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A B S T R A C T   

To cater to the increasing demands, particularly during diseases such as Covid-19, the design and planning of 
home health care systems is of significant importance. The current study proposes a multi-objective mixed- 
integer linear model for a home health care network in two stages; the first is the opening of efficient health 
centres, and the second is the routing and scheduling considering corporate social responsibility and efficiency. 
There are multiple objectives that we consider, including minimization of total costs and inefficiency consid-
erations, and maximization of social aspects. A novel aspect of this study is the consideration of social re-
sponsibility, which includes employment opportunities and regional economic development, and efficiency in 
terms of time, energy, and mismanagement of budgets. To measure efficiency, an augmented version of the data 
envelopment analysis approach is incorporated into the proposed optimization model. Additionally, the TH 
approach is developed as an interactive fuzzy method to deal with the proposed multi-objective model. Within 
the HHC problem, costs, social factors, and service time are inherently uncertain, and hence, to solve this 
problem, a robust-fuzzy approach is proposed. The ensuing model is applied to a real case study of Kermanshah 
in Iran. Moreover, several problem instances motivated by real cases are generated with different characteristics 
to measure the performance of the proposed model and approach. The results show that decision-makers’ 
preferences play a key role in human resource planning and regional development. Furthermore, the results 
confirm the efficiency of the proposed approach in different instances within reasonable time frames.   

1. Introduction 

Nowadays, Home Health Care (HHC) networks are an essential part 
of the health sector. These networks serve patients in their homes so that 
they may stay close to their family and friends while being treated in a 
stress-free environment compared to hospitals (Fikar & Hirsch, 2017). 
HHC provides a wide range of medical services in the homes of patients 
and the elderly. These services include treatments (e.g., injections) for 
patients with serious illnesses, care for acute injuries, visiting patients 
with unstable health statuses, psychiatric care, physical therapy, etc. In 
this network, typically, a nurse travels from a health centre to patients’ 
homes to visit them within the pre-specified time windows. At the end of 
each visiting tour, the treatments or samples taken from patients should 
be reported and submitted to a laboratory to investigate the health re-
sults (Fathollahi-Fard, Ahmadi, & Karimi, 2020). In several studies, each 
tour starts from and finishes at a nurse’s home (Nikzad, Bashiri, & 
Abbasi, 2021). 

In order to provide HHC services effectively, a number of significant 
decisions need to be made, including opening health centres, assigning 
nurses to patients, and routing and scheduling of nurses (Nikzad et al., 
2021). The ensuing problem of scheduling is very complex and requires 
a great deal of effort and time to obtain effective plans, which can lead to 
significant benefits to patients and hospitals. On the one hand, it allows 
decreasing costs and increasing patient satisfaction (Grenouilleau, 
Legrain, Lahrichi, & Rousseau, 2019), and on the other hand, hospitals 
benefit from the beds being freed. Moreover, due to aging populations, 
the demand for HHC services has increased significantly; for example, 
the number of nurses required in the HHC network in the United States 
has doubled over the past ten years (Span, 2016). In addition, a 
pandemic such as the Covid-19 outbreak has significantly raised the 
demand for HHC services as people are required to stay at their place of 
residence while still requiring health services. For this reason, Home 
Health Care News (HHCN-https://homehealthcarenews.com) states that 
31 percent of HHC companies have been negatively impacted by the 
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Covid-19 outbreak in 2020. Thus, an efficient HHC network can be of 
critical importance in dealing with this situation. 

With raising awareness of sustainability among communities, in-
dustry, and government over the last two decades, policy-makers 
worldwide have tried to find a way to include sustainability issues in 
industrial and urban development, and the health care industry has not 
been an exception (Fiksel, 2006). Sustainability is mostly defined as an 
equilibrium between economic and social issues involved in human 
development. The social aspect, which has not been considered in the 
literature a lot, relates to forcing non-governmental organizations to 
take employment opportunities and economic development for local 
communities for the social impacts of their activities (Sharifi, Hosseini- 
Motlagh, Samani, & Kalhor, 2020; Zhalechian, Tavakkoli-Moghaddam, 
Zahiri, & Mohammadi, 2016). In addition, the World Health Organiza-
tion emphasizes the important relationship between economic devel-
opment and health (Zahiri, Zhuang, & Mohammadi, 2017), where 
improved health directly contributes to improving the economy. For 
example, a worker’s good state of health increases productivity, reduces 
production losses due to worker sickness, and decreases absenteeism 
rates. Additionally, more employment opportunities for nurses in cen-
tres that have been opened improve the speed of regional employment, 
thereby affecting regional economic and employment development, 
particularly in less-developed districts. Hence, the motivation for our 
study is to employ social impact explicitly as an objective, namely, 
Corporate Social Responsibility (CSR). 

Inefficiency, if not carefully considered, can lead to a waste of re-
sources, time, energy and mismanagement of budgets in the network 
(Haeri, Hosseini-Motlagh, Ghatreh Samani, & Rezaei, 2020). The 
opening of the centres is an initial component of an HHC network, and 
selecting them appropriately, significantly based on several main fac-
tors, improves the efficiency of the network. To measure the inefficiency 
of the network, the Data Envelopment Analysis (DEA) method has pre-
viously been shown to be effective (Cook, Roll, & Kazakov, 1990). This 
method has two main advantages compared to other methods; 1) the 
factors remain in their natural physical units, 2) multiple factors are 
used simultaneously to assess which candidates work most efficiently. 
Additionally, most studies focus on the total cost of the HHC network, 
while the efficiency of centres and their social impacts have not been 
investigated simultaneously. These reasons motivate us to develop a 
Multi-Objective Linear Programming (MOLP) model for the design and 
planning of an HHC network. To solve the MOLP model, we utilize an 
interactive fuzzy method proposed by Torabi and Hassini (2008) called 
the TH method. A key aspect of this method is to consider the satisfac-
tion levels of decision-makers, which are the normalization values of 
objective functions or membership values. This method allows decision- 
makers to effectively trade off their preferences concerning multiple 
objectives (Torabi & Hassini, 2008). In other words, it is a promising and 
interactive fuzzy approach that can produce high-quality solutions 
based on the preferences of decision-makers, and at the same time af-
fords flexibility. 

Due to the changes in the status of patients, their service times are 
uncertain and can vary greatly, thereby affecting the design of the 
network. Additionally, the knowledge of the nurses and the medical 
history of patients provide an estimation of the patients’ service times as 
a fuzzy and scenario-based parameter. In the literature, fuzzy pro-
gramming and robust approaches have been employed to deal with such 
problems with uncertainty (Samani, Hosseini-Motlagh, & Homaei, 
2020). Hence, we develop a p-robust approach to tackle this problem, 
which in particular minimizes the deviation between the objectives and 
optimal values under each scenario. Furthermore, data such as cost and 
social parameters are uncertain, with no prior or historical knowledge. 
These parameters are considered epistemic uncertainties, effectively 
estimated using fuzzy logic and trapezoidal fuzzy numbers. To deal with 
the uncertainty, Possibilistic Chance Constrained Programming (PCCP) 
is one of the most widely used fuzzy programming methods. This 
method can be applied to possibilistic data and provide a minimum 

satisfaction level for decision-makers. In other words, the minimum 
degree of confidence in the possibilistic chance constraint should be 
provided to satisfy the decision-makers. Therefore, the proposed model 
incorporates mixed uncertainty in fuzzy data and scenarios. For these 
reasons, this study presents a robust-fuzzy approach to cope with the 
complexity induced by the uncertainty surrounding the parameters. 

Motivated by a case study in Kermanshah, Iran, where an HHC 
network helps the health system to visit the patients at their homes, we 
aim to generalize HHC for the real case study and answer the following 
pertinent and important questions:  

• How can the HHC be designed and planned to consider several 
important aspects such as total network costs, efficiency, and social 
responsibility?  

• How can a number of the important factors with different units be 
used simultaneously to affect the selection process of efficient health 
centres?  

• What procedure should be followed to promote CSR issues within a 
sustainable HHC network?  

• How can the patients get multiple services within a specific time 
window?  

• How can the uncertain scenarios and fuzzy parameters be dealt with?  
• How can an approach be devised to efficiently manage the different 

types of uncertain data? 

Underpinned by these questions, this paper presents a new mathe-
matical model for integrated locating, assignment, routing, and sched-
uling decisions for the HHC problem. Locating is the basic phase of 
designing an HHC network and significantly improves the delivery of 
services and development of regions. The proposed model arises from 
the classic Location Routing Problem (Prodhon and Prins, 2014). In the 
proposed model, an important strategic decision affects opening the 
appropriate health centres with a high population, low traffic, and low 
pollution. To do so, the DEA tool is used to select appropriate centres by 
input and output factors with various units and without any weight. In 
the proposed model, patients can get multi-services, request required 
drugs, and take tests within their pre-defined time window. The 
employment opportunity for nurses and regional economic development 
are considered to increase social responsibility. In addition to social 
responsibility, total network costs and CSR are considered as objective 
functions and we use a multi-objective decision-making approach. In 
particular, the TH approach as an interactive strategy is developed to 
solve the proposed multi-objective model. Therefore, the aim of this 
model is to determine the set of efficient and sustainable health centres, 
while taking into account fixed and variable costs. In this HHC network, 
the nurses start their visiting tour from an appropriate health centre. 
Based on our review of real case situations, the health centre often tries 
to allocate its nurses to patients who live as close as possible to the 
health centre. At the end of each visiting tour, nurses finish their work at 
a laboratory; therefore, this model is an open vehicle routing problem. 
The time windows of patients are pre-defined based on patients’ pref-
erences as to when they want to be visited. Additionally, the capacity of 
the nurse’s vehicle and the number of required services for each patient 
are known to be important points in the tactical decisions assignment, 
routing, and scheduling. In the real world, the service time for visiting 
each patient is undetermined and can be characterized in different 
scenarios based on the patient’s medical history and nurses’ knowledge. 
Moreover, the costs and social parameters in the HHC network are un-
certain, and there is no information and historical data for them. Thus, 
the fuzzy logic theory is used, and these parameters are considered as 
trapezoidal fuzzy numbers. For solving the resulting model, this study 
proposes a mixed robust-fuzzy approach to cope with uncertain service 
times, costs, and social parameters. In the model concerned, identifying 
the location of health centres is the first decision, followed by assign-
ment, scheduling, and routing. Overall, this study has three phases. In 
the first phase, we apply the p-robust approach to deal with the 
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scenarios of service time. We utilize PCCP to cope with fuzzy parameters 
(costs, and social data) in the second phase. The first and second phases 
together represent a robust-fuzzy approach to deal with mixed uncertain 
parameters (fuzzy and scenario-based parameters). In the third phase, 
we develop the TH approach to solve the multi-objective HHC model. To 
achieve these aims, we present a novel sustainable and efficient HHC 
network design, namely Design and Planning of Home Health Care 
(DPHHC) under uncertainty. Finally, to validate our approach, we 
consider a real case study from Kermanshah in Iran, following which we 
design a data set with the help of expert knowledge to carry out a 
comprehensive computational study. 

The paper is organized as follows: Section 2 reviews similar recent 
research on the HHC network. Section 3 provides the problem statement 
and mathematical formulation. Section 4 introduces a hybrid method-
ology to tackle the uncertainty and an interactive fuzzy method to deal 
with the multi-objective model. A real case study, results, and sensitivity 
analyses are defined in Section 5. Finally, findings, discussions, and 
some important directions for future research are provided in the last 
section. 

2. Literature review 

The DPHHC problem in an uncertain environment is a relatively new 
but rapidly evolving field of research. There is a vast literature on health 
care systems, though our focus is on recent research closely related to 
the problem being investigated. The readers are referred to the latest 
review publication by Fikar and Hirsch (2017), which presents a 
comprehensive overview of papers in the areas of the Home Health Care 
Routing and Scheduling Problem (HHCRSP). They classify problems into 
two classes based on whether they consist of single or multi-time 
periods. 

In recent studies, Rodriguez-Verjan, Augusto, and Xie (2018) pro-
posed two Mixed Integer Linear Programming (MILP) models to design 
an HHC network with two separate aims to locate health facilities and 
manage the activities of the health facilities. They implement a real case 
study of the Loire department in France. Grenouilleau et al. (2019) 
propose an MILP model for HHCRSP to minimize the total costs of 
nurses’ overtime, routes, unscheduled visits, and idle time. They apply 
their model and a Large Neighborhood Search (LNS) method for a 
dataset from Alayacare in Montreal. Liu, Yuan, and Jiang (2020) model 
a periodic HHC server assignment problem to minimize the maximum 
workload between servers in various periods. They propose an efficient 
region-partition-based algorithm, which effectively solves large-scale 
problems. In another study, Cinar, Salman, and Bozkaya (2021) 
formulate a multi-period model for the HHCRSP to visit patients based 
on their priorities. They develop an adaptive LNS approach to tackle the 
problem. 

We review several relevant studies to find the gaps in existing 
research in Table 1. The papers related to this study can be broadly 
classified into three main categories: 1. multi-objective HHC problems, 
2. HHC problems under uncertainty, and 3. multi-depot and multi-care 
HHC problems. 

2.1. Multi-objective HHC problems 

Rest and Hirsch (2016) introduce a Mixed Integer Programming 
(MIP) formulation for HHC daily scheduling services, where nurses use 
public transport. They utilize a weighted objective function to minimize 
the shift lengths, overtime, the number of second shifts, and over- 
qualification. They develop three Tabu Search (TS) strategies to apply 
to the Austrian Red Cross data. Braekers, Hartl, Parragh, and Tricoire 
(2016) propose a meta-heuristic based on a multi-directional local 
search to find a set of non-dominated schedules for a multi-objective 
HHCRSP. They apply the epsilon constraint method to solve the model 
with two objective functions: minimizing nurses’ routes and overtime 
cost. They use a dataset from the public employment service of Austria. 

In another study, Fathollahi-Fard, Hajiaghaei-Keshteli, and Tavakkoli- 
Moghaddam (2018) investigate a bi-objective green HHC routing 
problem and propose hybridizations of Simulated Annealing (SA) and 
Salp Swarm algorithms. The objective functions consist of environ-
mental pollution and total costs. The epsilon constraint method is used 
to deal with the multi-objective model. Zhang, Yang, Chen, Bai, and 
Chen (2018) study an HHCRSP for a real case in China and formulate a 
novel MIP model with uncertain service times, match qualities, and time 
windows. They aim to minimize travel costs, waiting time, and service 
time, and use the weighted method to solve the multi-objective model. 
They also develop an Ant Colony Optimization method to solve large 
instances of the problem. Carello, Lanzarone, and Mattia (2018) present 
a set of Integer Linear Programming (ILP) models for a home care sys-
tem. They model the nurse-to-patient assignment problem under con-
tinuity of care and consider minimizing cost, maximizing utilization, 
and minimizing the total number of reassignments as the objective. They 
use the threshold method to find the optimal solutions for the multi- 
objective model. Habibnejad-Ledari, Rabbani, and Ghorbani-Kutenaie 
(2019) propose a multi-objective Non-Linear Programming (NLP) 
model to address staff assignment problems in a home care system. They 
aim to minimize the costs and employees for each service and maximize 
the worker satisfaction level. They apply a new version of NSGA-II with 
a heuristic initialization for solving this model. 

In another study in this category, Regis-Hernández, Carello, and 
Lanzarone (2020) formulate a multi-objective Linear Programming (LP) 
model for HHC services and a matheuristic approach to solve a real case. 
The model can determine the numbers of physicians, nurses, technicians 
and devices to acquire that are needed to meet the demand. Gong, Geng, 
Zhu, Matta, and Lanzarone (2020) propose an ILP model for the home 
care scheduling problem and develop a matheuristic approach to solving 
this problem. They minimize costs, the penalty of the continuity of care 
violation, and the preference mismatch, and then use the weighted 
method to solve it. Entezari and Mahootchi (2021) propose an MILP 
model for staff routing and scheduling in HHC and develop a Genetic 
Algorithm (GA) to find near-optimal solutions. They aim to minimize 
their objective functions: travel times, tardiness in providing services, 
staff overtime, violation of care continuity, and violation of the staff’s 
time windows by the weighted method. Lin, Ma, and Ying (2021) design 
an MILP model for HHC and propose a branch and price method for 
matching demand to supply. They minimize total costs, maximize 
customer satisfaction, and use a lexicographic method to solve the 
model. Goodarzian, Abraham, and Fathollahi-Fard (2021) propose a bi- 
objective model for HHC logistics to minimize total costs and time by 
considering route balancing. To solve the problem, they use the epsilon 
constraint method and a metaheuristic approach for large instances. 
Malagodi, Lanzarone, and Matta (2021) formulate an MILP model for a 
home care vehicle routing problem. They aim to minimize the mis-
matches of strict and soft preferences over the works, overtime, and total 
travel time for all caregivers. The weighted method is used to cope with 
the multi-objective model. 

2.2. HHC problems under uncertainty 

Rodriguez, Garaix, Xie, and Augusto (2015) present a two-stage 
MILP model for a health care company in France. The authors aim to 
find the minimum number of nurses that can cover all possible routes. 
They consider uncertainty in demand and use a stochastic approach to 
deal with this uncertainty. In another study, Shi, Boudouh, and Grunder 
(2017) design a vehicle scheduling problem for an HHC system and 
consider patients’ demand for drugs as fuzzy data, which they tackle 
with fuzzy chance constraint programming. Cappanera, Scutellà, Nervi, 
and Galli (2018) propose a cardinality-constrained robust approach 
considering routing, assignment, and scheduling decisions under un-
certain demand. They propose a decomposition approach as a feasible 
option to increase computational efficiency and apply it to real-world 
data. Shi, Boudouh, Grunder, and Wang (2018) propose a stochastic 
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Table 1 
A classification of recent publications.  

Reference Modelling 
Approach 

Constraint Objective 
Function 

Uncertainty Approach Solution Method Multi-Objective 
Method 

Performance Measure Case 
Study 

Multi 
Depots 

Multi 
Cares 

Time 
Window 

Stochastic Fuzzy Robust Robust- 
fuzzy 

Exact Heuristic 

Nickel, Schröder, and Steeg (2012) NLP  ⨯ ⨯ Multi      ⨯ Weighted method Unscheduled tasks, Loyalty, 
Time, Distance 

⨯ 

Allaoua, Borne, Létocart, and Calvo (2013) ILP   ⨯ Single      ⨯  Number of nurses  
Milburn and Spicer (2013) MIP    Multi      ⨯ Epsilon constraint 

method 
Number of nurses, Workload, 
Cost 

⨯ 

Mankowska, Meisel, and Bierwirth (2014) MILP  ⨯ ⨯ Multi      ⨯ Weighted method Distance, Time  
Lanzarone and Matta (2014) MILP    Single   ⨯  ⨯   Time ⨯ 
Mutingi and Mbohwa (2014) LP   ⨯ Multi      ⨯ Fuzzy simulated 

evolution 
Workload, Time, Clustering 
efficiency  

Carello and Lanzarone (2014) LP    Single   ⨯  ⨯   Cost ⨯ 
Rodriguez et al. (2015) MILP    Single ⨯    ⨯   Cost of staff ⨯ 
Fikar and Hirsch (2015) LP   ⨯ Single      ⨯  Time ⨯ 
Rest and Hirsch (2016) MIP   ⨯ Multi      ⨯ Weighted method Time, Shift lengths, #Shifts, 

qualification 
⨯ 

Braekers et al. (2016) MIP   ⨯ Multi      ⨯ Multi-directional 
local search 

Cost, Client inconvenience ⨯ 

Yalçındağ, Matta, Şahin, and Shanthikumar 
(2016) 

MIP    Multi      ⨯ Weighted method Time ⨯ 

Errarhout, Kharraja, and Corbier (2016) LP    Single     ⨯   Time, Workload  
Decerle, Grunder, El Hassani, and Barakat 

(2016) 
MILP   ⨯ Single      ⨯  Cost  

Shi et al. (2017) MIP   ⨯ Single  ⨯    ⨯  Distance  
Cappanera et al. (2018) MILP    Single   ⨯  ⨯   Workload  
Shi et al. (2018) LP   ⨯ Single ⨯     ⨯  Cost  
Fathollahi Fard et al. (2018) MILP   ⨯ Multi      ⨯ Simulated 

Annealing 
Environmental pollution, Cost  

Veenstra, Roodbergen, Coelho, and Zhu (2018) MILP    Single      ⨯  Cost ⨯ 
Rodriguez et al. (2018) MILP    Single     ⨯   Cost ⨯ 
Decerle, Grunder, El Hassani, and Barakat 

(2018) 
MIP    Single   ⨯  ⨯   Cost ⨯ 

Fathollahi-Fard et al. (2019) MILP ⨯  ⨯ Multi      ⨯  Cost, Environmental pollution  
Erdem and Koç (2019) MILP ⨯  ⨯ Single      ⨯  Time  
Shiri, Ahmadizar, Mahmoudzadeh, and Bashiri 

(2019) 
MILP   ⨯ Single   ⨯  ⨯   Cost  

Entezari and Mahootchi (2021) MILP  ⨯ ⨯ Multi      ⨯ Weighted method Cost  
Fathollahi Fard et al. (2020a) MILP ⨯  ⨯ Multi  ⨯    ⨯ Weighted method Cost, Environmental pollution  
Fathollahi Fard et al. (2020b) MILP ⨯  ⨯ Multi   ⨯   ⨯ Weighted method Gas emissions, Costs  
Shiri, Ahmadizar, and Mahmoudzadeh (2021) MILP   ⨯ Multi   ⨯  ⨯  Nimbus method Cost, Qualification, 

Qualitative factors 
⨯ 

Shahnejat-Bushehri, Tavakkoli-Moghaddam, 
Boronoos, and Ghasemkhani (2021) 

NLP   ⨯ Single   ⨯   ⨯  Cost  

Liu, Dridi, Fei, and El Hassani (2021) MILP  ⨯ ⨯ Single      ⨯  Cost  
Fathollahi-Fard et al. (2021) NLP ⨯ ⨯ ⨯ Multi   ⨯   ⨯ Red Deer Algorithm Cost, Unemployment time, 

Continuity of care  
Yalçındağ and Lanzarone (2021) MILP    Multi     ⨯  Weighted method Utilization rate, Workload  
Our research MILP ⨯ ⨯ ⨯ Multi    ⨯ ⨯  TH Method Cost, Efficiency, Social impact ⨯  
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programming model for vehicle scheduling within an HHC routing 
problem. They consider travel and service times as stochastic parameters 
and devise an efficient SA method to solve the problem. In another 
study, Khodaparasti, Bruni, Beraldi, Maleki, and Jahedi (2018) present a 
multi-period location-allocation model for nursing home network 
planning. They consider uncertain demand and use a robust approach to 
cope with this uncertainty. They aim to minimize the number of un-
visited times for patients and consider a real case study of Shiraz city. 
Nikzad et al. (2021) consider a two-stage model for planning of re-
sources in an HHC problem and propose a variant of the progressive 
Frank, Wolfe and Hedging algorithms. This study aims to minimize the 
travel costs considering uncertain travel and service times. Addis et al. 
(2015) present a cardinality-constrained model to handle health care 
management problems under uncertainty. This model is a robust opti-
mization approach, and surgery duration is uncertain. Lanzarone, Matta, 
and Sahin (2012) develop several mathematical programming models 
for home care services and assume that the demands of patients are 
either uncertain or deterministic. The authors use Stochastic Program-
ming to deal with uncertainty. Lanzarone and Matta (2012) balance the 
workload between the operators to minimize the expected cost value in 
the home care network. They consider the patients’ demands as sto-
chastic and deterministic. Carello and Lanzarone (2021) introduce the 
nurse-to-patient assignment problem in the HHC system under uncertain 
service times. They formulate the uncertainty set and use the 
implementor-adversary method to solve the robust model. Shi, Bou-
douh, and Grunder (2019) develop a model for an HHCRSP under un-
certain travel and service times. The authors use a robust optimization 
based on budget uncertainty. They present multiple solution approaches 
to solve the problem, including a commercial mixed-integer program-
ming solver, namely Gurobi, TS, Variable Neighborhood Search, and an 
SA algorithm. 

In the papers related to both multi-objective problems and uncer-
tainty, Fathollahi-Fard, Ahmadi, and Karimi (2020) propose an MILP 
model for a multi-period, multi-depot, and multi-objective HHC 
network. They consider travel and service times as fuzzy parameters and 
use Jimenez’s method (Jiménez, 1996) to deal with the uncertainty. 
They consider total costs and patient satisfaction objectives and employ 
the epsilon constraint method to solve the bi-objective model for small 
instances. Moreover, they show that the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) can be adapted to solve the problem efficiently. 
Fathollahi-Fard, Ahmadi, Goodarzian, & Cheikhrouhou (2020) develop 
a bi-objective robust optimization model for HHCRSP. The authors 
consider travel and service times as uncertain parameters and use a 
robust approach underpinned by the Keshtel algorithm to cope with the 
uncertainty. This study minimizes two objectives, namely greenhouse 
gas emissions and total costs. They consider weights for the objective 
functions based on their priorities and use the weighted method to solve 
the bi-objective model. Fathollahi-Fard, Ahmadi, and Karimi (2021) 
propose a mixed-integer non-linear program for a multi-objective HHC 
problem. They consider minimizing the total network cost, minimizing 
the unemployment time for the worker, and minimizing the continuity 
of care by reducing the number of patients visited by the worker as 
objective functions. They utilize the Red Deer Algorithm for solving the 
multi-objective functions. Additionally, they use the Mulvey method to 
deal with uncertain travel and service time parameters based on sce-
narios. Yang, Ni, and Yang (2021) present a multi-objective HHCRSP. 
They minimize costs and improve workload balance and service con-
sistency. The authors consider travel and service times as uncertain. 
They develop a multi-objective artificial bee colony metaheuristic to 
solve the model and use the Pareto dominance strategy to compare the 
solutions of multi-objective optimization. Zheng, Wang, Li, and Wu 
(2021) propose two-stage stochastic programming considering maxi-
mizing the expected income for HHCRSP under demand uncertainty. 
The first stage is capacity planning and service authorization, and the 
second stage is resource allocation. They consider the minimization of 
the total operating cost for all customers, minimization of the value of 

caregiver inconsistency, and minimization of workload imbalance as 
objective functions. 

2.3. Multi-depot and multi-care HHC problems 

Bahadori-Chinibelagh, Fathollahi-Fard, and Hajiaghaei-Keshteli 
(2019) formulate a novel multi-depot HHC routing model to minimize 
total costs. They assume an equal number of laboratories and pharma-
cies in the model and present two simple constructive algorithms as 
solution methods. Erdem and Koç (2019) propose an analysis of electric 
vehicles in the HHC problem by considering multiple depots. They as-
sume a team of nurses performs a number of patients’ demands via 
electric vehicles. In addition, Fathollahi-Fard, Govindan, Hajiaghaei- 
Keshteli, and Ahmadi (2019), Fathollahi-Fard, Ahmadi, & Karimi 
(2020), and Fathollahi-Fard, Ahmadi, Goodarzian et al. (2020) investi-
gate the multi-depot ability for the HHCRSP. They consider pharmacies 
and laboratories as depots. Among the multi-care HHC problems, 
Manavizadeh, Farrokhi-Asl, and Beiraghdar (2020) develop a model for 
HHCRSP and solve it with SA. Multiple (interdependent) services are 
considered for the benefit of patients. Nasir and Kuo (2020) develop an 
MILP model for HHC logistics planning to serve elderly people. They aim 
to minimize the costs of route assignment for vehicles and nurses and 
travel costs. They propose a hybrid GA to tackle the problem. Entezari 
and Mahootchi (2021) study staff routing and scheduling in HHC in-
dustries, where a patient can require more than one service (indepen-
dent or interdependent). 

In the following, we summarize several studies in routing and 
scheduling to help identify gaps. Ghannadpour and Zarrabi (2019) 
develop an MIP model and evolutionary approaches for the multi- 
objective heterogeneous VRP and vehicle scheduling problem. They 
have two scenarios formulated as objectives: minimizing the total 
number of vehicles for serving customers and the vehicle fuel, maxi-
mizing the customers’ satisfaction rate, and minimizing the number of 
rental vehicles, travel distance, and fuel of personal vehicles while 
maximizing customer satisfaction. Rahbari, Nasiri, Werner, Musavi, and 
Jolai (2019) design a model for a VRP and cross-dock scheduling 
problem under uncertain travel times. To deal with uncertainty, they use 
a budget of uncertainty approach to bound the variations between the 
uncertain and nominal values of parameters. Kisialiou, Gribkovskaia, 
and Laporte (2019) provide reliable supply vessel planning and sched-
uling by minimizing costs. Furthermore, the authors consider the effect 
of uncertain demand on schedule performance and impose requirements 
on the reliability of voyages through the construction of vessel schedules 
using an ALNS metaheuristic. Barma, Dutta, and Mukherjee (2019) 
study a multi-depot VRP with homogeneous vehicles to minimize the 
total routing distance in the network. They tackle this problem using the 
discrete Ant Lion optimization algorithm and investigate a 2-opt local 
search algorithm. Weiszer, Burke, and Chen (2020) develop a multi- 
objective shortest path algorithm for routing and scheduling an air-
port’s ground movements. This problem aims to obtain the optimal (or 
near-optimal) routes for a fixed aircraft sequence. The study considers 
fuel consumption and taxi time as objective functions. Wang, Liao, Li, 
Yan, and Chen (2021) investigate a multi-objective model for a dynamic 
VRP with time windows. They develop a novel dynamic evolutionary 
algorithm using ensemble learning to solve the multi-objective model. 
The authors compare their approach with four algorithms in the litera-
ture and consider minimizing route distances and customer waiting 
times as objective functions. 

Table 1 summarizes the studies in HHC, including the proposed 
approach, type of constraint, type of uncertainty, and whether or not the 
research tackles a real case study. In addition to the usual considerations 
in the problem, aspects such as mixed uncertainty, employment op-
portunities, and economic development have not been considered by 
previous studies. We aim to address these gaps by providing a compre-
hensive formulation of the problem. Moreover, the proposed robust- 
fuzzy method effectively deals with fuzzy and scenario-based data, 
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which is the first attempt at such a problem. Moreover, the simultaneous 
consideration of multi-care and multi-depot factors is the first attempt in 
the literature. 

3. Problem description 

We formally define the problem for the design and planning of HHC, 
called Design and Planning of Home Health Care (DPHHC), and then 
present a multi-objective MILP model for the problem. In this problem, 
nurses start their routes at centers, and visit patients in their homes. 
After the visits, the nurses finish their routes at a laboratory where they 
report the status of patients to the laboratory. The patients must be 
visited during a pre-specified time window based on their preferences. 
More than one center (multi-depot) is typically opened in this problem, 
and a multi-care option is also considered, where patients can request 
more than one service. The location of the laboratories and the potential 
locations of centers are predefined. Based on this description, we pro-
pose a model with the following details: 

The proposed model is a two-stage model that includes strategic and 
tactical decisions. In the first stage, the strategic decision is determined 
that involves opening p locations among candidates n ∈ N as centers. 
The fixed cost for opening center n is equal to fn. In the second stage, the 
tactical decisions are defined, such as transportation decisions, assigning 
nurses to patients, and routing and scheduling of nurses. At first, the 
nurse v ∈ V moves from center n ∈ N to serve patient m ∈ M within the 
specified time window [am, bm]. After visiting all patients assigned to 
nurse v ∈ V based on their scheduling, the nurse travels to laboratory h ∈

H to transfer medical tests or treatments taken from patients. The travel 
time and travel cost from node i ∈ I to node j ∈ I are represented by trij 

and coij, respectively. The number of services required by patient m ∈ M 
is shown by βm, and each patient can receive multiple services (inter-
dependent services).1 Besides, patients demand a number of drugs in 
each service (dm), and the vehicles transporting nurses have limited 
capacity (capv). 

In the problem, the factors of the input set r ∈ R and output set g ∈ G 
are defined by experts as important criteria for selecting efficient cen-
ters. These factors are used to measure the inefficiency of candidates 
based on the DEA method. This method can handle such factors (traffic, 
pollution, population density, etc.) on different scales. For candidate n, 
the quantities of input factor r ∈ R and output factor g ∈ G are given by 
knr and ong, respectively. The problem aims to optimize three objective 
functions simultaneously, which is typical in real settings. The first 
objective function concerns the total cost, including costs of opening 
centers and transportation. The second objective minimizes the in-
efficiency of centers, and the third objective considers social impacts to 
maximize the employment opportunities of nurses as human capital and 
economic development. 

A schematic example problem is presented in Fig. 1. It shows 10 
center candidates, 11 patients, three nurses, and one laboratory. The 
first decision is to determine the selected centers; in this example, can-
didates 3 and 8 are chosen to be opened (strategic decision). The second 
set of decisions shows the path of each nurse to carry out their activities. 
For example, in the dashed route, a nurse starts her/his activity at Center 
8 and visits Patients 4, 1, 5, 7, and 2. Patient 2 needs to receive two 
services, and hence, nurses of Centers 3 and 8 visit Patient 2 during the 
patient’s time window. Moreover, medical tests and treatment are 
conducted for patients and transported to the laboratory, which is the 
endpoint of a route. For the purposes of this study, we make the 
following assumptions to clarify the scope of the study undertaken:  

• A nurse starts from a center to visit patients, and after serving all 
patients, the nurse finishes the route at the laboratory; 

• The number of patients and locations of patients’ homes are pre-
defined (i.e., patients give all information to the HHC network before 
getting the service);  

• The required services for a patient should be provided by nurses with 
consideration of the desired time windows for respective patients;  

• All patients need services in a certain time window;  
• The potential locations of center candidates and the location of the 

laboratories are predefined;  
• There is one nurse at least, and some centers need more than one 

nurse;  
• No nurse arrives at patients’ homes before the opening time and after 

the closing time specified by the time windows of the patients; 
• The vehicles of nurses are heterogeneous and have different capac-

ities, so different types of vehicles are taken into consideration. These 
vehicles may be the nurses’ own vehicles or a third-party logistic 
organization may be used to provide vehicles;  

• All patients must be visited at least once, and some patients need 
multiple services during their time window;  

• The service time, costs, and social parameters are considered as 
uncertain parameters;  

• The patient’s demand and the capacity for drugs in each nurse’s 
vehicle are known;  

• There is no direct movement of nurses between the centers and 
laboratories;  

• The social impacts and efficiency of candidate locations are 
considered. 

3.1. Deterministic mathematical model 

We now provide a comprehensive mathematical programming 
model of the DPHHC problem in the deterministic environment. We first 
define the sets, parameters, and decision variables used in the mathe-
matical formulation. 

3.1.1. Notations 
The notations related to the deterministic proposed model are 

described as follows:  
Sets  

v ∈ V The set of all nurses 
m ∈ M The set of patients 
n ∈ N The set of center candidates 
h ∈ H The set of laboratories 
i, j ∈ I The set of all nodes (patients, center candidates, and 

laboratories,M ∪ N ∪ H) 
g ∈ G The sets of input factors 
r ∈ R The sets of output factors 
Parameters  
fn The fixed cost for opening center candidate n 
dm The demand for drugs for patient m 
capv The capacity of nurse’s vehicle v 
tsiv The service time for node i visited by nurse v (where tsnv = tshv = 0 for 

all h ∈ H and n ∈ N) 
coij The travel costs for moving from node i to node j 
trij The traveling time from node i to node j 
ong The quantity of input factor g for center candidate n 
knr The quantity of output factor r for center candidate n 
am The earliest time to visit patient m, i.e., the starting time of the time 

window for patient m 
bm The latest time to visit patient m, i.e., the ending time of the time 

window for patient m 
knn The number of employment opportunities at candidate location n 
cen The employment rate, which is the number of nurses employed in 

candidate location n in a year 
jen The regional economic value at candidate location n 
den The factor of regional development, i.e., a value of development for a 

candidate location n that is between 0 and 1 

(continued on next page) 
1 For example, giving medication to a patient before/after a meal with a 

predetermined time required between services. 
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(continued ) 

Sets  

βm The number of services required for patient m 
p The number of center candidates that are allowed to be opened 
M A large number 
ω A small number 
Variables  
yn A binary variable, which is 1 if center candidate n is selected, and 

0 otherwise. 
xijv A binary variable, which is 1 if nurse v travels from node i to node j, 

and 0 otherwise. 
stiv A positive continuous variable, which is the starting time for visiting 

node i by nurse v 
φn A positive continuous variable, which is the summation of the negative 

and positive weight deviation for candidate location n 
ari A continuous variable, which is used to eliminate sub-tours 
wong A positive continuous variable, effectively the weight or importance of 

output factor g for candidate location n 
winr A positive continuous variable, effectively the weight or importance of 

input factor r for candidate location n  

We now discuss the constraints related to the DPHHC problem and detail 
each of these one by one. 

ari − arj + capvxijv ≤ capv − dj ∀v ∈ V, i, j ∈ I (1)  

∑

j∈I

∑

v∈V
xmjv = βm ∀m ∈ M (2)  

∑

i∈I
ximv −

∑

j∈I
xmjv = 0 ∀v ∈ V,m ∈ M (3)  

∑

n∈N

∑

m∈M
xnmv = 1 ∀v ∈ V (4)  

∑m+n+1

i=n+1
xihv = 1 ∀v ∈ V, h ∈ H (5)  

stiv + tsiv + tij − M
(
1 − xijv

)
≤ stjv ∀i, j ∈ I, v ∈ V (6)  

am ≤ stiv ≤ bm ∀i ∈ I,m ∈ M, v ∈ V, i = m (7)  

∑

m∈M
dm

∑

j∈I
xmjv ≤ capv ∀v ∈ V (8)  

∑

n∈N
yn = p (9)  

∑

i∈I

∑

v∈V
xniv ≤ M yn ∀n ∈ N (10)  

xijv, yj ∈ {0, 1}, stiv ≥ 0 ∀i, j ∈ N, v ∈ V (11) 

Constraint (1) is the sub-tour elimination constraint. Constraint (2) 
guarantees that patients requiring medical services are visited by nurses 
within the patients’ time windows. In Constraint (3), nurses must leave 
the patient’s home after completing a service. Constraint (4) states that 
each nurse starts a route from an opened center to travel to a patient’s 
home. Constraint (5) determines that all nurses finish their routes at the 
laboratory after meeting all patients. Constraint (6) denotes that the 
service for the next patient can commence after serving the previous 
patient. Constraint (7) prohibits the violation of each patient’s time 
window and limits the start time of services for each patient, i.e., the 
patients must be visited during their time window. Constraint (8) pre-
vents exceeding the capacity of the vehicle-carrying nurses. Constraint 
(9) chooses a certain number of potential location candidates that must 
be opened. Constraint (10) requires that if a center is opened, a route can 
be started by a nurse from that center. Constraint (11) defines binary and 
positive decision variables. 
∑

g∈G
on′ gwong −

∑

r∈R
kn′ rwinr +φn = 0 ∀n, n

′

∈ N, n ∕= n′ (12)  

∑

g∈G
ongwong +φn = yn ∀n ∈ N (13)  

∑

r∈R
knrwinr = yn ∀n ∈ N (14)  

ωyn ≤ winr ∀n ∈ N, r ∈ R (15)  

ωyn ≤ wong ∀n ∈ N, g ∈ G (16) 

Constraint (12) guarantees that the maximum efficiency score ob-
tained for each center is achieved by adding the total deviations (in-
efficiency or φn). Constraint (13) computes the total quantity of output 
factors plus the inefficiency of each center if that center is opened. 
Constraint (14) indicates the total quantity of input factors for each 
center if that center is opened. Constraints (15) and (16) guarantee that 
the weights assigned to the output and input factors of each center have 
at least a few values if that center is opened. There are three objective 
functions considered in this study, which were briefly discussed earlier. 
We provide the details of these functions in the following. 

3.2. Objective function 1: Total Cost 

The total cost is composed of two different costs. The first is the fixed 
costs for opening the centers, and the second is the traveling costs, which 
are the cumulative cost of the movements of nurses from one location to 
another. The total cost is: 

MinZ1 =
∑

n∈N
fnyn +

∑

i∈I

∑

j∈I

∑

v∈V
coijxijv (17)  

Fig. 1. An example shows the opening of centers, assigning nurses to patients, and nurses’ routes. Three centers are opened among 10 candidates, and a nurse travels 
from each center to visit patients (highlighted routes). Some patients require two services (red circles). 
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where coij are calculated by c × dij in which c is the travel cost for 
traveling one kilometer and dij is the distance between two nodes i and j. 

3.3. Objective function 2: Inefficiency 

To provide accessible, high-quality, and equitable care, presenting 
an appropriate method to evaluate the inefficiency of centers is critical 
to identify ideal design interventions that promote efficiency. For this 
purpose, the DEA is an appropriate approach that is widely used as a 
non-parametric method for measuring the inefficiency of a set of Deci-
sion Making Units (DMUs) by a combination of qualitative factors (Cook 
et al., 1990). There is no set standard for factors; therefore, the DEA 
presents a relative inefficiency measure. Meanwhile, this approach has 
two advantages over other techniques as it simultaneously uses multiple 
input and output factors to find which units (districts/center candidates) 
are inefficient. Furthermore, the weights of the factors do not need to be 
determined, and being on different scales does not pose a problem. The 
DEA model compares weighted input factors to weighted output factors, 
common to all DMUs. To do this, we consider the DMUs as the center 
candidates in the DPHHC, and the input and output factors for each 
center are identified via an expert team’s knowledge. In the previous 
studies, researchers applied efficiency to evaluate the design of a 
network like a supply chain (Chen, Liang, & Yang, 2006; Liang, Yang, 
Cook, & Zhu, 2006; Parmigiani, Klassen, & Russo, 2011). Omrani, 
Adabi, and Adabi (2017) and Klimberg and Ratick (2008) incorporated 
the efficiency into location-allocation models by using the DEA model. 

This study considers two input factors, traffic and pollution, and two 
output factors, population density and appropriate workplace. Based on 
the employees’ judgment in the municipality, these factors are consid-
ered important in selecting the best candidates for centers and are 
therefore considered here:  

1) Traffic: This factor indicates the ease of nurses’ access to each center 
before starting their routes. The lower the congestion in a district, the 
lower the energy and time required to arrive at each center, 
reflecting the advantage and superiority of the center. Therefore, 
traffic is considered as an input factor measured based on the average 
time a nurse takes to arrive at a center.  

2) Pollution: Districts with a lower level of air or noise pollution are 
more desirable for the nurses in terms of health and safety. Thus, 
pollution is also considered as an input factor for centers.  

3) Population density: The number of people that live in each district 
is the population density of that district. The greater the population 
density, the greater the demand for services; hence, the greater the 
significance of centers in those districts. Therefore, population den-
sity is used as an output factor for centers.  

4) Appropriate workplace: Acceptable temperature, humidity levels, 
natural light, etc., are needed for nurses to work effectively. Hence, 
an appropriate workplace is used as an output factor for centers. 

Herein, to calculate the inefficiency of the center candidates, a 
common weight of DEA is chosen that leads to a Goal Programming (GP) 
model. GP is a branch of multi-objective optimization, which in turn is a 
branch of multi-criteria decision analysis (Jones & Tamiz, 2016). 
Essentially, the idea is to minimize the deviation of common weights 
from the obtained values of the DEA model. The DEA model is specified 
as follows: 

Given a set of N DMUs (n = 1,⋯,N), R input factors (r = 1,...,R), and 
G output factors (g = 1, ..., G), Equations (18)-(19) denote a Multi- 
Objective Fractional Programming (MOFP) model, with the aim of 
maximizing the efficiency scores for DMUs at the same time: 

Maxw =

{∑G
g=1wogog1

∑R
r=1wirkr1

,

∑G
g=1wogog2

∑R
r=1wirkr2

,⋯,

∑G
g=1wogogn

∑R
r=1wirkrn

}

(18)  

s.t : wog, wir ≥ ω ∀g ∈ G, r ∈ R (19)  

where the maximum score of efficiency for each DMU is equal to 1. 
Based on this optimization method (GP), Equation (18) can be rewritten 
as follows to identify a set of common weights. 

Min
∑N

n=1

(
φ−

n +φ+
n

)
(20)  

s.t :
∑G

g=1wogogn
∑R

r=1wirkrn
+φ−

n − φ+
n = An ∀n ∈ N (21)  

where φ−
n and φ+

n are positive continuous variables and reflect the 
negative and positive deviations from the nth goal, respectively. In the 
optimization model, An is the maximum level for the nth objective 
function as a goal for the nth DMU. WhenAn = 1, it implies that the nth 

objective function approaches its goal and variable φ+
n cannot have a 

positive value. Therefore, Equation (21) can be rewritten as: 

∑G

g=1
wogogn +φ−

n

(
∑R

r=1
wirkrn

)

=
∑R

r=1
wirkrn × An ∀n ∈ N (22) 

Due to the nonlinear Equations (20)–(22), the GP approach is utilized 
again to linearize the model. In the revised model, An=1 is considered in 
Equation (21), and the efficiency score of the nth DMU is calculated as 
∑G

g=1
wogogn+φ+

n
∑R

r=1
wirkrd − φ−

n
. Therefore, for decreasing inefficiency, the numerator must 

increase and the denominator decrease. For this purpose, φ+
n is added to 

the numerator, and φ−
n is subtracted from the denominator. Conse-

quently, Equation (18) can be reformulated as: 

Min
∑N

n=1

(
φ−

n +φ+
n

)
(23)  

s.t :
∑G

g=1wogogn + φ+
n

∑R
r=1wirkrd − φ−

n

= 1 ∀n ∈ N (24) 

The objective function can be further simplified as follows, where φn 
is replaced with (φ−

n + φ+
n ) and, as a result, Equations (23) and (24) can 

be rewritten as follows: 

Min Z2 =
∑N

n=1
φn (25)  

s.t :
∑G

g=1
wogogn −

∑R

r=1
wirkrn +φn = 0 ∀n ∈ N (26)  

where φn is a positive continuous variable. Let (wo*
g , wi*r , φ*

n) be the 
optimal solution, the efficiency score of the nth DMU is obtained from: 

θ*
n =

∑G
g=1wo*

gogn
∑R

r=1wi*r krn
= 1 −

φ*
n

∑R
r=1wi*r krn

∀n ∈ N (27) 

Finally, Equation (25) is the second function of the proposed model 
that is the deviation of common weights from the value calculated by the 
basic DEA model for centers. 

3.4. Objective function 3: Social impacts 

The third objective is a “social” objective, which measures the social 
impacts/CSR of centers, and can be formulated as: 

MaxZ3 = w1(
∑

n∈N
knncenyn)+w2(

∑

n∈N
jendenyn) (28)  

where w1 and w2 are the weights of the employment opportunity and 

M. Shiri et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 211 (2023) 118185

9

economic development, respectively. These weights are adjusted ac-
cording to their importance, where w1+w2 = 1. In Equation (28), the 
first part specifies the employment opportunities gained from opening 
centers in line with the employment rate. In other words, knn and cen are 
defined as the number of employment opportunities and the employ-
ment rate (which is the number of nurses employed in the candidate 
location in a year) at candidate location n. By multiplying knn in cen, the 
employment opportunities gained from opening centers are in line with 
the employment rate (Sharifi et al., 2020). The second part of the 
equation calculates economic development, which aims to improve 
districts’ economic, fiscal, and social conditions. It is computed as the 
product of the two regional development and economic values of each 
district. Regional development is a broad term but can be seen as a way 
to improve living standards and enhance well-being in the district, with 
the regional economic value being a measure of the benefits of a service 
to a district. 

3.5. Mixed Robust-Fuzzy model 

The model presented in Section 3.1 is formulated in the deterministic 
environment. Hence, in this section, we modify the model to develop a 
hybrid robust-fuzzy formulation that incorporates uncertainty by 
considering the scenarios of service time and several fuzzy parameters. 
In particular, the costs, number of employment opportunities, employ-
ment rate, and regional economic and regional development values are 
imprecise and uncertain, estimated by municipal employees using 
trapezoidal fuzzy numbers. In the following, we provide details of the 
sets, parameters, and decision variables, then update the constraints and 
revised objective functions. Note that Objective 2 (associated with in-
efficiency) does not depend on uncertainty and is exactly the same as 
that presented in the previous section. In the following, the set of sce-
narios is denoted by s ∈ S. In real settings, the service time for a patient is 
not deterministic because a patient’s status is changeable; therefore, it is 
uncertain data and shown by t̃ss

mv under scenario s. The parameters and 
decision variables used in the robust-fuzzy model are as follows:  

Parameters  

f̃n The fixed cost for opening center n obtained as a trapezoidal fuzzy 
number (̃fn = f1

n , f2
n , f3

n , f4
n ) 

t̃ss
mv The service time for patient m visited by nurse v with a trapezoidal 

fuzzy number under scenario s (t̃ss
mv = tss1

mv, tss2
mv, tss3

mv, tss4
mv) 

c̃oij The traveling cost from node i to node j with a trapezoidal fuzzy 
number (c̃oij = co1

ij ,co2
ij , co3

ij , co4
ij) 

k̃nn The number of employment opportunities at center n with a 
trapezoidal fuzzy number (k̃nn = kn1

n ,kn2
n ,kn3

n , kn4
n) 

c̃en The employment rate at center n with a trapezoidal fuzzy number 
(c̃en = ce1

n , ce2
n , ce3

n , ce4
n) 

j̃en 
The regional economic value at center n with a trapezoidal fuzzy 
number (j̃en = je1

n , je
2
n , je

3
n , je4

n) 

d̃en The regional development factor at center n with a trapezoidal fuzzy 
number (d̃en = de1

n ,de2
n ,de3

n , de4
n) 

prs The probability of scenario s 
ρ The level of desired robustness (ρ ≥ 0) 
Variables  
ars

i A continuous variable used to eliminate sub-tours 
stsmv A positive continuous variable, the starting time of a visit for patient m 

by nurse v under scenario s 
xs

ijv A binary variable, 1 if the nurse v moves from node i to node j under 
scenario s, and otherwise 0.  

In the uncertain version of the model, Equations (1)-(8) and (10)-(11) 
from the deterministic model should be updated using uncertain pa-
rameters and variables. In particular, Equation (6) is rewritten incor-
porating uncertainty as follows: 

sts
iv + tij +

(
(α − λ)
(1 − λ)

(
tss1

iv

)
+
(1 − α)
(1 − λ)

(tss2
iv )

)

− M

(
1 − xs

ijv

)
≤ sts

jv ∀i, j

∈ I, v ∈ V, s ∈ S
(29)  

where α and λ reflect a minimum confidence level and an optimi-
stic–pessimistic parameter, respectively, that are related to the PCCP 
approach (with respect to Phase 2 in Section 4.2). Constraint (29) states 
that service for the next patient can commence after serving the previous 
patient, considering uncertain scenarios related to the patient’s service 
time. Other constraints under the uncertain environment are presented 
in Appendix A. 

3.5.1. Objective function 1: Total Cost in uncertain environment 
This objective function minimizes the total cost, including set-up and 

transportation costs, under fuzzy and scenario-based parameters. The 
first item of the cost objective function is the fixed costs for the opening 
centers, and the second item is the travel costs to move the nurses from 
one node to another under scenario s. Thus, the total cost is equal to: 

Zs
1 =

∑

n∈N

(
(1 − λ)

2
(
f 1
n + f 2

n

)
+

λ
2
(
f 3
n + f 4

n

)
)

yn +
∑

i∈I

∑

j∈I

∑

v∈V

(
(1 − λ)

2

(
co1

ij

+ co2
ij

)
+

λ
2

(
co3

ij + co4
ij

))

xs
ijv

(30)  

where f̃n and c̃oij are the trapezoidal fuzzy numbers. As can be seen, the 
cost objective function is based on scenarios. Therefore, we use a 
p-robust approach to calculate the expected value of Zs

1. According to 
Phase 1 in Section 4.1, Equation (31) and Constraint (32) are proposed. 

MinE[Zs] =
∑

s∈S
prsZs

1 (31)  

s.t : Zs
1 ≤ Zs*

1 (1+ ρ) ∀s ∈ S (32)  

where ρ is defined as the desired level of robustness and Zs*
1 is the 

optimal value of the first objective function under scenario s. 

3.5.2. Objective function 3: Social impacts in uncertain environment 
The third objective associated with the social impacts of centers in-

cludes the employment opportunities and economic development and is 
measured within the fuzzy setting as follows: 

Z3 = w1

∑

n∈N

(
(1 − λ)

2
(
kn1

n + kn2
n

)
+

λ
2
(
kn3

n + kn4
n

)
)(

(1 − λ)
2

(
ce1

n

+ ce2
n

)
+

λ
2
(
ce3

n + ce4
n

)
)

yn +w2

∑

n∈N

(
(1 − λ)

2
(
je1

n + je2
n

)
+

λ
2
(
je3

n

+ je4
n

)
)(

(1 − λ)
2

(
de1

n + de2
n

)
+

λ
2
(de3

n + de4
n)

)

yn (33)  

where w1 and w2 are assigned to parts 1 and 2 and reflect the importance 
of each part. Equation (33) incorporates uncertain parameters, where 
k̃nn, c̃en, j̃en and d̃en are the fuzzy parameters. This objective function 
consists of two parts, employment opportunities and economic 
development. 

4. Solution methodology 

To deal with the complexity of the above model with uncertain pa-
rameters, a novel solution technique is proposed. As shown previously, 
the proposed model aims to optimize three different objectives: mini-
mizing the total cost of the network, minimizing inefficiency, and 
maximizing the employment opportunities and economic development 
arising from opening centers. The inherent uncertainty of the model 
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derives from the service times, costs (including the fixed cost of the 
opening centers and transportation cost), the number of employment 
opportunities for each district, the employment rate for nurses, the 
regional economic value, and regional development value. All these 
aspects further complicate the problem, and thus the resulting model. 
The solution approach for the DPHHC splits the solution process into 
three phases, as depicted in Fig. 2. Phase 1 presents a p-robust model to 
deal with imprecise parameters by using a scenario-based approach. In 
Phase 2, the PCCP is applied to tackle the possibilistic data and possi-
bilistic chance constraint. In Phase 3, the Torabi and Hassini (TH) 
approach is used, specifically designed for solving a multi-objective 
model. 

4.1. Phase 1: The P-robust model 

Due to the uncertainty of the service time parameter, the nurses 
report data as scenarios based on their knowledge and the patient status. 
In this regard, the p-robust approach is defined, which is utilized to 
model the DPHHC problem under uncertain scenarios. The robust 
approach tries to minimize the maximum regret or the expected value of 
cost, in which the obtained solution is optimal for realizing uncertainties 
in predefined sets. Therefore, we aim to build a reliable design and 
planning for the HHC under different scenarios. Let us consider a set of 
scenarios s ∈ S in which no disruption is seen (Snyder & Daskin, 2006). 
In this regard, the p-robust model keeps the value of the objective 
function within 100 % and 100 +ρ% of the optimal objective function 
under each scenario, whereρ ≥ 0 (the desired level of robustness). As 
mentioned previously, two strategic and tactical decisions are 

considered in our model simultaneously, incorporating the location- 
allocation and transportation decisions. The compact form of the 
p-robust programming model is as follows: 

Min E[Zs] = Ay+
∑

s∈S
psBxs (34)  

s.t:
Zs(y, xs) − Zs*

Zs* ≤ ρ ∀s ∈ S (35)  

where A and B reflect the fixed and transportation costs, respectively. 
And y is a binary variable corresponding to strategic decisions to be 
made, and xs is a vector of assignment variable (positive continuous 
variable) under scenario s that is related to tactical decisions. Index s 
illustrates the scenario associated with the service times of patients, and 
ps is the probability of scenario s. The function E[Zs] is the expected value 
of the objective function under scenario s, and Zs* is the optimal value 
resulting from solving the deterministic model under each scenario s. 
Note that Z

s(y,xs)− Zs*

Zs* is the maximum regret under each scenario. 

4.2. Phase 2: Possibilistic chance constrained programming 

As mentioned previously, costs and social parameters are fuzzy, and 
hence the PCCP approach is used to deal with fuzzy data. This approach 
is considered as one of the well-known fuzzy programming methods to 
tackle uncertain models (Pishvaee, Torabi, & Razmi, 2012), particularly 
possibilistic data and possibilistic chance constraints. In this context, a 
minimum confidence level can be obtained for decision-makers to meet 

Fig. 2. Flowchart of the solution methodology including three phases: in Phase 1) to deal with the scenarios of service time, we apply the p-robust approach, in Phase 
2) PCCP is utilized to cope with fuzzy parameters that are the cost and social data. Phases 1 and 2 together represent a hybrid robust-fuzzy approach to deal with 
mixed uncertainty, and in Phase 3) the TH approach is presented to solve the multi-objective model. 
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the chance constraints. Here, two measures and standards can be 
adopted, namely possibility Pos and necessity Nec, and we now provide 
the details of its implementation. 

Let ψ̃ be a trapezoidal fuzzy number that is ψ̃= (ψ1,ψ2,ψ3,ψ4), where 
ψ1 (most pessimistic) < ψ2 (pessimistic) < ψ3 (optimistic) < ψ4 (most 
optimistic) and the membership function is as follows: 

μ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − ψ1

ψ2 − ψ1
ψ1 ≤ x ≤ ψ2

1 ψ2 ≤ x ≤ ψ3

ψ4 − x
ψ4 − ψ3

ψ3 ≤ x ≤ ψ4

0 otherwise.

(36) 

The possibilistic values of the possibility Pos, necessity Nec, and the 
expected value of the fuzzy number ψ̃ are calculated based on Inuiguchi 
and Ramıḱ (2000) and Liu and Iwamura (1998). In the following, to 
fluctuate between these two optimistic and pessimistic extremes, a fuzzy 
compensatory measure, namely the Me measure, was proposed by Xu 
and Zhou (2013). The Me measure enables decision-makers to impose a 
level of optimism and pessimism regarding their preference by choosing 
any convex combination between the Pos and Nec measures: 

Me{e} = λ Pos{e}+ (1 − λ)Nec{e} (37)  

where e denotes an event, and λ defines an optimistic–pessimistic 
parameter that can be changed to fall within the interval [0, 1] based on 
the decision-makers’ preference. In this respect, when the decision- 
makers’ preferences are extremely pessimistic (λ = 0), the measure Nec 
is yield, which shows the possible level of minimum occurrence for the 
possibilistic event e. Alternatively, when the decision-makers’ prefer-
ence is optimistic (λ = 1), the measure Pos is yield, which shows the 
maximum occurrence possibility level for the possibilistic event e. 
Consequently, according to Xu and Zhou (2013), the measure Me as well 
as the expected value of ψ̃ can be obtained consideringα ≥ 0.5 andψ ≥ 0. 
As a result, whenλ < 0.5, it needs to be close to Nec to back a decision- 
maker’s pessimistic attitude. The following constraints show the re- 
written formulation of the Me measure: 

Me{ψ̃ ≤ x} ≥ α ⇔ λ+(1 − λ) ×
x − ψ3

ψ4 − ψ3
≥ α ⇔ x

≥
(α − λ)ψ4 + (1 − α)ψ3

1 − λ
(38)  

Me{ψ̃ ≥ x} ≥ α ⇔ λ+(1 − λ) ×
ψ2 − x

ψ2 − ψ1
≥ α ⇔ x

≤
(α − λ)ψ1 + (1 − α)ψ2

1 − λ
(39)  

where α is a minimum confidence level for decision-makers to meet the 
chance constraints. In the following, the compact form of the PCCP 
model can be represented as: 

MinE[Z1] = E
[
Ã
]
y+E

[
B̃
]
x (40)  

MinZ2 = y  

MaxE[Z3] = E
[
C̃
]
y  

s.t : Dy = G  

Fy ≤ 1  

Me
{

K̃ ≥ x
}
≥ α  

Hx ≤ I  

x ≤ My  

where Z1, Z2, and Z3 are cost, inefficiency, and social impact functions, 
respectively. And Ã, B̃, C̃ and K̃ are inherently uncertain parameters that 
reflect the fixed costs of centers, the variable costs of the network, social 
parameters, and service times for the patients, respectively. Vector y 
represents the binary decision variable, and x is the positive continuous 
variable. Additionally, D, G, F, H, and I are the coefficient matrices, and 
M is a large constant (“Big M”), typically used in integer programming 
formulations. The uncertain parameters in the objective functions were 
replaced by their corresponding expected values E[Z], while the measure 
Me was employed in the possibilistic chance constraints. Also, certain 
scenarios for service time are generated using a nurse’s preference. 
Therefore, according to Equation (38), model (40) can be reformulated 
with model (41) as follows: 

Min E[Z1] =

(
(1 − λ)

2
(A1 + A2) +

λ
2
(A3 + A4)

)

y +
∑

s∈S
ps
(
(1 − λ)

2
(B1

+ B2) +
λ
2
(B3 + B4)

)

xs

(41)  

MinZ2 = y  

MaxE[Z3] = (
(1 − λ)

2
(C1 + C2) +

λ
2
(C3 + C4))y  

s.t : Dy = G  

Fy ≤ 1  

xs ≤
(α − λ)Ks

1 + (1 − α)Ks
2

1 − λ  

Hxs ≤ I  

xs ≤ My  

4.3. Phase 3: Torabi and Hassini approach 

A major component of this research is a development of an optimi-
zation model that integrates different decisions and objectives (cost, 
inefficiency, and social impact) in HHC. To solve the ensuing MOLP, 
there are many approaches available in the literature, with several fuzzy 

Fig. 3. A virtual map of Kermanshah in Iran. The map shows the locations of 
the laboratory, patients’ homes (rectangles), and potential locations of cen-
ters (circles). 
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methods being widely adopted. These methods enable decision-makers 
to effectively trade off their preferences concerning multiple objec-
tives (Torabi & Hassini, 2008). Herein, an efficient fuzzy technique is 
used to solve the proposed MOLP model. This interactive fuzzy tech-
nique introduced by Torabi and Hassini (2008), the so-called Torabi and 
Hassini (TH) approach, is capable of obtaining an efficient solution and 
works as follows: 

Let’s consider the following compact MOLP form for the proposed 
mathematical model: 

MinZ1(Cost) (42)  

MinZ2(Inefficiency)

Max Z3(CSR)

s.t : A x ≤ B  

x ∈ X  

where A and B are the coefficient matrices. 
Step 1: For each objective function h (h={1,2,3}), Positive Ideal 

Solutions (PIS) and Negative Ideal Solutions (NIS) need to be calculated. 
If the PIS of the proposed MOLP is available (ZPIS

h , xPIS
h ), the NIS can be 

obtained from Equations (43)-(45). 

ZNIS
1 = Max

{
Z1
(
xPIS

2

)
, Z1
(
xPIS

3

) }
(43)  

ZNIS
2 = Max

{
Z2
(
xPIS

1

)
, Z2
(
xPIS

3

) }
(44)  

ZNIS
3 = Min

{
Z3
(
xPIS

1

)
, Z3
(
xPIS

2

) }
(45) 

Step 2: For each objective function h (h={1,2,3}), the satisfaction 
level (normalization) should be calculated under solution vector x, 
represented by μh(x). Following this, the linear membership functions 
are: 

μ1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 Z1 ≤ ZPIS
1

ZNIS
1 − Z1

ZNIS
1 − ZPIS

1
ZPIS

1 ≤ Z1 ≤ ZNIS
1

0 Z1 ≥ ZNIS
1

(46)  

μ2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 Z2 ≤ ZPIS
2

ZNIS
2 − Z2

ZNIS
2 − ZPIS

2
ZPIS

2 ≤ Z2 ≤ ZNIS
2

0 Z2 ≥ ZNIS
2

(47)  

μ3(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 Z3 ≥ ZPIS
3

Z3 − ZNIS
3

ZPIS
3 − ZNIS

3
ZNIS

3 ≤ Z3 ≤ ZPIS
3

0 Z3 ≤ ZNIS
3

(48) 

Step 3: According to Equations (49) and (50), a model with a single 
objective can be written with respect to the TH aggregation function. By 
changing the value of the compensation coefficient (γ), Equations (49) 
and (50) result in a trade-off between the minimum satisfaction level of 
each objective and their relative importance within the feasible district. 
Additionally, γ controls the minimum satisfaction level of each objective 
as well as the trade-off between the objectives. The following formula-
tion determines the compensation coefficient for each objective function 
by γ, which helps balance2 the optimized solution. The first term in 
Equation (49) is (γ × Z0), which calculates the minimum satisfaction 
level of objective function h (Z0 = min{μh(x)}). In the second term, the 
aggregation of μh(x) is weighted by θh, based on the decision-maker’s 
preference. 

Max Z(x) = γ × Z0 +(1 − γ)
∑

h
θh × μh(x) (49)  

s.t: Z0 ≤ μh(x) ∀h = 1, 2, 3 (50)  

where θh and γ represent the relative weights (priorities) of the satis-
faction level for each objective function and compensation coefficient, 
respectively. To have the same positive scale, these weights are deter-
mined between 0 and 1 according to the decision-makers’ preferences, 
where

∑
hθh = 1. Moreover, the satisfaction level of objective function h 

for vector x is denoted by μh(x). Moreover, the lower bound of μh(x) is 
defined by Constraint (50). 

Step 4: Finally, to generate an efficient solution for the proposed 
MOLP model, the values of parameters should be set based on the de-
cision-makers’ preference. 

Table 2 
The results of the case study using the parameter settingsρ = 0.5, α= 0.5, λ= 0.2, andγ = 0.5. 

Combination Cost Inefficiency Social 
Impact 

Opened 
Centers 

Objective Function Routes 

Cost (E 
+ 7) 

Inefficiency Social 
Impact 

Scenario 1 

1 ✓   459 2.19 3 17.28 N1: 9,14,25,13,15,26,29,31N2: 9,18,15,20,31N3: 5,20,12,16,30,27,24,11,31N4: 
4,22,17,23,19,12,21,31N5: 4,28,11,24,19,31 

2  ✓  1710 2.92 0 18.91 N1: 1,15,25,31N2: 1,30,27,31N3: 1,13,18,31N4: 7,12,17,23,21,31N5: 
10,21,19,27,16,20,24,18,14,12,25,28,29,22,11,26,13,31 

3   ✓ 135 2.88 3 20.72 N1: 3,20,15,28,27,13,22,31N2: 3,16,11,17,25,31N3: 1,22,17,26,18,31N4: 
5,29,19,30,23,12,15,24,31N5: 5,25,14,12,21,26,31 

4 ✓ ✓ ✓ 159 2.41 1.41 19.45 N1: 5,11,24,31N2: 5,20,12,14,25,17,22,26,29,31N3: 1,19,30,15,13,18,31N4: 
9,23,16,12,27,24,21,31N5: 5,28,11,16,31 

5 ✓ ✓  145 2.43 1.28 19.15 N1: 5,28,11,23,31N2: 4,20,12,27,24,21,31N3: 5,19,20,21,31N4: 
1,19,30,15,13,18,31N5: 1,23,16,12,14,25,17,22,26,29,31 

6 ✓  ✓ 159 2.41 1.41 19.45 N1: 5,17,31N2: 5,20,12,19,30,15,13,18,31N3: 1,23,16,12,27,24,21,31N4: 
9,14,25,17,22,26,29,30,31N5: 5,28,11,18,25,29,31 

7  ✓ ✓ 1510 2.63 0.46 20.06 N1: 10,14,25,17,22,26,29,31N2: 5,20,12,19,30,15,13,18,31N3: 5,28,11,14,31N4: 
1,23,16,12,27,24,21,31N5: 5,23,11,31  

2 Balance is defined achieving similar satisfaction levels among the mem-
bership functions μ based on changes in γ (Torabi & Hassini, 2008). 
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5. Experimental evaluation 

The experimental evaluation in this study consists of two parts. First, 
we present a case study motivated by the real data in Kermanshah city in 
Iran. The aim here is to demonstrate the validity of our approach in a 
real-world setting. Second, we conduct a numerical study by varying 
different aspects of the problem, including sensitivity analysis with the 
parameter λ within the possibilistic chance constraints and a sensitivity 
analysis on γ in the TH approach. This second part aims to explore 
different problem characteristics that we may encounter in reality, and 
to measure the performance of our approach in these different contexts. 
Our proposed mathematical formulation is implemented within GAMS 
29.1.0 using the CPLEX solver (https://www.ibm.com/au-en/analyt 
ics/cplex-optimizer). All computational experiments were carried out 
on a PC with Intel Core i7, CPU 2.67 GHz, and RAM 16 GB. 

5.1. Case study 

We investigate a real case study of Kermanshah in Iran within our 
proposed framework. The city of Kermanshah is divided into 10 main 
districts, an overview of which can be seen in Fig. 3. Ten locations – 
Districts 1 to 10 – have been chosen as potential locations for opening 
centers by the municipality of Kermanshah. The data for the case study 
(in a de-identified form) was provided by Taleghani hospital and the 
municipality of Kermanshah. There are 20 patients, 5 nurses, and 10 
potential center candidates. Among the centers, 3 are allowed to open. 
Furthermore, there are 2 input factors (traffic and pollution), 2 output 
factors (population density and appropriate workplace), 3 scenarios, 
and a single laboratory. These three scenarios, each of which corre-
sponds to a different service duration, are: pessimistic, most likely, and 
optimistic. These scenarios are set by a team including four nurses and 
one physician in the Taleghani hospital. This team decides based on 
patients’ health conditions and medical history. 

In the following, we present the results of applying our proposed 
model to the case study. Then, we carry out a sensitivity analysis of key 
parameters of interest. This analysis is particularly useful in providing 
valuable insights for health managers so that they can make informed 
decisions on the best location/s to open centers. 

5.1.1. Effect of different objective weights 
In this section, we solve our model to identify which locations are 

ideal for opening up new centers in the case study. We analyze the 
objective functions, total Cost, Inefficiency, and Social Impact, in various 
Combinations that are shown in Table 2. In addition, the route of each 
nurse (Nv) in each scenario is reported. 

Combinations 1–3: Optimizing single objectives. To identify 
which Centers are best considering one objective, we run the model and 

optimize each of the three objectives, one at a time. Fig. 4a shows that 
Districts 4, 5, and 9 are selected as the least expensive Centers to open in 
Kermanshah city, whereas, if we consider Inefficiency or Social Impact, 
Centers 4 and 9 are excluded (Fig. 4b and c). In particular, Centers 1, 7, 
and 10 are ideal considering the Inefficiency measures (Fig. 4b), as they 
have low traffic, low pollution, a high population density, and an 
appropriate workplace. According to Fig. 4 and Table 2, Centers 7 and 
10 are not inexpensive or ideal social locations; hence they are not 
chosen to be opened. Considering Social Impact, the model selects Cen-
ters 1, 3, and 5 to be opened (Fig. 4c), as these Centers (especially Center 
3) have excellent employment opportunities and economic develop-
ment. We see that Center 1 is ideal considering Inefficiency and Social 
Impact, while Center 5 has low Cost and excellent Social Impact. 

Combination 4: Equal weighting of all objectives. To reiterate, 
the overall goal of the model is to find the best-fit locations for opening 
Centers so as to minimize the total Cost and Inefficiency while maxi-
mizing Social Impact. For this purpose, according to the steps of the TH 
method outlined in Section 4.3, the model is solved considering all three 
objectives with equal weights (θ1=θ2 = θ3) of their satisfaction levels. 
The results of solving this model are shown in Fig. 5a. We see that among 
the 10 candidate districts in Kermanshah, three Centers, namely 1, 5, 
and 9, are chosen to be opened, which simultaneously leads to a mini-
mum total Cost, minimum Inefficiency, and maximum employment op-
portunities and economic development. This analysis combines the first 
three Combinations (Combination 1 is Cost, Combination 2 is In-
efficiency, and Combination 3 is Social Impact), where we observed that 
Centers 1, 5, and 9 are ideal for opening up, and Center 9 is the best of 
the remaining options. 

Combination 5: Equal weighting of Cost and Inefficiency mea-
sures. In this setting, we optimize the Cost and Inefficiency measures and 
ignore Social Impact. This leads to three Centers being opened up, 
namely 1, 4, and 5 as shown in Fig. 5b. In Table 2, the value of Social 
Impact in Combination 5 is lowest compared to its values in Combina-
tions 4 (equal weighting of all objectives), 6 (equal weighting of Cost and 
Social Impact), and 7 (equal weighting of Inefficiency and Social Impact), 
since we explicitly avoid optimizing this objective. The first (just Cost) 
and second (just Inefficiency) Combinations are combined in this section, 
which shows among all the opened Centers in those Combinations (Cost: 
4, 5, 9 and Inefficiency: 1, 7, 10), that Centers 1, 4, and 5 are selected with 
equal weight importance (0.5) considering Cost and Inefficiency. In other 
words, Centers 4 and 5 have low Cost and reasonable levels of In-
efficiency, while Center 1 has a low level of Inefficiency and reasonable 
Cost. 

Combination 6: Equal weighting of Cost and Social Impacts. We 
now focus on total Cost and Social Impact while ignoring Inefficiency. 
Three Centers 1, 5, and 9 are opened, as shown in Fig. 5c. These Centers 
are also selected in Combination 4 (equal weighting of all objectives). 

Routes Time 
(s) 

Scenario 2  Scenario 3 

N1: 4,28,20,12,26,22,17,25,13,15,16,29,31N2: 9,14,12,21,31N3: 
5,19,23,30,27,24,18,31N4: 5,11,24,19,31N5: 5,11,20,15,31 

N1: 5,20,12,27,24,21,31N2: 4,28,18,20,31N3: 5,19,12,14,25,17, 
23,13,15,30,16,29,31N4: 5,11,15,19,31N5: 9,22,26,24,31  

13.7 

N1: 7,12,30,31N2: 1,27,21,18,31N3: 7,29,20,19,24,28,22,11,12,27,31N4: 
10,18,15,17,25,13,16,13,14,26,31N5: 1,23,21,25,31 

N1: 10,29,26,13,19,31N2: 1,12,17,20,13,28,21,31N3: 7,16,24,30,18,27,31N4: 
7,12,11,22,25,14, 15,18,25,31N5: 7,23,27,21,31  

13.8 

N1: 5,27,23,16,13,15,12,30,25,24,15,26,28,29,21,31N2: 3,11,17,12,14,31N3: 
1,18,26,31N4: 1,22,20,25,31N5: 1,19,17,22,31 

N1: 1,13,27,16,22,23,30,12,28,24,15,26,19,20,29,14,11,31N2: 3,15,31N3: 
5,18,25,26,31N4: 3,12,17,31N5: 1,21,17,22,25,31  

13.9 

N1: 5,11,16,31N2: 9,23,16,12,14,25,17,22,26,29,31N3: 1,19,30,15,13,18,31N4: 
5,28,11,24,31N5: 5,20,12,27,24,21,31 

N1: 5,28,11,24,31N2: 5,11,16,31N3: 5,20,12,27,24,21,31N4: 
9,23,16,12,14,25,17,22,26,29,31N5: 1,19,30,15,13,18,31  

82.3 

N1: 5,28,20,19,31N2: 1,19,30,15,13,18,31N3: 4,23,16,12,14,25,17,22,26,29,31N4: 
5,11,21,23,31N5: 5,20,12,27,24,21,31 

N1: 5,11,31N2: 5,28,19,31N3: 1,23,16,12,27,24,21,20,31N4: 1,19,30,15,13,18,31N5: 
4,20,12,14,25,17,22,26,29,21,23,31  

39.5 

N1: 5,11,18,30,31N2: 5,20,12,27,24,21,31N3: 
1,23,16,12,19,30,15,13,18,29,25,31N4: 9,14,25,17,22,26,29,31N5: 5,28,17,31 

N1: 5,28,11,31N2: 1,23,16,12,19,30,15,13,18,31N3: 5,20,12,27,24,21,31N4: 
5,17,18,25,29,31N5: 9,14,25,17,22,26,29,30,31  

47.7 

N1: 5,11,23,31N2: 1,23,16,12,27,24,21,31N3: 5,28,11,31N4: 
10,14,25,17,22,26,29,31N5: 5,20,12,19,30,15,13,18,14,31 

N1: 5,11,14,31N2: 5,20,12,27,24,21,31N3: 1,23,16,12,19,30,15,13,18,31N4: 
10,14,25,17,22,26,29,31N5: 5,28,11,23,31  

55.7  
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Centers 1, 5, and 9 have relatively good levels of Cost and Social Impact 
(Combination 6) simultaneously. Moreover, if we consider Inefficiency in 
addition to Cost and Social Impact, the same Centers are chosen for the 
same reasons previously discussed. Centers 1, 5, and 9 are in districts 
with low Cost of living, and Center 1 has a high Social Impact. 

Combination 7: Equal weighting of Social Impacts and In-
efficiency measures. Here, we investigate Social Impact and Inefficiency 
measures with equal weightings. This leads to selecting three Centers 1, 
5, and 10, as seen in Fig. 5d. This analysis combines Combinations 2 
(Inefficiency) and 3 (Social Impact), where Centers 1, 7, 10 and 1, 3, 5 
were opened for Inefficiency and Social Responsibility, respectively. 
Centers 1 and 10 are very efficient, and Center 5 has a high Social Impact; 
hence these are chosen to be opened. As can be seen, the first candidate 
(Moallem) is selected in Combinations (1–7), which is because Moallem 
is located in the northwest of Kermanshah with the lowest levels of 
traffic. Moreover, its population density, economic development, and 
employment opportunities are high relative to other candidates. 

This analysis shows that three objective functions can be considered 
in different Combinations, which allow decision-makers to decide on the 
best candidates for Centers. For example, if the first and second objective 
functions are considered based on the decision-makers’ preferences and 
the third objective function is ignored, according to Combination 5 (Cost 
and Inefficiency), candidate locations 1, 4, and 5 are selected as Centers. 

5.1.2. A sensitivity analysis of the case study 
We further analyze the case study to understand the behavior of the 

model and approach. The relative importance weighting parameter (θh) 
for each satisfaction level of objective functions (θ1, θ2, θ3) is determined 
by the decision-makers (

∑
hθh = 1, h= 1, 2, 3). In consultation with the 

decision-makers, we identified that Cost has a higher priority than 

Inefficiency and Social Impact and decided that their relative importance 
can be split as 0.5 for Cost, 0.4 for Inefficiency, and 0.1 for Social Impact. 
Additionally, we set the value of the compensation coefficient (γ) for the 
TH function to 0.5, which is a mid-point leading to a solution that is 
neither balanced nor unbalanced. We note that the p-value (ρ) of the Cost 
objective is set to 0.5, which allows the Cost to be up to 50 percent of the 
best-known Cost in each scenario, while the solution remains robust. The 
decision-makers assume that the optimistic–pessimistic parameter (λ) is 
equal to 0.2. When λ is<0.5, this shows that the attitude of the decision- 
makers is pessimistic, and their goal is to evaluate the model under 
pessimistic conditions. In the following, an analysis of λ is presented in 
Table 3, where α is set to 0.5. 

First, we solve the case study with different values of λ, while the 
other parameters are kept constant (ρ = 0.5,α = 0.5, γ= 0.5, θ1= 0.5,θ2 
= 0.4, andθ3 = 0.1). The results are shown in Table 3, where the first 
column shows the values of λ, the next four columns show the overall 
(TH) Cost, Inefficiency, and Social Impacts objective functions, respec-
tively. The final column shows the time required to solve the model. We 
see that with increasing values of λ, Cost and Social Impact increase while 
Inefficiency is not affected (not surprising since uncertainty does not 
directly affect this objective). When a decision-maker’s preferences are 
pessimistic (λ close to 0), we see a minimum “possibility” level con-
cerning a possibilistic event, leading to the values of Cost and Social 
Impact being at the minimum level. Alternatively, from an optimistic 
viewpoint (λ close to 1), we see the opposite, where Cost and Social 
Impact increase. 

We have seen that Cost and Social Impact are very sensitive to λ, and 
the attitude of decision-makers can be effectively modeled by varying 
this parameter. Fig. 6 shows the trade-off between the objectives by 
varying λ, where Social Impact improves and Cost increases with 

Fig. 4. Best fit locations for the centers considering only one objective function. Based on Cost: 4, 5 and 9; Inefficiency: 1, 7 and 10; Social Impacts: 1, 3 and 5 
candidates are opened. 
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increasing λ. We see that there is no point that dominates another point. 
As a final note, we find that decision-makers tend to be pessimistic. In 
the following, we analyze the performance of the proposed model on 
different values of ρ in Table 4. Note here that Inefficiency and Social 
Impact are not dependent on the scenarios, and ρ does not affect them 
directly. The results are shown in Table 4, including all the objective 
functions and the maximum regret for the DPHHC model. These mea-
sures are calculated to examine the model performance while varying ρ 
in Constraint (32). This analysis is a trade-off between the p-robustness 
value and Cost. We also see that the Inefficiency and Social Impact tend to 
improve when the Cost increases. 

The next parameter of interest is γ (compensation coefficient) within 
the TH method. Higher γ values lead to balanced solutions or similar 
satisfaction levels for all objective functions, while decreasing the value 
of γ leads to unbalanced solutions that emphasize the importance of the 

satisfaction levels of the objective functions (θh). Table 5 demonstrates 
that the analysis of the TH method aims to balance the values of the 
membership functions, namely Cost, Inefficiency, and Social Impact. In 
other words, decision-makers prefer to find solutions that are balanced 
considering the objectives. Finally, the results show that increasing 
values of γ lead to relatively equal satisfaction levels of just over 0.5. 
Moreover, as Fig. 7 shows, when the value of γ approaches 1.0, the 

Fig. 5. Best-fit candidate locations for Centers with different Combinations of weights for three objective functions.  

Table 3 
An overview of performance according to the various levels of λ.  

Instance λ Objective Function Time (s) 

TH Cost Inefficiency Social Impact 

1 0 0.583 2.338E + 7 1.282 17.69  207.6 
2 0.1 0.581 2.387E + 7 1.282 18.42  190.8 
3 0.2 0576 2.416E + 7 1.416 19.45  192.4 
4 0.3 0.575 2.486E + 7 1.282 19.88  263.1 
5 0.4 0.573 2.535E + 7 1.282 20.06  275.5 
6 0.5 0.572 2.563E + 7 1.416 21.72  286.4  

Fig. 6. Effect of λ on Cost against Inefficiency and Social Impact.  
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satisfaction levels for all objectives approach each other. Conversely, 
considering the vertexγ = 0–0.2 (the top point in the figure), the satis-
faction levels of the objective functions (0.69, 0.63, 0.52) are 
unbalanced. 

The final parameter of interest is θh, which specifies the relative 
weightings of Cost, Inefficiency, and Social Impact and prioritizes weights. 
The results are shown in Table 6. We consider different Combinations of 
the objective functions and give them weights between 0.1 and 0.7 as a 
measure of their importance. For example, in Combination 6, the second 
objective has the highest priority based on an expert’s preference, and 
hence it is given the value of 0.7. We see as a result that Inefficiency is the 
lowest (0.464) compared to those Combinations where this objective is 
not a priority. As a final note, we see two additional points from the 
analyses conducted and the tables presented. Firstly, we are able to find 
the optimal solutions. Secondly, all run-times are reasonable, between 
13 and 1421 s. This demonstrates that our approach is particularly 
suitable in practical settings. 

In this paper, based on the several parameters of the problem under 
uncertainty, a robust-fuzzy approach was utilized to solve the problem. 
The robust approach used in this paper is the scenario-based robust 

Table 4 
An overview of performance according to the various levels of ρ.  

ρ Objective Function Maximum Regret Time (s) 

TH Cost Inefficiency Social Impact  

0 < 0.1 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible  
0.10 0.343 2.181E + 7 2.234 17.28 0.0008 142.1  
0.15 0.458 2.378E + 7 1.416 18.19 0.0910 149.5  
0.20 0.538 2.416E + 7 1.416 19.45 0.1086 897.7  
0.25 0.565 2.417E + 7 1.416 19.45 0.1088 208.3  
0.30 0.538 2.416E + 7 1.416 19.45 0.1086 632.1  
0.35 0.578 2.436E + 7 1.282 19.15 0.1178 349.5  
0.40 0.579 2.436E + 7 1.282 19.15 0.1178 219.2  

Table 5 
An overview of performance according to the various levels of γ.  

γ Satisfaction Level 1 
(μ1) 

Satisfaction Level 2 
(μ2) 

Satisfaction Level 3 
(μ3) 

0–0.2  0.699  0.528  0.632 
0.3–0.4  0.672  0.573  0.544 
0.5  0.699  0.528  0.632 
0.6  0.672  0.573  0.544 
0.7  0.654  0.573  0.544 
0.8–0.9  0.672  0.573  0.544 
1  0.583  0.544  0.544  

Fig. 7. Effect of γ on the satisfaction level of each objective.  

Table 6 
The results of the relative weightings of objectives’ satisfaction levels θ1, θ2 and θ3.  

Combination θ1 θ2 θ3 Objective Function Time(s) 

TH Cost Inefficiency Social Impact 

1  0.50  0.25  0.25  0.581 2.416E + 7  1.416  19.45  642.8 
2  0.25  0.50  0.25  0.566 2.436E + 7  1.282  19.15  201.5 
3  0.25  0.25  0.50  0.574 2.416E + 7  1.416  19.45  196.7 
4  0.70  0.20  0.10  0.589 2.416E + 7  1.416  19.45  932.4 
5  0.10  0.20  0.70  0.587 2.629E + 7  0.464  20.06  188.2 
6  0.20  0.20  0.10  0.575 2.629E + 7  0.464  20.06  254.6  

M. Shiri et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 211 (2023) 118185

17

approach first introduced by Kouvelis, Kurawarwala, and Gutierrez 
(1992). Additionally, the PCCP approach was used to deal with fuzzy 
parameters that can be applied to possibilistic data and provide a min-
imum satisfaction level for decision-makers. By using this approach and 
applying it to the proposed model, its effectiveness was evaluated. The 
model is also measured by real case study data and the results are pre-
sented in the relevant tables. 

All the results obtained are exact, where the gap is always 0.00 %. 
Hence, it can be concluded that the answers are accurate, and the GAMS 
software achieves optimal results within reasonable computational 
times, thereby requiring no need for heuristic and metaheuristic algo-
rithms for the real case. It should be noted that, due to the circumstances 
of the ambiguous parameters of the problem and their inherent nature, 
this approach was proposed and proved effective. 

The proposed robust-fuzzy approach allows uncertain parameters to 
be adjusted as the parameter values are realized. This approach has the 
flexibility of adjusting the level of conservativeness of solutions while 
preserving the computational complexity of the nominal problem. This 
method offers full control of the degree of conservation for every 
constraint. Additionally, this approach protects against the violation of 
constraints deterministically when only a pre-specified number of the 
coefficient changes. This advantage can be observed in the results of the 
solution to the model, in which all the results from the proposed 
approach are solved efficiently. Moreover, the results demonstrate that 
the performance of the developed approach is similar to the result of 
Torabi and Hassini (2008). Furthermore, this method is more robust and 
reliable because it is able to set balanced and unbalanced solutions based 
on the preferences of decision-makers, and the solutions of this method 
are consistent with the decision preferences (i.e., there is consistency 
between the satisfaction level μ and weight vector θh). In addition, the 
TH method is more flexible as it can find various efficient solutions for 
instances with a certain weight vector θh through changing the γ, and it 
is particularly suited to solving multi-objective MILP models. 

5.2. Investigating problem characteristics 

In the previous section, we demonstrated that the proposed mathe-
matical model is effective at solving a real-world problem. We also see 
that there is sufficient flexibility to allow different solutions to be found 
depending on the specific requirements of decision-makers. However, a 
key aspect that warrants further investigation is how the proposed 
approach works when varying different characteristics of the DPHHC 
problem. Hence, this section considers six numerical examples with 
different sizes and parameter settings, and details of how the problems 
are generated. Then, we conduct an experimental evaluation of the 
performance of the mathematical model in solving these problem 
instances. 

5.2.1. Generating problem instances 
The characteristics of the problem instances, including the number of 

patients (M), nurses (V), center candidates (N), input factors (R), output 
factors (G), and scenarios (S), are shown in Table 7. For each instance, 
the social parameters, service time, and cost parameters are the trape-
zoidal fuzzy numbers from which the second (pessimistic value ψ2) and 

third (optimistic value ψ3) values of each fuzzy number are generated 
based on uniform distribution in the range [lower limit, upper limit]. 
Experts kindly provided the lower and upper limits based on their 
experience and knowledge. Two values (ψ1: most pessimistic value and 
ψ4: most optimistic value) of each fuzzy number are obtained based on 
the method proposed by Jiménez (1996). In other words, we suppose 
that ψ̃ is a trapezoidal fuzzy number that is ψ̃ = (ψ1, ψ2, ψ3, ψ4), where 
ψ1< ψ2< ψ3< ψ4. First, the value of the pessimistic (ψ2) and optimistic 
points (ψ3) are generated randomly, followed by the value of the most 
pessimistic (ψ1) and most optimistic points (ψ4). These are calculated 
using the following equations (Jiménez, 1996): 

ψ1 = (1 − δ1)ψ2 (51)  

ψ4 = (1 − δ2)ψ3 (52)  

where (δ1, δ2) are considered in a range of 0.1 to 0.3 by experts (Uniform 
(0.1,0.3)). 

5.2.2. Results 
Table 8 shows the results of the proposed approach on the problem 

instances. The table shows the TH objective value, satisfaction levels, 
processing time, and gaps for each value of γ considering different 
problem sizes. We see that the TH function is not very sensitive to 
changes of γ. For example, in Instance 3 with γ between 0.6 and 0.9, an 
appropriately unique balanced solution is produced. This is further 
demonstrated in Fig. 8, which shows how increasing γ impacts three 
different satisfaction levels. By increasing γ, we see that all satisfaction 
levels approach the value of 0.55. The important point is that Instances 5 
and 6 are considerably large, requiring significant processing times, so 
we consider a gap of 0.5 % to obtain solutions in reasonable times. 
Nonetheless, we still see that solutions of a reasonable quality cannot be 
found for the largest Instance (6). Hence, the current solution approach 
is limited in its ability to scale to deal with a large number of patients, 
nurses, and centers. Additionally, the optimistic–pessimistic parameter 
(λ) can be considered as one of the more important parameters, so we 
carry out a sensitivity analysis of it, the results of which are presented in 
Table 9. Similar to the case study, when the robust-fuzzy model is solved 
with the lower value of λ, Cost and Social Responsibility are also low. On 
the other hand, the opposite is true when increasing the value of λ. 
Moreover, the best value of Inefficiency will remain fixed because λ does 
not directly affect this objective. For example, in Instance 3, when λ 
approaches 0.5, the values of Cost and Social Impact increase while the 
value of Inefficiency stays fixed. In the other instances, Inefficiency 
changes only slightly due to changes in some of the variables. 

As mentioned previously, the TH approach is used for the MOLP 
model to find a trade-off between the Cost, Inefficiency, and Social Impact 
objective functions. In this approach, the weightings of the Cost, In-
efficiency, and Social Impact satisfaction levels are shown by θ1, θ2, and 
θ3, respectively. As seen in Table 10, we consider three combinations of 
the relative weights of objectives and prioritize them in each Combi-
nation. For example, if decision-makers want to have an efficient HHC 
network, θ2 should be given a higher weight (similar to Combination 2 
of Instance 1, where the value of Inefficiency is 0). Therefore, the results 

Table 7 
The numerical instances.  

Instance Node(I) Patient(M) Nurse(V) Center Candidate(N) Opened Center One1 Service Two2 Services Input Factor(R) Output Factor(G) Scenario 

1 15 9 3 5 2 6–10 5,11 2 2 2 
2 18 12 3 5 3 6–11 12–14 
3 25 15 4 9 3 10–22 23,24 
4 30 18 4 11 4 14–29 12,13 
5 45 28 6 16 6 23–44 17–22 
6 60 35 7 24 7 25–56 57–59  

1 The set of patients who need one medical service. 
2 The set of patients who need two medical services. 
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show that each objective function with a larger value of θh has a greater 
improvement (the value of the improved function is highlighted in each 
Combination) compared to other functions. In this section, we could find 
optimal solutions in most cases, particularly in small and medium sizes 
of instances. For some large-scale problems where the solutions are not 
provably optimal, the gaps are very close to 0. In future research, ap-
proaches like metaheuristics and hybrid approaches such as matheur-
istics can be of great potential for very large size problems. 

6. Conclusion 

Home health care centres are increasingly playing an important role 
in improving health care systems. The sustainable and efficient design of 
an HHC can significantly impact health care services by reducing costs 
and inefficiency and increasing the positive social impact. This paper 
presents a comprehensive multi-objective efficient and sustainable 
optimization model to tackle this problem. Two main measures, DEA 
and CSR, are included in this study. The DEA measure inserted in the 
HHC network makes it possible to reduce the inefficiency of centres. In 

Table 8 
Sensitivity analysis on γ value in the TH method. A “-” implies that no solution was obtained and the time limit expired. For instances with ranges of γ, we report the 
average values for the TH objective, time, and gap measures.  

Instance γ TH Function Satisfaction Time (s) Gap% 

Level 1 Level 2 Level 3 

1 0.00  0.643 0.999 0.935 0.000 1.044  0.000000  
0.05  0.611 1.000 0.935 0.000 2.266  0.000000  
0.10  0.585 0.341 1.000 0.494 2.567  0.000000  
0.20–0.60  0.504 0.342 1.000 0.494 23.28  0.000000  
0.70  0.422 0.341 1.000 0.494 5.743  0.000000  
0.80–0.90  0.382 0.342 1.000 0.494 33.79  0.000000  
1.00  0.342 0.342 0.342 0.494 11.05  0.000000 

2 0.00–0.10  0.701 0.677 0.741 0.693 21.20  0.000000  
0.20  0.698 0.676 0.741 0.693 23.77  0.000000  
0.30–0.90  0.687 0.677 0.741 0.693 73.58  0.000100  
1.00  0.677 0.677 0.677 0.693 19.06  0.000000 

3 0.00–0.10  0.750 1.000 0.852 0.398 434.1  0.000000  
0.20–0.50  0.636 0.994 0.852 0.436 4691  0.000016  
0.60–0.90  0.563 0.540 0.712 0.652 2320  0.000004  
1.00  0.539 0.539 0.539 0.652 522.3  0.000000 

4 0.00–0.05  0.783 1.000 0.678 0.681 2850  0.000035  
0.10  0.775 0.999 0.678 0.681 2459  0.000000  
0.20–0.40  0.765 1.000 0.678 0.681 9569  0.000004  
0.50  0.732 0.999 0.678 0.681 1070  0.000000  
0.60  0.728 0.742 0.736 0.723 859.2  0.000015  
0.70–0.90  0.725 0.743 0.736 0.723 5502  0.000005  
1.00  – – – – –  –  
0.00–0.50  0.674 0.795 0. 916 0.312 207.3  0.000233 

5 0.10  0.638 0.794 0.916 0.312 1912  0.000538  
0.20  0.613 0.469 0.882 0.597 1002  0.000917  
0.30–0.40  0.586 0.468 0.882 0.597 990.5  0.011152  
0.50  0.559 0.469 0.882 0.597 1165  0.020526  
0.60  0.541 0.468 0.882 0.597 1025  0.027894  
0.70  0.556 0.552 0.839 0.548 999.4  0.000870  
0.80–0.90  0.539 0.523 0.839 0.548 1031  0.000352  
1.00  0.480 0.480 0.791 0.496 1036  0.043126 

6 0.00–0.30  0.731 0.775 0.781 0.667 629.4  0.000099  
0.40  0.657 0.607 0.768 0.695 3173  0.054662  
0.50  0.704 0.775 0.781 0.667 1032  0.000911  
0.60  0.700 0.688 0.737 0.723 1030  0.000070  
0.70–0.80  0.696 0.689 0.737 0.723 1026  0.004729  
0.90  0.692 0.690 0.737 0.723 2989  0.000158  
1.00  0.689 0.689 0.689 0.723 1063  0.000421  

Fig. 8. The effect of γ on the satisfaction level of each objective function in Instance 3.  
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CSR, the opening of a new centre in each district not only creates 
employment opportunities for nurses as human capital, but also in-
creases the economic development in less developed districts. Therefore, 
the motivation is to provide a feasible approach that can assist stake-
holders in identifying the best locations for opening centres. To this end, 
we conduct a numerical study consisting of two parts. The first is a real 

case study of the Kermanshah province in Iran, and the second is to 
understand how the approach scales and deals with varying problem 
characteristics. 

The results demonstrate that practically viable solutions can be 
found by using the proposed approach, and in reasonable time frames. 
That is, considering several characteristics of centres (e.g., population, 
living costs, pollution levels), the proposed model is able to identify a 
subset of potential locations which are typically the best locations for 
centres. Moreover, the decision-makers are able to test different sce-
narios (e.g., prioritizing inefficiency over cost or social impact, for 
example), leading to different choices for the opening of centres. A study 
of the different problem characteristics, particularly increasing 
numbers, shows that our approach scales well. 

The managerial implications for health networks in terms of 
improving collaboration and coordination with home health care ser-
vices should be complemented by parallel actions by public authorities 
in order to be effective during an epidemic. Furthermore, if govern-
mental organizations want to decide how to allocate their workers to 
patients and distribute drugs in future health crises, they will need to 
develop their health care services and logistics abilities vastly. This 
needs expertise in proper medicine techniques, logistics planning, po-
tential suppliers, and quality guarantees. Creating these abilities can 
either be performed internally or, more efficiently, by depending on 
stand-by professional groups, including logistics services, and home 
health care systems set up in response to a severe crisis. On the other 
hand, owing to the dynamic nature of the problem, most of the infor-
mation on aspects such as the established cost of health centres and the 
times for services exists in an uncertain environment that is considered 
here. This shows that this design and proposed approach are useful for 
policymakers and governments in a real situation. These teams need to 
support operating performance at regional levels in addition to strategic 
decision-making. 

While we see that the proposed mathematical modeling is effective, 
it is just an initial step towards tackling HHC problems, and there are a 
number of potential limitations. For example, one important factor is the 
approaches to scale in dealing with very large-scale problems, where 
time considerations also become important (e.g., solving multiple sce-
narios quickly). Incomplete approaches like metaheuristics and hybrid 
approaches such as matheuristics may have great potential in such 

Table 9 
Sensitivity analysis on λ value in the robust-fuzzy method. A “-” implies that no solution was obtained and the time limit expired.  

Instance λ TH Function Objective Function Time (s) Gap% 

Cost Inefficiency Social Impact 

1  0.1  0.634 2.341E + 8 0.240 11.57 3.117  0.000000   
0.2  0.477 2.736E + 8 0.000 11.93 7.419  0.000000   
0.3  0.658 3.212E + 8 0.240 12.38 0.920  0.000000   
0.5  0.518 3.986E + 8 0.000 13.10 2.412  0.000000 

2  0.1  0.692 2.572E + 8 0.517 11.93 46.70  0.000000   
0.2  0.690 3.002E + 8 0.517 12.35 13.01  0.000000   
0.3  0.697 3.433E + 8 0.517 12.77 27.45  0.000000   
0.5  0.648 4.002E + 8 0.794 13.53 587.7  0.000067 

3  0.1  0.702 3.538E + 8 0.442 17.80 1437  0.000155   
0.2  0.590 4.084E + 8 0.442 18.12 3320  0.000081   
0.3  0.635 4.741E + 8 0.442 18.75 175.1  0.000000   
0.5  0.697 6.055E + 8 0.442 20.00 439.3  0.000003 

4  0.1  0.590 4.084E + 8 0.442 18.12 8139  0.000070   
0.2  0.732 5.506E + 8 1.284 24.52 1074  0.000014   
0.3  0.734 6.384E + 8 1.284 25.28 3467  0.000000   
0.5  – – – – –  – 

5  0.1  0.648 7.428E + 8 0.984 35.71 1112  0.000221   
0.2  0.559 8.698E + 8 0.883 37.00 1165  0.020526   
0.3  – – – – –  –   
0.5  – – – – –  – 

6  0.1  0.707 8.607E + 8 1.999 41.68 1070  0.000120   
0.2  0.704 1.003E + 9 1.705 42.92 1032  0.000911   
0.3  0.687 1.152E + 9 1.705 44.26 1078  0.000188   
0.5  0.732 1.420E + 9 1.270 46.95 1045  0.000055  

Table 10 
The results of the relative weightings of objectives in three Combinations: (I) 
θ1=θ2< θ3, (II) θ1=θ3< θ2, and (III) θ2=θ3 < θ1 for all instances.  

Instance Combination Objective Function Time 
(s) 

Gap 
% 

Cost Inefficiency Social 
Impact 

1 I 2.777E 
+ 8 

0.240 11.977 7 0  

II 2.736E 
+ 8 

0.000 11.938 9 0  

III 2.656E 
+ 8 

0.129 11.900 8 0 

2 I 3.002E 
+ 8 

0.517 12.355 26 0  

II 2.893E 
+ 8 

0.517 11.979 16 0  

III 2.893E 
+ 8 

0.517 11.979 16 0 

3 I 4.359E 
+ 8 

2.991 18.516 30 0  

II 4.084E 
+ 8 

0.442 18.126 43 0  

III 4.068E 
+ 8 

0.442 18.100 92 0 

4 I 5.915E 
+ 8 

3.990 24.934 1587 0  

II – – – – –  
III 5.506E 

+ 8 
1.284 24.527 25.109 0 

5 I,II,III – – – – – 
6 I 1.014E 

+ 9 
1.999 43.022 1876 0  

II 1.021E 
+ 9 

1.270 42.526 2020 0  

III 1.003E 
+ 9 

1.705 42.929 5376 0  
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situations. Furthermore, when increasing the number of scenarios, sce-
nario reduction approaches can usefully be used. Given the uncertain 
aspects of the problem, other methods tailored to deal with uncertainty, 
such as stochastic programming, can also be of great benefit. Finally, the 
problem itself can be extended in several ways. For instance, disruptions 
to the HHC network can pose problems if some locations are affected 
(such as in earthquakes), leading to increased demands and closure of 
routes that require additional resiliency measures. Another example is 
where matching a nurse’s skills levels to the requirements of patients 
may be of significant interest. 

The proposed model can be implemented to care for patients with 
Covid-19. However, if some patients have tested positive for Covid-19, 
to reduce the transmission rate of the virus, the model can be appro-
priately modified as part of a future study. Some aspects to consider in 
this context are whether Covid-19 patients might need to be visited only 
by certain nurses who are not allowed to treat other patients, in which 
case nurses need to be categorized. In such circumstances, the network 

costs increase, but at the same time lead to increased patient satisfaction 
and help to reduce death rates. 
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Appendix A 

ars
i − ars

j + capvxs
ijv ≤ capv − dj ∀v ∈ V, i, j ∈ I, s ∈ S (A1)  

∑

j∈I

∑

v∈V
xs

mjv = βm ∀m ∈ M, s ∈ S (A2)  

∑

i∈I
xs

imv −
∑

j∈I
xs

mjv = 0 ∀v ∈ V,m ∈ M, s ∈ S (A3)  

∑

n∈N

∑

m∈M
xs

nmv = 1 ∀v ∈ V, s ∈ S (A4)  

∑m+n+1

i=n+1
xs

ihv = 1 ∀v ∈ V, h ∈ H, s ∈ S (A5)  

am ≤ sts
iv ≤ bm ∀i ∈ I,m ∈ M, v ∈ V, s ∈ S, i = m (A6)  

∑

m∈M
dm

∑

j∈I
xs

mjv ≤ capv ∀v ∈ V, s ∈ S (A7)  

∑

i∈I

∑

v∈V
xs

niv ≤ M yn ∀n ∈ N, s ∈ S (A8)  

xs
ijv, yj ∈ {0, 1}, sts

iv ≥ 0 ∀i, j ∈ N, v ∈ V, s ∈ S (A9)  
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Yalçındağ, S., & Lanzarone, E. (2021). Merging short-term and long-term planning 
problems in home health care under continuity of care and patterns for visits. Journal 
of Industrial & Management Optimization. 

Yalçındağ, S., Matta, A., Şahin, E., & Shanthikumar, J. G. (2016). The patient assignment 
problem in home health care: Using a data-driven method to estimate the travel 
times of care givers. Flexible Services and Manufacturing Journal, 28(1–2), 304–335. 

Yang, M., Ni, Y., & Yang, L. (2021). A multi-objective consistent home healthcare routing 
and scheduling problem in an uncertain environment. Computers & Industrial 
Engineering, 160, Article 107560. 

Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an integrated sustainable- 
resilient supply chain: A pharmaceutical case study. Transportation Research Part E: 
Logistics and Transportation Review, 103, 109–142. 

Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). 
Sustainable design of a closed-loop location-routing-inventory supply chain network 
under mixed uncertainty. Transportation Research Part E: Logistics and Transportation 
Review, 89, 182–214. 

Zhang, T., Yang, X., Chen, Q., Bai, L., & Chen, W. (2018). Modified ACO for home health 
care scheduling and routing problem in Chinese communities. In 2018 IEEE 15th 
International Conference on Networking, Sensing and Control (ICNSC) (pp. 1–6). IEEE.  

Zheng, C., Wang, S., Li, N., & Wu, Y. (2021). Stochastic joint homecare service and 
capacity planning with nested decomposition approaches. European Journal of 
Operational Research. 

M. Shiri et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0957-4174(22)01350-1/h0380
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0380
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0380
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0385
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0385
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0385
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0390
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0390
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0390
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0395
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0395
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0395
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0400
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0400
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0400
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0405
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0405
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0405
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0410
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0410
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0410
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0415
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0415
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0415
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0415
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0420
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0420
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0420
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0425
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0425
http://refhub.elsevier.com/S0957-4174(22)01350-1/h0425

	A sustainable and efficient home health care network design model under uncertainty
	1 Introduction
	2 Literature review
	2.1 Multi-objective HHC problems
	2.2 HHC problems under uncertainty
	2.3 Multi-depot and multi-care HHC problems

	3 Problem description
	3.1 Deterministic mathematical model
	3.1.1 Notations

	3.2 Objective function 1: Total Cost
	3.3 Objective function 2: Inefficiency
	3.4 Objective function 3: Social impacts
	3.5 Mixed Robust-Fuzzy model
	3.5.1 Objective function 1: Total Cost in uncertain environment
	3.5.2 Objective function 3: Social impacts in uncertain environment


	4 Solution methodology
	4.1 Phase 1: The P-robust model
	4.2 Phase 2: Possibilistic chance constrained programming
	4.3 Phase 3: Torabi and Hassini approach

	5 Experimental evaluation
	5.1 Case study
	5.1.1 Effect of different objective weights
	5.1.2 A sensitivity analysis of the case study

	5.2 Investigating problem characteristics
	5.2.1 Generating problem instances
	5.2.2 Results


	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Declaration of Competing Interest
	References


