was run on the segments of 
each cohort with a q value cutoff of 0.1. Relative amplitude thresholds 
were used to create the heatmaps and clonality plots in Fig. 2.

GBM Molecular Subtyping
Single-sample gene set enrichment analysis scores (71) were calcu-

lated for each sample in the cohort using the previously defined gene 
sets (35) and the GSVA R package (72). The circlize (RRID:SCR_002141) 
R package was used for the visualization of these molecular sub-
types (73).

Neoantigen Prediction
Clinical class I and class II HLA typing was performed on each nor-

mal sample by Histogenetics to two field resolution. For each tumor 
sample, a VCF file containing all passing somatic variants was anno-
tated with Ensembl VEP (ref. 74; RRID: SCR_002344) using the param-
eters –everything, –flag_pick, and –plugin (Wildtype and Downstream). 
The VCF was further annotated with DNA and RNA read counts using 
VAtools. Using this VCF as input, a containerized version of pVACtools 
(ref. 37; DockerHub: griffithlab/pvactools:1.5.0) was used to predict 
and annotate likely neoantigens in each sample as previously described 
(75). Briefly, using the submodule “pvacseq run,” we performed  
peptide/MHC binding affinity predictions with eight class I and four 
class II algorithms (NNalign, NetMHC, NetMHCIIpan, NetMHCcons, 
NetMHCpan PickPocket, SMM, SMMPMBEC, SMMalign, MHCflurry, 
MHCnuggetsI, MHCnuggetsII). For this analysis, to be considered a 
neoantigen candidate, it must have arisen from a variant with tumor 
DNA VAF >5% and median binding affinity (across all algorithms) <500 
nm. No sequences were excluded based on tumor RNA VAF, coverage, 
or gene expression values to ensure that no high-quality candidates 
were excluded based solely on RNA data. Neoantigens that pass this 
filter are designated “candidate neoantigens” in the article.

Genomic Alteration Distribution
All genomic alterations (variants and associated neoantigens, 

CNVs) were determined independently with each region as an indi-
vidual sample. They were then aggregated together for the plots 
in Fig. 1 to provide an overall description of each tumor. We then 
determined the distribution of each alteration between regions from 
the same tumor. If the same change was observed in all regions of the 
tumor, it was defined as “clonal.” If it was identified in more than one 
but not all regions, it was defined as “subclonal shared.” Alterations 
observed in only one region of each patient sample were defined as 
“subclonal private.”

Cancer/Testis Antigen Analysis
A subset of cancer/testis antigens was chosen for analysis based 

on a combination of prior work targeting them in GBM (ref. 38; e.g., 
IL13Ra2) and/or previous studies in other malignancies (refs. 39, 41; 
e.g., NY-ESO-1, MAGE family proteins). Cancer/testis antigen scores 
were generated by performing a log2 transform on the expression 
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(TPM) of each gene normalized to the median tissue expression for 
“Brain-Cortex” in the Genotype-Tissue Expression Project database. 
Cancer/testis antigen scores were generated for the metastatic sam-
ples through normalizing to “Brain-Cortex” expression or the associ-
ated matched primary tissue site (“Breast Mammary Tissue,” “Lung,” 
or “Skin Sun Exposed”). The intratumoral spread of cancer/testis 
antigen expression was assessed by calculating the variance of scores 
within the regions of a tumor or by calculating the cosine similarity 
between regions, where each antigen’s score in a given region repre-
sents one component of the vector.

RNA-Sequencing Analysis and Immune  
Microenvironment Profiling

Gene and transcript quantification was performed using kallisto 
(76). Differential expression analysis between tumor types was then 
performed using sleuth (77). To quantify immune cell populations in 
the tumors, CIBERSORT (43) was run using the LM22 signature gene 
file and disabled quantile normalization for 100 permutations. Relative 
immune cell abundance was obtained using gene expression as previ-
ously described by Danaher and colleagues (42). PCA dimensionality 
reduction was implemented on Danaher scores for each tumor region 
in R version 3.6.2 using the ggbiplot package.

Intratumoral similarity was performed by representing Danaher 
scores as vectors and calculating the normalized dot product between 
pairs of regions from the same tumor. The immune intratumoral het-
erogeneity was defined for tumors with three distinct regions as the 
area in PC1–PC2 space of the triangle whose vertices were represented 
by each region’s Danaher score.

The myeloid-specific analyses were performed through the gen-
eration of log-transformed scores, making use of gene sets defined 
in previous publications. A total of 11 and 10 genes were used to 
define the M1 and M2 scores, respectively, based on gene expression 
signatures of in vitro polarized M1 or M2 macrophages (45). A total 
of six distinct genes for each were used to define the scores for both 
microglial and monocyte-derived macrophages (46). These genes 
were selected based on differential expression in tumor-associated 
macrophages from distinct lineages in scRNA-seq data of human 
gliomas. To account for differential abundance of macrophages 
between samples as a reason for findings, the difference between 
these scores (corresponding to a ratio of gene expression) was taken 
to generate an “M2–M1 skew” or “MDM–microglial skew.”

TCR Repertoire Sequencing
Sequencing of the CDR3 regions of TCR β-chains was performed 

through the immunoSEQ Assay (Adaptive Biotechnologies) and 
used the same DNA extracted from tumor samples used for WES. 
Initial analysis was performed on the immunoSEQ ANALYZER 3.0. 
Additional analysis was performed using the immunarch package 
in R. Visualization of the V-J gene usage among T-cell repertoires 
was performed using the circlize (RRID:SCR_002141) package in R 
(73). The intratumoral T-cell fraction was calculated by dividing the 
number of productive TCR templates by the number of nucleated 
cells estimated by the amplification of reference genes. The Simpson 
clonality for each region was calculated by taking the square root of 
the Simpson diversity index for all productive rearrangements with 
possible values ranging from 0 (very polyclonal) to 1 (predominantly 
monoclonal or oligoclonal).

The similarity between TCR repertoires was assessed through 
either the normalized dot product (cosine similarity) or Morisita 
overlap between the vectors of TCR clonotype abundances. Both of 
these metrics are based on pairwise comparisons between two reper-
toires. The T-cell repertoires for two regions are represented by vec-
tors with indices covering the union of TCRs observed in either of the 
corresponding regions. Each position of the vector then represents 
the abundance (as a count) of a given clonotype within that region. 

The cosine similarity of the T-cell repertoires in regions A and B can 
then be given by
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where Ai, Bi, and n represent the same values as before and NA and NB 
represent the total number of productive rearrangements observed 
in region A or B, respectively. Both of these metrics provide a value 
between 0 and 1, where 0 represents no similarity (orthogonal vec-
tors or completely disparate populations) and 1 represents complete 
similarity (parallel vectors or completely identical populations). 
Comparisons between tumor types were performed by taking all 
intratumoral comparisons between GBMs and BrMETs and group-
ing them.

Sample Preparation for Single-Cell Sequencing
For GBM065.Re, the fresh surgical sample was rinsed with PBS 

to remove visual blood contaminant and manually dissociated 
using frosted microscope slides and gentle trituration. The resulting 
single-cell suspension was passed through 100-mm and 70-mm fil-
ters before undergoing Percoll (GE Healthcare Life Sciences) density 
gradient centrifugation to remove myelin contamination. Following 
this separation, the resulting cell pellet underwent RBC lysis with 
ACK Lysis Buffer (Lonza Biosciences) and was frozen in 90% FBS 
and 10% DMSO at −80°C and later stored in liquid nitrogen until 
further use.

The tumor sample was later thawed, and the single-cell suspension 
was stained with anti-CD45, anti-CD11b, anti-CD3, and Zombie NIR 
Viability Dye (BioLegend). Live CD45+ single cells were purified by FACS 
on a BD FACSAria II with an 85-mmol/L 45-psi nozzle into a buffer of 
PBS with 0.04% BSA. A total of 13,000 were submitted for analysis.

Single-Cell Library Preparation
cDNA was prepared after the Gel Beads in Emulsion (GEM) gen-

eration and barcoding, followed by the GEM-RT reaction and bead 
cleanup steps. Purified cDNA was amplified for 10 to 14 cycles before 
being cleaned up using SPRIselect beads. Samples were then run on 
a bioanalyzer to determine the cDNA concentration. TCR target 
enrichment was done on the full-length cDNA. GEX and enriched 
TCR libraries were prepared as recommended by the 10× Genom-
ics Chromium Single Cell V(D)J Reagent Kits (v1 Chemistry) user 
guide with appropriate modifications to the PCR cycles based on 
the calculated cDNA concentration. For sample preparation on the 
10× Genomics platform, the Chromium Single Cell 5′ Library and 
Gel Bead Kit (PN-1000006); Chromium Single Cell A Chip Kit (PN-
1000152); Chromium Single Cell V(D)J Enrichment Kit, Human, T 
Cell (96rxns)(PN-1000005); and Chromium Single Index Kit T (PN-
1000213) were used. The concentration of each library was accurately 
determined through qPCR using the KAPA library quantification kit 
according to the manufacturer’s protocol (KAPA Biosystems/Roche) 
to produce cluster counts appropriate for the Illumina NovaSeq6000 
instrument. Normalized libraries were sequenced on a NovaSeq6000 
S4 Flow Cell using the XP workflow and a 151 × 8 × 151 sequencing 
recipe according to the manufacturer’s protocol. A median sequencing  
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depth of 50,000 reads/cell was targeted for each Gene Expression 
Library and 5,000 reads/cell for each V(D)J (T-cell) library.

Single-Cell Sequencing Analysis
Raw sequencing data were processed with Cell Ranger, version 

3.0.1 (78), from 10× Genomics and mapped onto a human genome 
reference (GRCh38–2020-A). Downstream analysis was performed 
using the Seurat (RRID: SCR_007322) R package version 3.2.0 (79). 
In total, 2,147 cells passed the quality control steps performed by Cell 
Ranger. Low-quality cells and potential doublets were accounted for 
by removing cells that contained fewer than 500 expressed genes, a 
nCount value greater than the nCount value of the 93rd percentile of 
the total sample, or more than 10% mitochondrial transcripts. Fol-
lowing filtering, 1,728 cells remained within the final data set. Genes 
that were expressed in fewer than 100 cells were also removed. For 
each cell, expression of each gene was normalized to the sequencing 
depth of the cell, scaled to a constant depth (10,000), and log-trans-
formed. Variable genes were selected with default settings, and PCA 
was performed on the variable genes. Dimensionality reduction and 
visualization were performed with the uniform manifold approxima-
tion and projection (UMAP) algorithm (Seurat implementation) 
using the first 15 PCA dimensions. Unsupervised graph-based clus-
tering of cells was performed using the mentioned PCA dimensions 
with a resolution of 0.8.

Enriched gene expression levels in each cell cluster were identified 
by a Wilcoxon rank sum test-based function. These genes, along with 
common cell-type markers, were used to establish the cell identity 
of each cluster. Projection of average expression of marker genes 
into UMAP or violin plots was used for cell-type identification. Gene 
expression signatures used for definition of clusters were as follows: 
CD3E, CD3D, and CD3G (T cells); NKG7, PRF1, GZMH, and CD3− (nat-
ural killer cells); MS4A1, CD79B, and CD3− (B cells); and CD14, S100A8, 
S100A9, C1QC, CD68, CTSD, and HLA-DR+ (monocytes/macrophages).

Second-level clustering of T cells was performed by subsetting 
only T-cell clusters and rerunning scaling, log transformation, and 
variable gene selection. In addition, PCA was performed again on 
the new variable genes. Dimensionality reduction and visualization 
were performed with the UMAP algorithm using the first 10 PCA 
dimensions. Unsupervised graph-based clustering of cells was per-
formed using the mentioned PCA dimensions with a resolution of 
1.0. Gene expression signatures used for definition of clusters were 
as follows: CCR7, SELL, TCF7, and KLF2 (naive/central memory  
T cells); Il7R, KLRB1, and SELL− (effector memory T cells); TIGIT, 
CTLA4, and CD4 (CD4+ regulatory-like T cells); and NKG7, PRF1, 
CCL5, GZMH, CD3, CD8A, and CD8B (cytotoxic CD8+ T cells).

V(D)J libraries were processed with CellRanger V(D)J, version 
2.0.0, from 10× Genomics and mapped onto a human VDJ reference 
(GRCh38–2.0.0). Clonotype analysis was performed with the scRep-
ertoire (version 0.99.17) R package (80). Clonotypes were defined as 
the combination of the genes of the TCR A and B chains and nucleo-
tide sequences as previously discussed (81).

Statistical Analysis
Data analysis and visualization in R was performed using the 

tidyverse package. Statistical significance for variant, neoantigen, 
CNV clonality estimates, heterogeneity estimates, T-cell fraction, and 
T-cell clonality was performed using an unpaired t test. Significance 
for differential expression was determined by a multiple t test with 
Benjamini–Hochberg adjustment with an FDR = 0.05.
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