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ABSTRACT
Transition path theory computes statistics from ensembles of reactive trajectories. A common strategy for sampling reactive trajectories is to
control the branching and pruning of trajectories so as to enhance the sampling of low probability segments. However, it can be challenging
to apply transition path theory to data from such methods because determining whether configurations and trajectory segments are part of
reactive trajectories requires looking backward and forward in time. Here, we show how this issue can be overcome efficiently by introducing
simple data structures. We illustrate the approach in the context of nonequilibrium umbrella sampling, but the strategy is general and can be
used to obtain transition path theory statistics from other methods that sample segments of unbiased trajectories.
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I. INTRODUCTION

One of the main purposes of simulations is to learn how
processes occur. However, most processes of interest occur on
timescales that are orders of magnitude longer than the numerical
integration time step. In the case of molecular systems, on which we
focus here, the time step for all-atom models is in the femtosecond
range, while conformational transitions of functional significance
typically take place in the microsecond to seconds range. As a result,
at best, only a small number of events can be observed by direct
simulation. Moreover, even if one obtains examples of events of
interest, the number of dynamical variables is generally sufficiently
large that it is not obvious which are the key steps,1 leave alone their
likelihoods and the distributions of times that they occur.

Transition Path Theory (TPT) provides a means of computing
these statistics for transitions between two metastable states from the
ensemble of reactive trajectories (i.e., those that contain an event).2–4

A key idea in TPT is that these statistics can be expressed as products
over the steady-state distribution and the probabilities of coming
from or going to the metastable states (known as commitment prob-
abilities or committors). This factorization allows for estimating
these probabilities separately, which opens the door to computing
statistics of reactive trajectories from a broader range of data.

Markov State Models (MSMs) are a popular means of com-
puting TPT statistics.5,6 In MSMs, dynamics are coarse-grained
to transitions between a set of discrete states, the probabilities of
which are assumed to be independent of the sequence of states
visited. The advantage relative to direct simulation comes from
the fact that there is considerable freedom in how one estimates
the state-to-state transition probabilities.7,8 Dynamical Galerkin
Approximation (DGA)9,10 is a generalization of MSMs for TPT
statistics that accounts for the boundary conditions of the statis-
tics11 and represents them through expansions over sets of basis
functions (which can take a form beyond indicator functions on
discrete states). Recently, TPT statistics have also been computed
with milestoning,12 which, instead, assumes that the system reaches
an equilibrium within selected parts of the configuration space (the
milestones).13,14

Although often reasonable, the above approximation schemes
can break down, and even if they do not, they ultimately limit the
resolution with which statistics can be computed. Methods that sam-
ple the ensemble of trajectories that connect the metastable states
without such assumptions can, in principle, provide results with
arbitrary resolution. One such method is Transition Path Sampling
(TPS), a Monte Carlo procedure that accepts and rejects whole
trajectories.15–17 However, generally, it is more efficient to divide the
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configuration space and sample segments of trajectories that transi-
tion between regions. This idea is at the foundation of the Weighted
Ensemble (WE),18–20 Transition Interface Sampling (TIS),21,22 For-
ward Flux Sampling (FFS),23,24 Nonequilibrium Umbrella Sampling
(NEUS),25–29 and Exact Milestoning (EM)30 methods. With the
exception of TIS, these methods allow for the treatment of micro-
scopically irreversible dynamics, which is also not straightforward
in TPS.

The differences between these methods are in the details of
the trajectory segments they select and how they track their prob-
abilities to enable reconstruction of the overall statistics. Generally,
the interfaces are specified through collective variables that com-
bine information from multiple coordinates used for the underlying
numerical integration. TIS and FFS require non-intersecting inter-
faces because they are formulated in terms of the probabilities of
going from one to another in order. WE, NEUS, and EM do not
have this restriction and, thus, readily allow for the control of
sampling in more than one collective variable. In its traditional
form, WE tracked the weight of each trajectory segment (equiv-
alent to a member of the ensemble) individually. NEUS, instead,
tracked the weight of a subpopulation within a region (termed
a stratum in statistics) and redistributed the weight to satisfy a
global flux balance condition. Later implementations of WE that
incorporate this idea31 are very similar to NEUS, as is EM, which
relaxes the distributions on the milestones. Several of these algo-
rithms can, thus, be described by a common framework, trajectory
stratification.32

Because these methods sample trajectory segments rather than
whole trajectories, care must be used to weight trajectory seg-
ments appropriately when computing statistics. Vanden-Eijnden
and Venturoli27 showed that the rate can be obtained exactly from
NEUS by augmenting the dynamics with information about the
last metastable state visited, and this scheme was further refined
and applied in Ref. 26. However, the rate requires only tracking
transitions into the metastable states, making it easier to compute
than statistics that require information about intervening states.
Vanden-Eijnden and Venturoli27 provided a formula for com-
puting the (backward) committor from the region weights, but,
to the best of our knowledge, statistics such as committors and
probability currents of reactive trajectories (reactive currents for
short), which reveal microscopic likelihoods of reaction and reac-
tion pathways, respectively, have not been computed from such
methods. The challenge presented by these quantities is that each
trajectory segment can contribute to an infinite number of com-
plete trajectories, and determining the ones that contribute to a
given statistic requires looking both forward and backward in
time.

Here, we introduce a simple bookkeeping procedure and prac-
tical formulas for computing committors and reactive currents.
While we present our methods in terms of the NEUS algorithm,
they can be adapted to the other algorithms for sampling trajec-
tory segments described above. This paper is organized as follows.
In Sec. II, we define these quantities in the TPT framework, and
in the supplementary material, we provide an explicit justification
for an estimator of the current. In Sec. III, we provide a succinct
description of the NEUS algorithm and show how it must be mod-
ified. We demonstrate the algorithm for isomerization of a peptide
in Sec. IV.

II. TRANSITION PATH THEORY
We are interested in learning the statistics of reactive trajecto-

ries. In TPT, these are defined to be trajectories that start in a state
A and end in a non-overlapping state B without returning to A. To
delimit their ends, we define

t+(t) = min(t′ > t, Xt′ ∈ A ∪ B), (1)

t−(t) = max(t′ < t, Xt′ ∈ A ∪ B), (2)

where Xt′ is the configuration at time t′ and Xt ∈ (A ∪ B)c. The for-
ward committor q

+
(x) is the probability that the system goes to

B before A starting from state x,

q+(x) = P[X(t+(0)) ∈ B∣X(0) = x]. (3)

Similarly, the backward committor q
−
(x) is the probability that a

system at x came from A after B,

q−(x) = P[X(t−(0)) ∈ A∣X(0) = x]. (4)

In the present study, for visualization, we project the committors
onto the space defined by a vector of collective variables, θ(x),
weighted by π(x),

qθ±(Θ) = ∫ q±(x)π(x)δ(θ(x) −Θ)dx. (5)

A key element of TPT is that the probability that a trajectory
is reactive can be expressed in terms of quantities that are local
in space. Specifically, the probability that a trajectory that passes
through x is reactive is proportional to π(x)q

−
(x)q

+
(x), where π(x)

is the steady-state distribution. The fact that TPT is based on local
statistics aids in interpretation, but it also can make obtaining certain
statistics challenging. We discuss how TPT of an augmented process
can be used to obtain additional statistics that require knowledge
of sequences of states visited in Ref. 33. Of course, the analysis we
propose here can be complemented by direct analysis of the reactive
trajectories as well.

A. Reactive current
The reactive current is a central quantity in TPT.2,3,34 It can

be used to define reactive pathways, and averages over reactive
trajectories—in particular the rate—can be computed from it. The
reactive current is defined by considering a surface S that divides the
space into two regions: C containing A and its complement Cc con-
taining B. Then, the reactive current, IAB(x), is the vector field whose
integral is the reactive flux across S,

∫
S
IAB ⋅ n̂SdσS = lim

τ→0
lim

T→∞

1
2Tτ

× ∫

T

−T
[1C(X(t))1Cc(X(t + τ))

− 1Cc(X(t))1C(X(t + τ))]
× 1A(X(t−(t)))1B(X(t+(t + τ)))dt, (6)
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where n̂S is a unit vector normal to S (pointing from C to Cc), dσS is
a surface element, τ is a lag time, and

1D(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∈ D,

0 otherwise.
(7)

IAB(x) is a vector field in the full space of dynamical variables,
of which there are many in general. However, most of these are irrel-
evant for determining whether the reaction proceeds, and we seek a
small number of key dimensions. Because these are often combina-
tions of the original dynamical variables, we term them collective
variables. We show in the supplementary material that

IAB ⋅ ∇θ(x) = π(x)q−(x)q+(x)lim
τ→0

1
2τ

E[(θ(X(τ))

− θ(X(−τ))∣X(t−(0)) ∈ A, X(t+(0)) ∈ B, X(0) = x].
(8)

We use E to denote expectations over the steady-state trajectory
ensemble. This formula is simply the product of the probability of
being on a reactive trajectory and the average increment per unit
time of θ along a reactive trajectory. We project this current onto the
space of collective variables,

IθAB(Θ) = ∫ IAB(x) ⋅ ∇θ(x)δ(θ(x) −Θ)dx (9)

= lim
∣dΘ∣→0

1
∣dΘ∣∫{θ(x)∈dΘ}

IAB(x) ⋅ ∇θ(x)dx. (10)

We recently showed that this projected reactive current can also be
used to compute the reactive flux through an integral similar in form
to (6) but in the θ space; the projected current IθAB(Θ) can, in turn,
be used to compute the rate.10 The expressions in (8) and (9) allow
us to obtain the reactive current in the space of collective variables
from reactive trajectories.

In Sec. III, we discuss how reactive trajectories can be sampled
efficiently. Although we treat time as continuous above, with a view
toward developing a practical algorithm, we, henceforth, assume a
dynamics with discrete time steps; the lag time τ is, thus, an integer
multiple of the time step, in practice.

III. TRAJECTORY STRATIFICATION
The idea of stratification, in general, is to obtain better over-

all statistics by controlling the sampling of subpopulations (strata).
The most familiar form of stratification in molecular simulations
is umbrella sampling,29,35–38 which is frequently used to com-
pute free energies. In this case, the strata are defined by regions
in a space of collective variables. Each of the strata is sampled
independently by a copy of the system, and the information is,
then, combined to obtain unbiased averages. Trajectory stratifi-
cation extends this strategy from states to trajectories and, thus,
enables treating microscopically irreversible systems and estimating
dynamical statistics (for microscopically reversible or irreversible
systems).25–29

Here, we focus on the case of steady-state, time-independent
quantities. To formulate the algorithm mathematically, we associate

with X(t) a variable J(t) that reports the index of the stratum at time
t. For example, a trajectory that spent one time step in stratum 1 and
two time steps in stratum 2, went back to stratum 1 for one time step,
and then spent three time steps in stratum 5 would have J(t = 1) = 1,
J(t = 2) = 2, J(t = 3) = 2, J(t = 4) = 1, J(t = 5) = 5, J(t = 6) = 5, and
J(t = 7) = 5. Then, denoting the time that a trajectory first exits a
stratum as s = min{t : J(t) ≠ J(0)}, we can write expectations as

E[ f ] =
1
Ω∑i

zi fi, (11)

where Ω is a normalization factor and

fi = ∫
x
∑

t
f (X(t))Px,i[X(t), t < s]πi(dx). (12)

Px,i indicates that we are conditioning the probability on starting
at configuration x in stratum i; πi(dx) ≡ πi(x)dx is the probabil-
ity of being in the differential volume element dx conditioned on
entering stratum i at that state, and zi is the normalization factor
for πi(dx). Operationally, (12) corresponds to initiating trajecto-
ries from steady-state entry points to stratum i, terminating them
when they leave the stratum, and averaging over the sampled points.
We show in Ref. 32 that, for ergodic averages, the vector z can be
obtained by solving an eigenequation as follows:

z TG = z T. (13)

The matrix G tracks the number of transitions between strata;
we define it precisely in (17). Physically, (13) can be viewed as a
statement of global flux balance.

The key idea in the present work is that we define the index
process so as to track the last metastable state visited in the spirit of
Refs. 26 and 27. In other words, if there are K strata with domains
Dj defined in terms of a set of order parameters, then J(t) runs from
1 to 2K,

J(t) = K1[X(t−(t)) ∈ B] +
K

∑
j=1

j1[X(t) ∈ Dj]. (14)

Thus, strata with indices from 1 to K capture data for trajectories that
last came from state A and strata with indices K + 1 to 2K represent
trajectories that last came from state B.

A. A self-consistent iteration
Given the index process, we can now define zi, πi, and Gij

more precisely (we note that these quantities correspond to the
steady-state averages of z̄i, π̄i, and Ḡij defined in (24), (31), and (34),
respectively, in Ref. 32; we suppress the overbars here for simplicity
of notation),

πi(dx) = lim
T→∞

1
T
∑

T
t=0P[J(t) = i, J(t − 1) ≠ i, X(t) ∈ dx]

zi
(15)

and

zi = lim
T→∞

1
T

T

∑
t=0

P[J(t) = i, J(t − 1) ≠ i]. (16)

To obtain Gij, we draw states from πi(dx) and evolve them until they
leave stratum i,
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Gij = lim
T→∞

1
T
∑

T
t=0P[J(t) = j, J(t − 1) = i]

zi
(17)

= ∫ Px,i[J(s) = j]πi(dx). (18)

Furthermore, we add to the distribution of entry points to stratum
j that come from stratum i,

γij(dx) = lim
T→∞

1
T
∑

T
t=0P[J(t) = j, J(t − 1) = i, X(t) ∈ dx]

Gijzi
(19)

= ∫ Py,i[J(s) = j, X(s) ∈ dx]πi(dy). (20)

Thus, given πi(dx), we can compute Gij and γij(dx) and, in
turn, zi from (13). Because the entries of G depend on the dynamics
within the strata and those are initialized using G, the algorithm is
iterative in nature. To complete the iteration, we start from (15) and
write πj(dx) in terms of the other quantities,

πj(dx) = lim
T→∞

1
T
∑

T
t=0P[J(t) = j, J(t − 1) ≠ j, X(t) ∈ dx]

zj

= lim
T→∞

1
T
∑i≠j∑

T
t=0P[J(t) = j, J(t − 1) = i, X(t) ∈ dx]

zj

=
1
zj
∑
i≠j

ziGijγij(dx). (21)

B. Algorithm
If one had a long trajectory that passed between the metastable

states many times, one could compute (8) by identifying the reactive
trajectories from A to B and accumulating the increment per unit
time in θ as a function of θ. However, in the stratification scheme
above, we generally do not know whether a copy of the system (ran-
dom walker, or walker for short) is part of a reactive trajectory as we
are evolving it.

The key to addressing this issue is based on the fact that, as
described previously,25,26,32,39 in practice, γij(dx) is a list of config-
urations that are saved when walkers enter stratum j from stratum i.
Consequently, for each walker, we can save the θ points visited, the
increments in θ at those points, and a pointer to the configuration in
γij(dx) from which the walker originated; then, when a walker enters
A or B, we reconstruct the full sequence of walkers connecting the
metastable states and, in turn, the sequence of θ values visited and
the associated increments, and we add these data to the appropriate
sums. The algorithm is as follows.

1. Initialize simulation quantities as follows.
(a) Define the 2K strata as in (14).
(b) Use preliminary trajectories (obtained from either unbi-

ased simulation or an enhanced sampling method, such
as STePS40) to populate γij(dx). In practice, γij(dx) is
a list of configurations used to represent the distribu-
tion of entry points to stratum j from stratum i, and
each element contains a full configuration and a pointer
(set to null for the configurations from the preliminary
trajectories). In the present study, we allow the list to

grow throughout the simulation (i.e., we do not over-
write configurations, as doing so may bias the statistics,
as discussed in Ref. 26).

(c) Estimate Gij as the number of transitions from stratum
i to stratum j in the preliminary trajectories, normalized
by the number of transitions out of stratum i.

(d) Initialize z by solving (13).
(e) Create a grid over the collective variables and denote the

volume of each grid element by ΔΘ. Denoting the grid
points byΘ, initialize all elements of the following arrays
to zero:

i. p+A(Θ) [respectively, p+B(Θ)], which accumulates
the weight of trajectories entering state A (respec-
tively, B);

ii. p−A(Θ) [respectively, p−B(Θ)], which accumulates
the weight of trajectories exiting state A (respec-
tively, B); and

iii. vAB(Θ) [respectively, vBA(Θ)], which accumulates
the weighted CV increments of trajectories exiting
state A and entering state B (respectively, exiting
state B and entering state A).

2. Run NEUS essentially, as described in Sec. 3.3 of Ref. 32.
Namely, at each iteration l, we do the following.

(a) Initialize all elements of a matrix g(l) with the same
dimensions as G (i.e., 2K × 2K) to zero.

(b) For each stratum j, draw N walkers from πj. To be
precise, for each walker, select an element of γij(dx)
with probability ziGij and use the saved configuration
to initialize the walker; this procedure represents (21).
Associate with the walker a pointer to the element of
γij(dx).

(c) Evolve each walker by unbiased dynamics until it exits
its initial stratum (j in step 2b).

(d) When a walker exits from stratum j to stratum k, save its
final configuration and associated pointer to γjk(dx) and

add 1 to g(l)jk . Also save the sequence of θ values visited
by the walker trajectory.

(e) Compute Gij as

Gij =
∑

l
l′=Lg(l

′
)

ij

(l − L + 1)N
,

where L = max[1, min(l − L′, L′)] and L′ is chosen to
minimize the bias from the preliminary trajectories (i.e.,
to provide a burn-in period for the simulation).

(f) Update z by solving (13).
(g) Check convergence criteria and go to step 2a if not sat-

isfied. We examine both the change in the z vector and
the number of complete reactive trajectories.

3. When a walker enters A ∪ B, reconstruct the sequence of walk-
ers leading to that event from the last exit of A ∪ B and, in turn,
the sequence of θ values and strata visited. For each stratum
i and each point θ(t) in the sequence, determine the nearest
grid point Θ and
(a) increment p+A(Θ) [respectively, p+B(Θ)] by zi if the

sequence terminated in A (respectively, B),
(b) increment p−A(Θ) [respectively, p−B(Θ)] by zi if the

sequence originated in A (respectively, B), and
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(c) increment vAB(Θ) (respectively, vBA) by zi[θ(t + τ)
− θ(t − τ)] if the sequence originated in A and termi-
nated in B (respectively, originated in B and terminated
in A).

Above, zi accounts for the weight of each trajectory segment,
which is necessary to correct for the enhanced sampling.

4. Construct the TPT quantities for reactive trajectories from A
to B as follows (exchange A and B for reactive trajectories from
B to A).
(a) Compute the forward committor to B as

qθ+(Θ) =
p+B(Θ)

p+A(Θ) + p+B(Θ)
.

(b) Compute the backward committor from A as

qθ−(Θ) =
p−A(Θ)

p+A(Θ) + p+B(Θ)
.

Note that p−A + p−B = p+A + p+B is the total weight asso-
ciated with all trajectories that start and end in
A ∪ B.

(c) Compute the current from A to B as

IθAB(Θ) =
vAB(Θ)

2τΔΘ∑Θ′[p+A(Θ
′) + p+B(Θ

′)]
.

Figure 1 shows how the algorithm samples the ensemble of reactive
trajectories in a piecewise fashion and how they are reconstructed.

IV. NUMERICAL RESULTS
We demonstrate our method by analyzing the C7ax →C7eq tran-

sition of the alanine dipeptide (N-acetyl-alanyl-N′-methylamide)
in vacuum. The peptide is represented by the CHARMM36m
force field.41–43 The simulations are performed at 300 K with the
SD (stochastic dynamics) integrator44 in GROMACS 5.1.4;45 LINCS
was used to constrain the lengths of bonds to hydrogen atoms;
the step size was 1 fs, and the friction coefficient was 10 ps−1. We
used PLUMED 2.346,47,48 to extract collective variables; simulations
were terminated when walkers left their strata as determined by the
PLUMED COMMITTOR function.

The metastable states and strata are defined in terms of the
ϕ and ψ dihedral angles. The metastable states are taken to be
circles of radius 20○ around (ϕ,ψ) = (−83○, 75○) and (70○,−70○),
which correspond to the minima of the potential of mean force
determined below. The system was initialized from preliminary
trajectories that were generated by using Steered Transition Path
Sampling (STePS)40 to drive the system from each metastable state
to the other. STePS builds up trajectories by repeatedly shooting
bursts of short segments and then preferentially selecting those that
make forward progress for continuation. Trajectories were initial-
ized from points in the equilibrium ensemble within each metastable
state, and progress was measured by the distance to the center of
the other metastable state. The segment length was 1 ps, and the
bias threshold was 0.75 (i.e., forward trajectories are selected with

FIG. 1. Schematic of the algorithm. (upper left) Define the metastable states and
the strata (black grid) and initialize the data structures (step 1). In the example
shown, trajectories are initialized from the upper left metastable state boundary,
so the last metastable state visited is known. (upper right) In each stratum, draw
configurations from γij(dx), save pointers to the associated γij(dx) elements, and
then run unbiased dynamics from these configurations until the trajectories exit the
stratum (steps 2b and 2c). A single example stratum is shown. (lower right) As the
simulation progresses, each point in γij(dx) may give rise to segments of reactive
or unreactive trajectories. Save the collective variable values associated with these
trajectory segments (step 2d). (lower left) When a reactive or unreactive trajectory
is realized (i.e., a trajectory segment enters a metastable state), trace back from
pointer to pointer to determine the sequences of strata and collective variable grid
sites (gray grid) visited (step 3). Use these to increment unnormalized statistics
with appropriate weights (steps 3a–3c). Note that the collective variable grid sites
and the strata need not coincide.

a probability of 0.75 or their probability estimated from the burst,
whichever is higher). Initially, 10 trajectories were released in each
burst; subsequently, we varied the number with the progress dis-
tance such as to expect two forward segments in each burst based
on statistics of the previous run. We do not use the statistics to
correct for the STePS bias—i.e., each reactive trajectory is weighted
equally.

The strata form a partition of unity; their centers are at
(−7 + 2n)30○ for integer n ∈ [1, 6], and their widths are 100○, so they
overlap 40○ both ways, and the strata wrap around to enforce peri-
odicity. We release 10 walkers in every stratum in each iteration and
run each iteration until all 10 walkers exit their stratum. The collec-
tive variables ϕ and ψ and their increments are saved every 100 fs.
The lag time used to compute the increments [τ in (8)] was 2 ps.
The simulation is run until we see at least 1000 crossings in each
direction between the metastable states, i.e., walkers that cross from
j ≤ K to j > K and the other way. We used a burn-in period of
L′ = 100 iterations. The full simulation was ∼140 × 106 steps.
Although we stratify in ϕ and ψ, we can project the results onto
other variables as well, and we also consider ω (Fig. 2). Statistics are
accumulated for 50 values of each dihedral angle.
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FIG. 2. Alanine dipeptide with the three dihedral angles labeled: ϕ
[C5–N7–C9(α)–C15], ψ [N7–C9(α)–C15–N17], and ω [C1–C5–N7–C9(α)].
Colors are cyan for carbon, blue for nitrogen, white for hydrogen, and red for
oxygen.

FIG. 3. Potentials of mean force computed from the NEUS simulations: projections
on (top) ϕ and ψ and (bottom) ϕ and ω. The stable states are marked with white
circles on the top plot.

FIG. 4. Committor (top) and forward (middle) and backward (bottom) reactive
currents for the C7ax → C7eq transition of the alanine dipeptide, plotted on the
ϕψ-plane.
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FIG. 5. Example trajectories plotted on the ϕψ-plane. The circles mark the
metastable states.

Potentials of mean force (PMFs) computed by NEUS are shown
in Fig. 3. In Fig. 4, we show the forward committor and the A→ B
and B→ A currents in the ϕψ-plane. We can see the clear exis-
tence of two main pathways, one of which cuts diagonally across
the middle and one of which cuts across the upper left and lower
right corners. Three representative trajectories consistent with the
pathways are shown in Fig. 5. In Fig. 6, we show the committor
and currents in the ϕω-plane. We observe a diagonal structure in
these plots that is consistent with coupling between distortion of the
peptide plane and ϕ noted previously49.

To assess the accuracy of our committor estimates, we com-
pute the committor as a function of all three dihedral angles (not
shown), select configurations predicted to have 0.49 < qθ+ < 0.51, and
evaluate their committors by shooting 20 independent simulations
from each configuration. The resulting histogram of values (Fig. 7)
is peaked at q

+
≈ 0.5, as desired. To characterize the convergence of

the committor estimates, we compute the backward committor and
plot qθ+ + qθ− − 1, which should be close to zero for this system (Figs.
S1 and S2); the deviation provides an indication of the numerical
error. We see that after 250 crossings between the metastable states,
the error overall is small, with the largest deviations in regions with
high free energy close to where qθ+ = 0.5. These deviations decrease
with additional crossings.

To assess the reactive current estimates, we compute the rate
as a function of the number of crossings two ways. First, we directly
sum the flux into B,26,27

RNEUS =
1

∑
2K
j=1zj
∑
j≤K

zj
nB

j

Tj
, (22)

where nB
j is the number of reactive trajectories that enter B from stra-

tum j, Tj is the total time simulated in that stratum, and the sum over

FIG. 6. Committor (top) and forward (middle) and backward (bottom) reactive cur-
rents for the C7ax → C7eq transition of the alanine dipeptide, plotted on the
ϕω-plane. For the reactive currents, only grid points with data from at least five
trajectories are shown.
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FIG. 7. Histogram of committors computed by shooting for 137 structures predicted
to have 0.49 < qθ

+
< 0.51 for the reaction from A to B. 20 independent simulations

were used for each configuration.

FIG. 8. Rates computed directly from the flux into B (top) and by integrating the
reactive currents (bottom). An equal number of crossings between metastable
states each way is used for each point on the horizontal axis.

j ≤ K selects for contributions from trajectories that were last in A.
Second, we sum the reactive currents that cross a dividing surface S,

RTPT = ∑
S

IθAB(Θ) ⋅ n̂SΔS, (23)

where n̂S is the unit vector normal to S and ΔS is a differential
element with the same dimension as S. Since the collective vari-
able space is periodic, there are two pathways, and we average over
a set of surfaces for each. Specifically, we use vertical lines in the
ϕψ plots: (i) ϕ = (−57.6 + 7.2n)○ for integer n in [0, 15], which cut
through the middle of Fig. 4, and (ii) ϕ = (−172.8 + 7.2n)○ for inte-
ger n in [0, 9] and [37, 49], which line the left- and right-hand sides
of Fig. 4.

The two estimates are about a factor of two different from each
other (Fig. 8); we also obtain a direct estimate of 1.4 × 10−6 ps−1

from an unbiased trajectory of length 2.5 μs. We consider the three
estimates to be at good agreement, given that the rate can be a very
challenging statistic to converge to even its order of magnitude. We
expect (22) to be most precise (as evidenced by the scale of fluctu-
ations in Fig. 8) and recommend its use; we consider (23) only as
a means of validating the reactive currents. That said, we can use
the currents to obtain the fluxes associated with each of the path-
ways. We find them to be RTPT = 4.6 × 10−7 ps−1 for the pathway
that crosses ϕ = 0○ and RTPT = 8.1 × 10−7 ps−1 for the pathway that
crosses ϕ = 180○.

To further assess the reactive currents, we also compute
IθAB(Θ) + IθBA(Θ) (Fig. S3). We expect this sum to be close to but
not exactly equal to zero, given that the integrator is underdamped.
We see that this is the case, with the only significant deviations
close to the metastable states. Put together, these results validate the
method.

V. CONCLUSIONS
In this paper, we investigated the computation of committors

and reactive currents with trajectory stratification. The fundamental
challenge is that these quantities require knowledge of the metastable
states in which trajectories begin and end, but this information
cannot be obtained directly from most walkers within the simula-
tion. To address this issue, we store the collective variable values
visited by each walker and the associated collective variable incre-
ments sampled, as well as a pointer to the previous walker. This
enables us to reconstruct the sequence of walkers that gave rise
to a trajectory once it reaches a metastable state, despite the fact
that the number of trajectories to which a single walker can con-
tribute grows exponentially with the number of walkers that follow
it. The current work builds on previous trajectory stratification stud-
ies that showed that computation of the rate requires separating
the ensemble of trajectories based on the metastable state in which
they originate.26,27 As in previous trajectory stratification studies,
the results are exact in the limit of infinite sampling in contrast to
MSMs and DGA.

Although we demonstrated the approach with NEUS, it is gen-
eral and can be applied to other algorithms that sample trajectory
segments.18–24,30 By the same token, we focused on a simple numer-
ical example that permits validation of the results. Extending the
approach to more complex systems should be straightforward so
long as collective variables that enable an efficient stratification and
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the accumulation of statistics can be identified. This challenge is
system specific although methods for facilitating the selection of col-
lective variables based on simulation data exist (e.g., Refs. 1 and 10).
In the case of NEUS, the most significant challenge may be that the
lists representing γij(dx) can become large (up to 5500 elements
in the present example). Although this issue has not been limiting
for complex systems treated to date,50 it is an important practical
consideration that we leave for future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for justification of (8), commit-
tor convergence plots, and sums of forward and backward reactive
currents.
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