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Abstract

Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) 

are major pregnancy complications. Although PTB and pPROM have common etiologies, they 

arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism 

in both conditions. Balanced inflammation is required for feto-placental growth; however, 

overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term 

and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk 

of PTB and pPROM suggest that there are several modes of the generation of inflammation which 

may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), 

which provides structure, support and protection to the intrauterine cavity, is one of the key 

contributors of inflammation. Localized membrane inflammation helps tissue remodeling during 

pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive 

development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal 

(EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at 

term or in response to risk factors (preterm) can accelerate senescence and promote a terminal 

state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix 

and destabilizes membrane function. Inflammatory mediators from damaged membranes are 
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propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent 

maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation 

are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal 

membrane cellular senescence, transitions, and the generation of inflammation that contributes to 

term and preterm parturitions.
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1. Background/Introduction

Factors that maintain human pregnancy and signals that can initiate labor and delivery 

(parturition) are being investigated by many laboratories. Several reports have expanded 

knowledge on various topics related to pregnancy and childbirth in the past decade but still 

several ‘unknowns’ exist. These knowledge gaps can be considered one of the major reasons 

for adverse pregnancy outcomes that complicate pregnancies around the globe, specifically, 

preterm births (gestation <37 weeks). The World Health Organization estimated the global 

preterm birth rate for singleton gestation at 10.5% (Beck et al., 2010; Muglia & Katz, 

2010; Rubens et al., 2014). A recent report by the March of Dimes, USA showed that the 

United States experienced an almost 3-decade rise in the preterm birth rate, beginning in 

1980 and peaking in 2006 at 12.8%. Although this rate declined in recent years to 11.4%, 

preterm birth still accounts for 1 in 9 neonates born every year (McCabe, Carrino, Russell, 

& Howse, 2014). Approximately 65% of preterm births are ‘spontaneous’ (designated as 

PTB in the rest of this manuscript), while the other 35% are ‘indicated’ preterm births 

with known maternal or fetal clinically indicated risks that force early delivery (Andrews 

et al., 2006; Beck et al., 2010; Di Renzo & Roura, 2006; Goldenberg, Culhane, lams, & 

Romero, 2008; Kramer et al., 2012; R. Romero, S.K. Dey, & S.J. Fisher, 2014a; Villar 

et al., 2012). Preeclampsia, gestational diabetes, fetal growth restrictions, multiple fetal 

pregnancies, and fetal anomalies are some of the indications for early delivery (Ananth & 

Vintzileos, 2006). PTB has an unknown etiology and presents with two distinct phenotypes: 

PTB with intact fetal membranes and PTB that follows preterm pre-labor rupture of the 

membranes (pPROM) (Goldenberg et al., 2008; Villar et al., 2012). A reduction in preterm 

births, regardless of whether spontaneous or iatrogenic, is extremely important, not only 

to reduce the rate of neonatal mortality (~1 million/year globally) or morbidity, but also 

to minimize the societal impact of prematurity (low birth weight) as preterm babies may 

experience several adult-onset diseases earlier in life (Beck et al., 2010). Adult-onset 

diseases seen in preterm babies are partly linked to epigenetic changes due to improper 

programming of the fetus (D.J. Barker et al., 2010; Devaskar & Thamotharan, 2007; Garg 

et al., 2012; Robins, Marsit, Padbury, & Sharma, 2011). In utero fetal growth is a timed 

event (~40 weeks of gestation) until delivery and epigenetically driven developmental 

programming occurs at each stage of growth (D.J. Barker et al., 2010). This growth and 

programming is properly nourished by an in utero environment where any disturbances 

can alter fetal developmental programming impacting organ maturation and predisposing 
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individuals to adult-onset diseases (D.J. Barker et al., 2010; Barker et al., 2013; Barker, 

Thornburg, Osmond, Kajantie, & Eriksson, 2010; Thornburg, 2015; Wallack & Thornburg, 

2016). Therefore, it is important to know the mechanisms and pathways leading to PTB as it 

is critical to reduce PTB risk.

Parturition is initiated when fetal growth is completed. Biochemicals released from matured 

fetal organs indicate the completion of pregnancy and transition quiescent uterine tissues 

to an active state of labor (Gao et al., 2015; Mendelson, Montalbano, & Gao, 2017). 

Maternal decidua, myometrium and cervix serve as various pregnancy clocks and their 

coordinated activation sets off an alarm in response to fetal signals, resulting in parturition 

(Gonzalez, Dong, Romero, & Girardi, 2011; Menon, Bonney, Condon, Mesiano, & Taylor, 

2016; Menon, Mesiano, & Taylor, 2017; Mesiano et al., 2002; Mesiano, Wang, & Norwitz, 

2011; Norwitz et al., 2015; Park, Park, Lockwood, & Norwitz, 2005; Smith, Mesiano, & 

McGrath, 2002). On the fetal side, placental clock signals change in the endocrine milieu 

as the placenta ages (Smith, 1998; Smith & Nicholson, 2007). Untimely events, initiated 

either by the mother or the fetus in response to various risk exposures, preset these alarms, 

leading to premature activation of the labor cascade, ending in PTB. Understanding the 

mechanisms by which various feto-maternal tissues maintain pregnancy and molecular 

and physiologic signals that can lead to parturition at term are essential to decipher the 

mechanisms leading to PTB and pPROM. Based on current knowledge, PTB in a given 

subject may be considered as a disease of the placenta (Faye-Petersen, 2008), endometrium/

decidua (Bukowski et al., 2017; Pavlicev & Norwitz, 2018; Petraglia, Arcuri, de Ziegler, 

& Chapron, 2012; Rosen, Kuczynski, O'Neill, Funai, & Lockwood, 2001; Sinkey et al., 

2020; Snegovskikh et al., 2009), myometrium (Bukowski et al., 2017; Huszar & Naftolin, 

1984; Olson et al., 2003; Tattersall et al., 2008) and/or cervix (Keelan, 2018; Mercer et 

al., 2000; Vink et al., 2016; Yellon, 2017). In a classic review by Brosens et al, placental 

bed vascular diseases, classification of defective deep placentation associated with different 

obstetrical syndromes based on salient features of placentation defects have been described 

(Brosens, Pijnenborg, Vercruysse, & Romero, 2011). Multitudes of risk factors can impact 

development of feto-placental units and predispose them to inflammatory activation early on 

during pregnancy. These classifications are based on clinical and basic research evidences. 

The majority of current interventions for controlling preterm labor target these organs 

based on their pathologic involvement. However, systematic reviews and meta-analysis have 

shown limited success in delaying PTB in specific subsets of subjects by targeting maternal 

uterine tissues (Conde-Agudelo, Romero, & Nicolaides, 2020; Dodd, Flenady, Cincotta, & 

Crowther, 2008; Fernandez-Macias, Martinez-Portilla, Cerrillos, Figueras, & Palacio, 2019; 

Miyazaki et al., 2016; Vogel, Nardin, Dowswell, West, & Oladapo, 2014). This is due to the 

complexity of pathways leading to PTB and it is also unlikely that PTB is a single organ or 

single individual (maternal) disorder. Limited clinical and diagnostic success achieved in the 

past decades has been overshadowed by the high rate of PTB around the globe. Disparity 

in the PTB rate among different ethnic groups (Manuck et al., 2015; Menon, 2008), and 

the occurrence of pPROM in a major subset, further complicates our understanding of the 

pathophysiology of PTB. There are few clinical trials of pPROM leading to PTB (Berghella 

& Saccone, 2019; Di Sarno, Raffone, & Saccone, 2019; Langen et al., 2018), even though 

pPROM is associated with an excessive risk of neonatal morbidity and mortality, early 

Menon et al. Page 3

Semin Immunopathol. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neonatal infections, bronchopulmonary dysplasia, and necrotizing enterocolitis (Schmitz et 

al., 2019) .

pPROM is associated with 30-35% of all PTB and the number of cases of pPROM in the 

United States is close to 175,000/year (Menon & Moore, 2020). These numbers exceed 

all indicated PTBs and have been steady for decades. pPROM is a very poorly studied 

syndrome. While several tests are available to confirm a diagnosis of pPROM post facto 
(e.g. pooling, fern tests, nitrazine, and Amnisure®), there is no reliable method to predict 

pPROM a priori because the precise pathophysiologic causes or biomarkers for pPROM 

are unknown (Elci, Gunes Elci, & Sayan, 2020; Kim et al., 2007; Mercer & Lewis, 1997; 

Simhan & Canavan, 2005). A limited number of studies have been done on pPROM to 

clearly understand its etiology, pathophysiology, and early diagnostic markers to provide 

timely interventions to minimize the incidence of rupture and subsequent PTB (Menon 

& Moore, 2020). PTB and pPROM share similar causal factors, show a redundancy in 

biomarkers and exhibit similarities in clinical presentations. However, the mechanisms and 

pathways leading to PTB and pPROM are different and should therefore be considered 

distinct phenotypes for clinical management (Menon, 2008, 2019; Menon & Fortunato, 

2004). Clinicians are often dealt management dilemmas due to similarities in the clinical 

course of these syndromes and/or due to limited management strategies. Therefore, it will be 

beneficial to understand the mechanisms leading to these conditions that can provide a better 

diagnosis and interventions.

The high rate of PTB and pPROM can partly be blamed on the availability of limited or 

reliable basic science data (mechanisms, pathways, and biomarkers) to synthesize evidence 

that is needed to conduct clinical trials or provide proper management. As mentioned above, 

many current interventions target maternal uterine tissues as they are the timekeepers and 

final promoters of labor and delivery. Fetal signals (endocrine, paracrine, immune etc.) that 

can offset maternal clocks by transitioning them from a quiescent to an active state are 

critical contributors of parturition at term and preterm. Therefore, current research has been 

focused heavily on the fetal side, especially on fetal-derived intrauterine tissues such as 

the placenta and placental membranes (the amniochorionic membrane or fetal membrane). 

Fetal signals (their tissue source, pathways of generation, characteristics, propagation and 

maternal tissue targets) are currently being investigated. Understanding communication 

signals regarding fetal readiness for delivery and the facilitation of delivery after a normal 

pregnancy and parturition, will immensely benefit our pursuit in designing strategies to 

reduce the premature development of fetal signals leading to preterm labor.

This review is focused on certain novel mechanistic aspects of fetal tissue-based signals, 

their generation and propagation to maternal tissues, and how this indicates parturition. 

The placenta is a well-studied fetal organ during pregnancy and parturition (Andrews et 

al., 2006; Cao, Stout, Lee, & Mysorekar, 2014; Challis et al., 2009; Faye-Petersen, 2008; 

Mor & Kwon, 2015; Seferovic et al., 2019). However, the fetal membranes are often 

ignored or poorly studied, as their contributions are not regarded as anything beyond the 

sac that forms the cavity (Menon, 2016). Recent advances in cell biology (Abrahams 

et al., 2013; Arechavaleta-Velasco, Ogando, Parry, & Vadillo-Ortega, 2002; Canzoneri et 

al., 2013; Dunand et al., 2014; Feng, Allen, Marinello, & Murtha, 2019; Gomez-Lopez, 
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Hernandez-Santiago, Lobb, Olson, & Vadillo-Ortega, 2013; C.E. Kendal-Wright, 2007; 

Lappas, 2013; Malak et al., 1993; Myatt & Sun, 2010; Sato, Collier, Vermudez, Junker, 

& Kendal-Wright, 2016; Sun, He, & Yang, 2002), organ-on-chip (Gnecco et al., 2017; L. 

Richardson et al., 2019), and mechanistic models (El et al., 2006; Kumar et al., 2009; 

Kumar et al., 2011) have made tremendous advances in fetal membrane biology research. 

There are multiple reasons for using fetal membranes for our studies: 1) they are fetal in 

origin (Fox, 1981); 2) they are structurally, mechanically and functionally different to the 

placenta, an organ that has been well studied (Menon, Richardson, & Lappas, 2018); 3) fetal 

membranes are a rich source of functionally relevant biochemicals that help the pregnancy 

and promote parturition; 4) membranes start their growth along with the fetus and provide 

mechanical, structural, immune, antimicrobial and endocrine functions to the uterine cavity 

that are distinct from the placenta (Fox, 1981; Menon, 2016); 5) membranes are a rich 

source of stem cells, a property that has been widely used in regenerative medicine (Nogami 

et al., 2016; Saito, Lin, Murayama, Hashimoto, & Yokoyama, 2012); and 6) pPROM is 

considered a ”disease of the fetal membranes” (Murtha & Menon, 2015). Therefore, we 

have been using fetal membranes, membrane-derived cells, and the membrane extracellular 

matrix (ECM) as a model to better understand the contributions to the mechanisms of this 

tissue, as well as to use it as a proxy to understand fetal contributions to pregnancy and 

parturition at both term and preterm. We are not attempting to describe the structure and 

development of fetal membranes here as it has been done in several other recent reviews 

(Martin, Richardson, da Silva, Sheller-Miller, & Menon, 2019; Menon et al., 2018). We 

have been studying fetal membranes using an explant culture approach that we developed 

in the early 1990s (Fortunato, Menon, Swan, & Lyden, 1994), and modified over time or 

by using cells from the fetal membranes (amnion epithelium, amnion mesenchyme, chorion 

mesenchyme and chorion trophoblast) (Jin, Richardson, Sheller-Miller, Zhong, & Menon, 

2018; L. Richardson & Menon, 2018). By using fetal membrane tissues and cells as a model 

system, we have developed two independent mechanistic pathways that can contribute to 

normal term birth and also how membrane cells continue down the PTB and pPROM 

pathways. The rest of the review will focus on how fetal membrane cells help to maintain 

pregnancy and will detail two novel mechanistic pathways that send signals to the mother to 

promote parturition, senescence and cellular transitions.

2. Inflammatory response at term and in PTB

Prior to detailing the mechanisms by which fetal membranes maintain pregnancy and 

promote parturition by controlling inflammation, we will summarize the overall role 

of inflammation in pregnancy and parturition. Feto (placenta, membranes, umbilical 

cord) maternal (decidua, myometrium, and cervix) reproductive tissues maintain immune 

homeostasis during pregnancy and tolerate the semi-allogeneic fetus until parturition 

(Alijotas-Reig, Llurba, & Gris, 2014; Chavan, Griffith, & Wagner, 2017; Mor, Cardenas, 

Abrahams, & Guller, 2011; Negishi, Takahashi, Kuwabara, & Takeshita, 2018b; 

Schumacher, Sharkey, Robertson, & Zenclussen, 2018; Svensson-Arvelund et al., 2015). 

Balanced immune interactions by feto-maternal units ensure pregnancy maintenance 

and feto-placental growth (Gomez-Lopez, StLouis, Lehr, Sanchez-Rodriguez, & Arenas-

Hernandez, 2014; Kshirsagar et al., 2012; Negishi et al., 2018b). Pregnancy success 
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is determined by immune regulatory mechanisms at the feto-maternal interface tissues, 

ensuring that both innate and adaptive immune cells aptly support feto-placental 

development by regulating localized inflammation while remodeling uterine tissues 

(Erlebacher, 2013; Lash, 2015; S. Liu et al., 2017; Nancy & Erlebacher, 2012; Schliefsteiner 

et al., 2017). On the contrary, parturition in both humans and animals is associated with 

a physiologic inflammatory process (Dudley, 1999; Goldenberg et al., 2008; Gomez-Lopez 

et al., 2011; R. Romero, S. K. Dey, & S. J. Fisher, 2014b; Romero, Gotsch, Pineles, 

& Kusanovic, 2007). This inflammation required to overcome immune balance at the feto-

maternal interface tissues and to induce parturition associated changes in maternal tissues 

is characterized by the infiltration and activation of immune cells (both innate and adaptive 

immune cells) into the feto-maternal interface, along with the increased production of 

pro-inflammatory mediators (e.g. IL- 1β, IL-6, IL-8, TNF-α, GM-CSF etc.) and decreased 

levels of anti-inflammatory mediators (e.g. IL-10, TGF-β etc.) (Boonkasidecha, Kannan, 

Kallapur, Jobe, & Kemp, 2017; Bukowski et al., 2017; Cappelletti et al., 2017; Edey et 

al., 2016; Gomez-Lopez et al., 2014; Hamilton et al., 2012; Osman, Young, Jordan, Greer, 

& Norman, 2006; Peltier, 2003; Rinaldi, Makieva, Saunders, Rossi, & Norman, 2017; Xu 

et al., 2018; Zhang et al., 2017). Events contributing to physiologic immune imbalances 

and inflammation at term include, but are not limited to, signals of fetal organ maturation 

(Mendelson et al., 2017; Montalbano, Hawgood, & Mendelson, 2013), fetal membrane 

stretch (Mohan, Sooranna, Lindstrom, Johnson, & Bennett, 2007), stress- induced damage 

to the uterine tissues promoting immune cell chemotaxis (C. S. Buhimschi et al., 2009; 

Jauniaux, Poston, & Burton, 2006; Sharp, Heazell, Crocker, & Mor, 2010; Wadhwa, 

Culhane, Rauh, & Barve, 2001), and fetal membrane-placental-decidual senescence (Behnia, 

Sheller, & Menon, 2016a; Behnia, Taylor, et al., 2015b; Bonney et al., 2016; Hirota 

et al., 2010a; Menon, Behnia, et al., 2016; Polettini et al., 2015b). The disruption of 

immune homeostasis leading to parturition is expedited by both (Chen & Chen, 2013; 

Hinz & Scheidereit, 2014) endocrine and paracrine mediators generated when fetal growth 

is complete (Buhimschi et al., 2008; Dudley, 1999; Golightly, Jabbour, & Norman, 2011; 

lliodromiti et al., 2012; Keelan et al., 2003; Mendelson, 2009; Shynlova, Tsui, Jaffer, & 

Lye, 2009; Trivedi et al., 2012). Premature disruption of immune homeostasis and an 

overwhelming host inflammatory response due to infectious or other noninfectious risks can 

lead to PTB and pPROM (Romero et al., 2014b; Romero et al., 2006; Xu et al., 2018). 

Histologic chorioamnionitis (HCA), the infiltration of neutrophils into fetal membranes, is 

often associated with PTB and pPROM and contributes to neonatal morbidity and mortality 

(Chaiworapongsa et al., 2002; Gomez-Lopez, Romero, Xu, et al., 2017; Menon, Taylor, 

& Fortunato, 2010). Similarly, decidual cells and immune cells residing in decidua are in 

an immune harmonious state(Mclntire, Ganacias, & Hunt, 2008). Endogenous activation of 

inflammation due to decidual senescence(Cha, Hirota, & Dey, 2012) or immune activation 

in response to signals from fetus can disrupt immune homeostasis of this tissue. (Bartmann 

et al., 2014; Erlebacher, 2013; Gomez-Lopez et al., 2014; J. Liu, Dong, Wang, & Li, 2019; 

S. Liu et al., 2017; Mor, 2008; Presicce et al., 2015; Rinaldi et al., 2017; Schumacher et 

al., 2018). In summary, uterine tissue immune balance, a harmonious situation between 

both maternal and fetal tissues and immune cells harbored by them, is a key factor that 

maintains pregnancy (Alijotas-Reig et al., 2014; Arenas-Hernandez et al., 2016; Challis et 

al., 2009; Erlebacher, 2013; Figueiredo & Schumacher, 2016; Gomez-Lopez et al., 2014; 
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King, Kelly, Sallenave, Bocking, & Challis, 2007; S. Liu et al., 2017; Mor, 2008; Negishi, 

Takahashi, Kuwabara, & Takeshita, 2018a; Peltier, 2003; Rinaldi et al., 2017; Song & Shi, 

2014; Southcombe, Tannetta, Redman, & Sargent, 2011; Szekeres-Bartho, 2002).

Pro-inflammatory activity is one of the key triggers of parturition at term and preterm. 

One is a physiologic and natural response, while the other is a pathologic and untimely 

event. Increased pro-inflammation imbalances and collapses all other homeostatic states 

of various pregnancy-associated tissues to ensure parturition. It is hypothesized that each 

tissue has its own inflammatory contributions, and we have been investigating how fetal 

membranes either endogenously, and/or in response to exogenous mediators, lead to an 

inflammatory state that can cause cellular and fetal membrane ECM degradation and a 

dysfunctional membrane status. A dysfunctional membrane loses the following capacities: 

1) mechanical and structural disruption to support intrauterine cavity; and 2) controlling 

structural damage that contributes to functional disruptions such as a loss of antimicrobial 

resistance, immunologic compromises, and a loss of permeability functions resulting in 

fetal membrane collapse. In the next two segments, we will review how the endogenous 

activation of inflammatory mediators, primarily inflammatory cytokines, chemokines, and 

metalloproteinases, causes localized inflammation in the fetal membranes. We will review 

whether these are capable of disrupting membranes to predispose them to either rupture or 

generate inflammation to cause labor.

2.1. Fetal membrane stretches and strain and inflammation

The amnion membrane component of the fetal membranes, which is constantly hydrated 

by the amniotic fluid, is highly elastic and can withstand pressure without undergoing 

any rupture during normal pregnancy. Pressure on and stretching of the amnion membrane 

in utero are caused by the growing fetus and an increase in amniotic fluid volume as 

gestation progresses (Adams Waldorf et al., 2015; C. E. Kendal-Wright, 2007). The amnion 

ECM is comprised of tropoelastins, elastin cross-linking enzymes, lysyl oxidase, and lysyl 

oxidase-like (LOXL) enzymes that contribute to the amnion’s mechanical function (Bryant-

Greenwood, 1998; Malak et al., 1993; Polettini et al., 2016; Strauss, 2013). Polettini et al. 

showed that changes to these enzymes can predispose the membrane to premature rupture, 

resulting in preterm delivery (Polettini et al., 2016). The membrane undergoes mechanical 

stretching as it grows and develops alongside the fetus, distends further at term and detaches 

from the uterine wall (Joyce et al., 2016; Millar, Stollberg, DeBuque, & Bryant-Greenwood, 

2000). This has been validated in classical studies utilizing an in vitro model of amnion 

tissue stretch (Buerzle et al., 2013), mimicking fetal descent (Burzle, Mazza, & Moore, 

2014; Mauri, Ehret, et al., 2015; Mauri, Perrini, Ehret, De Focatiis, & Mazza, 2015). 

and a balloon inflation approach to mimic a situation like polyhydramnios in non-human 

primates. Both studies showed stretching-induced inflammation (Adams Waldorf et al., 

2015). Over-distension of the membranes at term or preterm is also mimicked in vitro 
by cyclic stretching of the amnion (Joyce et al., 2016; C. E. Kendal-Wright, 2007; Kendal-

Wright, Hubbard, & Bryant-Greenwood, 2008; Kendal-Wright, Hubbard, Gowin-Brown, & 

Bryant-Greenwood, 2010). Cyclic stretch has been shown to increase cellular stress and 

pro-inflammatory cytokine production, indicative of a laboring phenotype (C. E. Kendal-

Wright, 2007; Kendal-Wright et al., 2010). However, persistent stretch, as reported by 
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Kendal-Wright et al., demonstrated physical, but not static, strain placed on the amnion 

cells induces pro-labor chemokines like Interlukin-8 (IL-8) (Kendal-Wright et al., 2008). In 

support of this finding, we have seen that physiologic stretch experienced by the human 

amnion membrane does cause stress signals such as p38 mitogen activated protein kinase 

(MAPK) activation, but this activation does not result in the downstream activation of 

inflammatory mediators such as NF-kB (manuscript under review). Therefore, it is likely 

that stretch-associated inflammation is not sufficient to cause membrane damage but helps to 

remodel them to withstand sustained stretching throughout pregnancy.

2.2. Fetal organ maturation signals are pro-inflammatory in amniochorion cells

Fetal organ maturation is a key developmental signal from the fetus. Biochemicals 

such as endothelins (indicating kidney maturation) (Gryglewski, Chlopicki, Uracz, & 

Marcinkiewicz, 2001; Lockwood, 1994), platelet activation factor (Hoffman, Truong, & 

Johnston, 1986), surfactant proteins from the fetal lung (Condon, Jeyasuria, Faust, & 

Mendelson, 2004; Mendelson et al., 2017; Montalbano et al., 2013), epidermal growth factor 

(Cai, Huang, Leung, & Burd, 2014), and brain-derived neurotrophic factor (Antonakopoulos 

et al., 2018) are a few of the signals that are considered pro-inflammatory in the amniotic 

fluid; their presence can increase the overall inflammation. Although these signals are 

present in the amniotic fluid during fetal growth at low levels, their increased bioavailability 

may exceed the threshold of a balanced immune status and induce inflammation from fetal 

membrane cells, specifically amnion epithelial cells that are the innermost lining of the 

amniotic cavity and constantly bathed in the amniotic fluid and associated biochemicals. 

Reinl & England summarized a mechanistic process of such signaling that can lead to 

myometrial smooth muscle cell activation, resulting in parturition (Reinl & England, 2015). 

Similarly, we further documented in animal model studies that fetal exosomes can travel 

from the fetal to the maternal side, reaching the uterus and cervix to trigger parturition 

(Reinl & England, 2015). In summary, fetal biochemical signals of organ maturation have 

the capacity to cause inflammation in fetal membrane cells that can disrupt membrane 

functions at term.

One of the above-described mechanisms may contribute to tissue remodeling during 

pregnancy, whereas others can be a signal of parturition. However, our recent discoveries 

suggest that there are two other key mechanisms by which fetal membranes generate 

inflammation that can be detrimental to pregnancy and lead to parturition mechanisms. 

We will focus the next segments on explaining some of the novel mechanisms involved 

in fetal membrane maintenance during gestation and how two unique events (senescence 

(mechanism of aging) and cellular transitions such as epithelial-to-mesenchymal transition 

(EMT) and mesenchymal-to-epithelial transition (MET)) generate inflammation within the 

fetal membranes that can promote parturition. These studies are currently focused on amnion 

membrane cells (amnion epithelial cells [AEC] and amnion mesenchymal cells [AMC]).
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3. Fetal membrane senescence, a mechanism of aging, and aging 

associated inflammation

Fetal membranes start their development at embryogenesis, grow with the fetus, and undergo 

multiple cycles of developmental changes during gestation. Amnio-chorion fusion happens 

during the early second trimester, resulting in a single unit structure (Menon & Moore, 2020; 

Menon et al., 2018). As with any other type of cells, replication of the fetal membrane 

cells leads to senescence (Campisi, 1997a; von, 2003), a pathway to aging and inflammation 

(Campisi, 1997b; Chambers & Akbar, 2020). The “Hayflick Phenomenon” explains this 

process, where cell division is halted after a certain number of divisions (Hayflick, 1961; 

Hayflick & Moorhead, 1961). Two key function-based definitions proposed by Masoro et al. 

(Masoro, 1995) and Finch et al. (Finch, 1992) may aid in the understanding of the biologic 

aging of fetal membranes: 1) fetal membranes are expected to deteriorate during gestation 

once their maturation is completed during gestation once its maturation is completed around 

the 12th week of pregnancy, and will be vulnerable to subtle changes in the intrauterine 

environment, decreasing survival ability; and 2) senescence is a mechanism associated with 

the deterioration of the membranes, which alters its function and decreases vitality (Menon, 

2016). A recent report by Behnia et al. showed an association between amniochorionic 

membrane senescence and term pregnancies. Additional work determined the mechanism of 

the development of senescence through various in vitro and in vivo models (Behnia, Taylor, 

et al., 2015c). The following features were observed in the development of fetal membrane 

senescence.

3.1. Amniochorionic membrane senescence shows gestational age dependent telomere 
attrition

Telomeres are specialized DNA-protein structures located at the ends of eukaryotic 

chromosomes. Cellular replication leads to their reduction in size and this is considered as 

one of the biomarkers for aging (Rodier, Kim, Nijjar, Yaswen, & Campisi, 2005; Sanders & 

Newman, 2013; von & Martin-Ruiz, 2005). The examination of amniochorionic membranes 

from various gestational ages (starting from 22 weeks) until term (40 weeks) showed a 

progressive decline in telomere length in both amniochorionic membranes and fetal DNA 

samples from cord blood (Menon et al., 2012b). We were also able to demonstrate that 

cell-free fragments of telomeres are shed from the cells and increased in the amniotic fluid 

of women at term labor compared to term not in labor (Menon, Behnia, et al., 2016). 

Telomere reduction in fetal membranes is correlated with fetal growth; therefore, the peak 

of membrane aging is paralleled with the completion of fetal growth and organ maturation, 

suggesting that senescence is likely a physiologic process preparing membranes for delivery.

3.2. Amniochorion membrane senescence is aided by oxidative stress (OS) build up in 
the amniotic cavity and activation of p38MAPK

The intrauterine environment undergoes redox changes during pregnancy, as detailed in 

many reports (G.J. Burton, 2009; Burton & Jaunaiux, 2001; Myatt, 2010; Myatt & Cui, 

2004). Term pregnancy is characterized by redox imbalance and the accumulation of 

reactive oxygen species (ROS) in the amniotic fluid and in feto-placental tissues (Longini et 
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al., 2007; Menon, Boldogh, et al., 2014; Polettini, Richardson, & Menon, 2018). Multiple 

reasons can be linked to the build-up of ROS at the feto-maternal interface that can be 

seen in a previous reference (Menon, 2014) [Figure 1]. The examination of OS-mediated 

signaling revealed that fetal membrane cells respond with the increased activation of 

p38MAPK, a responder of stress signals that can determine cell fate (apoptosis, senescence 

and or other forms of cell deaths) (Choi, Lee, Ha, & Kim, 2011; Jin et al., 2018; 

Menon et al., 2013; Menon & Papaconstantinou, 2016). p38MAPKs are a family of four 

stress response signaling isoforms (p38MAPKα, β, γ, δ) that are evolutionarily conserved 

serine/threonine kinases whose functions differ significantly. We observed activation of 

of p38MAPKα, a form that is reportedly more common in cells (Ruiz-Bonilla et al., 

2008). The activation of p38MAPK by phosphorylation results in cell cycle inhibition in 

amnion cells via the down-regulation of glycogen synthase kinase 3 beta (GSK3β) in fetal 

membranes (Lavu et al., 2019; Lavu et al., 2020).

3.3. p38MAPK activation results in cellular senescence

Using multiple models, both in vitro and in situ, we were able to demonstrate that 

p38MAPK activation is also a progressive event in fetal membrane cells and maximal 

activation seen when OS is high (Bonney et al., 2016). As shown in mouse models, 

p38MAPK activation correlates with gestational age along with the deactivation of GSK3β 
(Bonney et al., 2016; Lavu et al., 2020). Senescent cells are characterized by multitudes 

of changes and produce biochemicals that are specific indicators of senescence and cause 

injury to cells(Dimri & Campisi, 1994). Senescence-associated galactosidase (SA-β–Gal) 

is widely used as a biomarker of replicative senescence. As detailed by Kurz et al, SA-β–

Gal is a manifestation of residual lysosomal activity at a suboptimal pH, which becomes 

detectable due to the increased lysosomal content in senescent cells (Kurz, Decary, Hong, 

& Erusalimsky, 2000). we were able to demonstrate that fetal membrane cells develop 

senescence-associated β-Galactosidase activity, a key marker of senescence (Behnia, Taylor, 

et al., 2015c; Coppe et al., 2008; Menon, Behnia, et al., 2016; Polettini et al., 2018). 

Senescent cells often show injury to organelles and nuclear membranes. Damage to the 

nuclear lamina leads to nuclear morphology in senescent cells and nuclear membrane Lamin 

B1 loss is detrimental to cell survival Freund, Laberge, Demaria, & Campisi, 2012). As a 

morphological marker of senescent associated nuclear injury, we tested Lamin B1 in fetal 

membrane cells. In addition to development of SA-β–Gal, we were able to confirm a loss 

of Lamin B, ( Menon, Behnia, et al., 2016), as electron micrographs revealed morphologic 

changes (enlargement) to organelles such as the mitochondria, ER, and damage to the 

nuclear membrane (Menon, Boldogh, et al., 2014), DNA fragmentation (Menon et al., 

2013; Menon, Polettini, Syed, Saade, & Boldogh, 2014), and the development of unique 

forms of inflammation (Menon, Behnia, et al., 2016). All of these effects were inhibited 

by p38MAPK inhibitors, confirming the role of this signal in inducing senescence in fetal 

membranes.

3.4. Senescent cells release senescence associated secretory phenotype (SASP) and 
damage associated molecular pattern markers (DAMPs)

Senescence is characterized by inflammation known as SASP as SASP is represented by a 

unique congregation of various biochemical markers. Although SASP is represented by well 
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reported cytokines, chemokines, growth factors, metalloproteinases (MMPs), inhibitors and 

receptors, and vascular growth factors, collective presence of specific markers are unique in 

senescent cells. Transcriptome analysis of senescent amniochorion cell showed the increased 

expression of SASP transcripts in term labor and in response to OS in vitro compared to 

their respective controls (Behnia, Taylor, et al., 2015c; Menon, Behnia, et al., 2016). Of 

note, SASP markers have been reported to be higher in various biological compartments 

during term labor (although not termed SASP markers) compared to term not in labor 

conditions. This further associates senescence and SASP with parturition (Behnia, Taylor, 

et al., 2015c). Most of these SASP markers are known pro-labor factors in feto-maternal 

tissues (Behnia, Taylor, et al., 2015c). Based on our data, a bioinformatics analysis of SASP 

markers was performed which revealed that pathological pathways and cellular signaling 

represented by SASP were derived due to cellular damage resulting from senescence. In 

our in vitro and in vivo models, administration of N-acetyl cystine (an anti-oxidant) and 

p38MAPK inhibitor SB 203580 reversed senescence and SASP, supporting the hypothesis 

that fetal membrane senescence and inflammation accompanying it are an OS-induced 

p38MAPK mediated phenomenon. Moreover, cells were further analyzed for degenerative 

tissue markers. Our studies revealed that OS-induced senescent amnion cells release the 

high mobility group box (HMGB)1 protein as well as cell free fetal telomere fragments 

(Bredeson et al., 2014; Menon, Behnia, et al., 2016). These markers belong to a class of 

Alarmins or damage associated molecular pattern markers (DAMPs) representing cellular 

injury and or tissue damage . DAMPs are intracellularly sequestered molecules and are 

hidden from recognition by the immune system under normal physiological conditions. 

However, under conditions of cellular stress/tissue injury, these molecules can either be 

actively secreted by stressed immune cells and considered as endogenous danger signals, 

because they induce potent inflammatory responses by activating the innate immune system 

during non-infectious inflammation (Roh & Sohn, 2018) (Land, 2015a, 2015b). DAMPs can 

arise from intracellular proteins, such as HMGB1, histones, IL-33, IL-1α, S100 proteins, 

heat-shock proteins (HSPs), DNA and RNA as well as extracellular matrix proteins such as 

decorin, biglycan, low molecular weight hyaluronan etc.. Besides these, cellular organelles 

and They can function through a variety of receptors like toll like receptor (TLR) 2, 4, 6 and 

9, receptor for advanced glycation endproducts (RAGE) among other on various cell types 

to cause inflammatory activation in recipient cell(Roh & Sohn, 2018). TLRs expressions 

are well reported in the fetal membranes.(Abrahams et al., 2013; Agrawal & Hirsch, 2012) 

and their differential role during infection, parturition at term and preterm are well reported 

(Hoang et al., 2014; Ilievski, Lu, & Hirsch, 2007; Lim, Barker, & Lappas, 2014; Moco et al., 

2013; Sato et al., 2016).

3.5. DAMPs cause feedback activation of senescence

In support of our in vitro cell-based models, we conducted an analysis of inflammatory 

marker concentrations in three distinct biological fluids from the same pregnancy. Our report 

showed higher concentrations of HMGB1 term labor amniotic fluid and cord blood samples 

than maternal plasma, supporting the hypothesis that these DAMPs may function as fetal 

signals of parturition (Menon & Taylor, 2019). DAMPs, Further testing was conducted to 

determine their functional relevance. Data from our own and other studies using in vitro and 

in vivo models revealed the following: 1) both HMGB1 and cell-free fetal telomere DNA 
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fragments accumulate in the amniotic fluid and they are also powerful stimulants of OS, 

induce AEC p38MAPK activation and enhance senescence of fetal membranes (Bredeson 

et al., 2014; Menon, Behnia, et al., 2016; Polettini et al., 2015a); 2) the in vivo injection of 

telomere fragments leads to p38MAPK activation, senescence and PTB in animals (Polettini 

et al., 2015a); and 3) the intra-amniotic administration of HMGB1 can cause PTB in mouse 

models (Gomez-Lopez et al., 2016). In addition, our own work has shown senescence in 

AMCs and chorion trophoblast cells (Feng et al., 2019), which aligns with other labs which 

have also reported telomere reduction (Phillippe, Sawyer, & Edelson, 2019), senescence of 

the amniochorion (Gomez-Lopez, Romero, Plazyo, et al., 2017), placenta (Burstein, Frankel, 

Soule, & Blumenthal, 1973; Cox & Redman, 2017; Ferrari, Facchinetti, Saade, & Menon, 

2016; Parmley, 1984), and decidua (Hirota et al., 2010b), along with their association with 

parturition. In summary, SASP and DAMPs are unique forms of inflammation that are 

released from senescent fetal membrane cells that can cause parturition.

The above sections summarize that fetal membrane senescence and senescence-associated 

inflammation can be mechanistically linked to normal term birth. Senescence and SASP/

DAMP-mediated inflammation are normal physiologic responses of the fetal membrane as 

they reach longevity at term, correlating with the completion of fetal growth.

4. Can premature senescence cause preterm birth?

The primary purpose of studying senescence and its association with normal term parturition 

is to expand our knowledge and understand similar pathways that can contribute to PTB and 

pPROM. The hypothesis is that PTB and pPROM risk factors accelerate senescence, causing 

SASP/DAMP-associated inflammation, which induces membrane dysfunction and collapse 

of the intrauterine structure required to support fetal growth [Figure 2]. All of the above 

markers of OS and senescence were tested in tissue samples from PTB and pPROM. Also, 

in vitro and in vivo models were developed by exposing either membrane explants, primary 

fetal membrane cells, or animal models to various PTB-inducing stimuli. Clinical sample 

analysis showed that compared to PTB with intact membranes, pPROM had: 1) shorter 

fetal membrane and cord blood DNA telomere lengths at delivery (Menon et al., 2012b), 2) 

reduced levels of antioxidant enzymes (Dutta et al., 2016), 3) the increased evidence of OS, 

protein peroxidation, lipid peroxidation and DNA damage (Menon, Boldogh, et al., 2014; 

Menon et al., 2011), and 4) the increased activation of p38 MAPK and tissue senescence 

(Menon, Boldogh, et al., 2014).

In vitro models showed increased OS, p38MAPK activation, senescence and the generation 

of SASP in response to various risk factors such as cigarette smoke (Menon et al., 2013; 

Polettini et al., 2018), environmental pollutants (Behnia, Peltier, et al., 2016; Behnia, 

Peltier, Saade, & Menon, 2015), noninfectious (sterile) inflammation and infection (Dixon, 

Richardson, Sheller-Miller, Saade, & Menon, 2018) [Figure 2]. The incidence of senescence 

in response to infectious stimuli such as lipopolysaccharides (LPS) was much milder than 

any other risk factors tested in our system (Dixon et al., 2018). This could be due to the 

fact that all other risk factors than LPS are dominant OS inducers. We do not rule out the 

possibility that live bacteria or even heat-inactivated bacteria may produce a much more 

rigorous OS response and hence senescence. In vitro models also lack immune cells that are 
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recruited to control the invasion of pathogens by generating ROS radicals(Menon, Behnia, et 

al., 2016; Menon, Boldogh, et al., 2014; Menon et al., 2013).

Of note, we did not see a difference in inflammatory markers (mostly cytokines and 

chemokines) in the amniotic fluid, cord blood, or maternal plasma between infection and 

OS, suggesting that inflammation is a key trigger in both conditions, regardless of the 

mechanism or pathway (Menon & Taylor, 2019). Interestingly, molecular markers, cellular 

level changes in senescence and inflammatory mediators exhibited tremendous similarities 

between normal term birth and pPROM (specifically early pPROM <34 weeks), whereas 

they were different in PTB. These include increased reactive oxygen species, telomere 

length reduction, increase in markers of lipid and protein peroxidation, imbalance in MMPs 

and TIMPs, p38MAPK, senescence associated cellular organelle morphology, localized 

MMP9 activation, and loss of Lamin B1(Dutta et al., 2016; Menon, Boldogh, et al., 2014; 

Menon, McIntyre, Matrisian, & Fortunato, 2006; Menon et al., 2012a). This suggests that 

fetal membrane aging and aging-induced inflammation are a (patho)physiologic requirement 

for term labor and pPROM, causing membrane weakening and rupture prior to labor. 

Although inflammatory marker concentrations and their profiles are similar between PTB 

and pPROM, it is likely that mechanisms leading to the increase in fetal membrane 

inflammation is independent of senescence and SASP in PTB (Dutta et al., 2016). 

Conversely, we would like to emphasize that pPROM is a disease associated with fetal 

membrane senescence. OS induced by various pPROM risk factors prematurely ages fetal 

membranes, making them dysfunctional leading to mechanical and structural weakening and 

rupture (Behnia, Peltier, et al., 2015; Behnia, Sheller, & Menon, 2016b; Menon et al., 2013).

To note, DAMPs can be generated independently of senescence of cells and they are 

primarily produced in response to infection, specifically in response to Pathogen-associated 

molecular patterns (PAMPs)(Santoni et al., 2015). Therefore, infection associated adverse 

pregnancy events can produce DAMPS via PAMPs as well as by inducing senescence of 

cells(Elovitz, Wang, Chien, Rychlik, & Phillippe, 2003; Hoang et al., 2014; Jaiswal et al., 

2013; Padron, Saito Reis, & Kendal-Wright, 2020).

5. Cellular transitions and generation of inflammation

The above section detailed how inflammation is generated in response to senescence. In 

this section we describe yet another mechanism by which fetal membrane cells generate 

local inflammation that can be beneficial during gestation for tissue remodeling or the 

overwhelming presence of which can lead to membrane degeneration. Fetal membrane cells 

have stem cell-like properties, as they can proliferate, migrate, express stem cell markers 

and are capable of transitioning into other cell types (L. Richardson & Menon, 2018). 

These properties are essential for fetal membrane remodeling and to maintain its integrity, 

as membranes are constantly under shear stress and stretch from the fluid and fetus, 

respectively, during pregnancy. Studies conducted using fetal membrane cells to examine 

cellular transition mechanisms and generation of inflammation are listed below.
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5.1. Fetal membrane microfractures

The remodeling of membrane cells includes the shedding of cells, leading to the 

development of microfractures in the membrane structure (L. S. Richardson et al., 2017). 

Microfractures are not just gaps created by cellular shedding or puckering, they also show 

degradation of the basement membrane and matrix collagen as well as function as a 

passage for shed cells (L. S. Richardson et al., 2017). This process generates localized 

inflammation, which is required for membrane matrix remodeling. Although intrauterine 

OS levels fluctuates during gestation (G. J. Burton, 2009; Jauniaux et al., 2006; Myatt, 

2010), redox balance sustains the remodeling process (Agarwal, Gupta, & Sharma, 2005). 

However, the process is stalled as the membrane reaches longevity at term and demonstrates 

structural, functional, and biomolecular changes that are characteristic of aging (Behnia, 

Taylor, et al., 2015a). The number of microfractures and their morphometry (width and 

length) were higher in term laboring membranes than term not in labor membranes (L. S. 

Richardson et al., 2017). Similarly, pPROM had a higher number of microfractures than 

PTB with intact membranes (L. Richardson & Menon, 2018).

5.2. Microfracture healing involves cellular transitions and inflammation

In a recent study, Richardson et al. created artificial scratches (representing microfractures) 

using AECs. The following observations were made during microfracture healing (L. 

Richardson & Menon, 2018): 1) epithelial cells proliferate and transition into mesenchymal 

cells (EMT) in the early stages of healing with the expression of cytoskeletal and cell 

adhesion markers; 2) the transition to mesenchymal cells increases the migratory capacity of 

AECs; 3) healing of wounds/microfractures is accompanied by cell transitioning back to the 

epithelium (MET); 4) amniotic fluid accelerated the healing process, whereas OS stopped 

healing; 5) antioxidants reversed OS effect and augmented healing, suggesting that OS can 

cause a terminal or static state of EMT and prevent membrane microfracture healing; and 6) 

migration and healing was associated with localized inflammation.

5.3. EMT is associated with term parturition

In addition to wound healing, as described above, the transdifferentiation of EMT is seen in 

embryogenesis and required for embryonic stem cell differentiation (DaSilva-Arnold, James, 

Al-Khan, Zamudio, & Illsley, 2015). Furthermore, EMT is also pathologically associated 

with fibrosis and cancer metastasis (Hay, 1995; Lamouille, Xu, & Derynck, 2014). In 

reproductive tissues, EMT has been linked to various stages of placental development 

including the differentiation of cytotrophoblasts to extravillous trophoblast cells (DaSilva-

Arnold et al., 2015), as well as trophoblast differentiation (Vicovac & Aplin, 1996). EMT 

is characterized by the repression of epithelial cell-associated genes and the concomitant 

activation of genes that transition them into a mesenchymal phenotype (Lamouille et al., 

2014). The reverse of EMT is seen with MET, which generates epithelial cells during 

various developmental stages. During the early stages of development, MET facilitates the 

embryo’s engagement in gastrulation and organogenesis (Pei, Shu, Gassama-Diagne, & 

Thiery, 2019). Based on our observations during microfracture healing, we hypothesized 

that the amnion layer fetal membrane may undergo EMT to generate inflammation that will 

weaken this layer. This hypothesis was aided by a couple of supportive reports suggesting 
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EMT associated with membrane rupture and healing (Janzen et al., 2017; Mogami, Hari 

Kishore, Akgul, & Word, 2017). We examined human and mouse amnion membranes and 

noted that membranes from term parturition have a substantially higher number of AMCs 

than epithelial AECs (L. S. Richardson, Taylor, & Menon, 2020). This helped to expand 

our hypothesis that term labor may be associated with a terminal state of EMT due to the 

accumulation of highly inflammatory AMC in the ECM, as previously described (Sato et 

al., 2016). Descriptive data determined the following: 1) compared to term not in labor, 

term labor is associated with amnion membrane EMT in both mice and humans (L. S. 

Richardson et al., 2020); 2) AECs during normal gestation exhibit a ‘metastate’ expressing 

both epithelial (cytokeratin) and mesenchymal marker (vimentin) (L. S. Richardson et al., 

2020); 3) classic markers (cytoskeletal, adhesion, and transcription factors) associated with 

mesenchymal transitions were expressed in amnion layer; and 4) EMT is associated with 

MMP9 induction and collagen degradation that can cause basement membrane degradation 

to structurally and functionally weaken the membrane, cause dysfunction and predispose 

them to rupture. In summary, term labor is associated with EMT and localized inflammation 

[Figure 3].

5.4. Mechanisms of EMT mediated by transforming growth factor (TGF)-β

Using molecular and cell biological approaches, Richardson et al. reported that EMT in 

amnion cells are mediated by TGF-β. TGF-β is seen in the amniotic fluid during gestation, 

but its concentrations are higher at term labor compared to term not in labor samples (L. S. 

Richardson et al., 2020). The exposure of cells to OS experienced at term labor increased 

TGF-β release from AECs, an increase that was reduced by antioxidant NAC treatment (L. 

S. Richardson et al., 2020). Blocking OS induced TGF-β-mediated signaling through gene 

silencing of TGF-β-activated kinase 1 binding protein 1 (TAB1) reduced EMT transcription 

factors and mesenchymal junction markers, maintaining epithelial characteristics. The 

silencing of TGF-β reduced p38MAPK activation. The inhibition of EMT in AECs by 

treatment with p38MAPK inhibitors further supports the role of p38MAPK in TGF-β-

TAB1-mediated EMT (L. Richardson, Dixon, Aguilera-Aguirre, & Menon, 2018). EMT 

accumulates AMCs in the matrix and prompt inflammatory activation in the membranes 

(Sato et al., 2016; Whittle, Gibb, & Challis, 2000). Therefore, OS-induced p38MAPK 

activation can cause both senescence and EMT in cells. It is still unclear whether these 

two processes are interdependent or independent; however, both of these processes co-exist 

at term labor membranes in both humans and mouse models of normal gestation and 

parturition [Figure 3].

5.5. Mechanism of MET mediated by progesterone

Mesenchymal cells perform endocrine functions during gestation; however, these are 

tightly regulated and require a limited number of cells. As mesenchymal cells are highly 

susceptible to inflammation and ROS(Sato et al., 2016), their numbers need to be tightly 

regulated, which is achieved by reprograming them back to epithelial cells through MET 

to maintain membrane integrity. MET will reestablish epithelium cell-to-cell contact and 

increase nascent collagen production to remodel the degraded matrix. The pregnancy 

maintenance hormone progesterone, an anti-inflammatory hormone, was tested to determine 

whether it mediated the reversal of EMT by promoting MET(L. S. Richardson et al., 
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2020). This mechanism is also thought to regulate local inflammation. Progesterone, 

through the progesterone receptor membrane component 2 (PGRMC2), induces MET via 

the proto-oncogene c-MYC. The silencing of PGRMC2 using siRNA and/or reducing 

c-MYC using its pharmacologic inhibitor increased mesenchymal transcription factors and 

cellular junction markers indicative of the persistence of the mesenchymal fibroblastoid 

phenotype(L. S. Richardson et al., 2020) [Figure 3].

5.6. Cyclic EMT-MET maintains membrane integrity during gestation and a terminal state 
of EMT at term increases inflammation

Based on the mechanisms described above, fetal membranes maintain their integrity through 

a cyclic EMT-MET process. This helps to maintain the 10:1 epithelial to mesenchymal 

ratio during gestation (Myatt & Sun, 2010). TGF-β in the local cellular and amniotic 

fluid environment can promote EMT and progesterone-mediated MET can revert them 

back to AEC. This cyclic process balances the number of AMCs in the ECM and 

allows microfractures to reseal and the membrane to remodel. At term, increased OS 

promotes two key events that lead to a static state of EMT and the accumulation of 

AMC: 1) OS causes TGF-β levels to increase and promote EMT; and 2) the OS-mediated 

reduction in progesterone receptor expression leads to membrane functional progesterone 

withdrawal, resulting in a lack of MET. This will result in localized inflammation and matrix 

degradation, predisposing membrane weakening and preparing them for labor [Figure 3].

6. Can premature EMT activation and lack of MET cause preterm birth?

Like senescence, EMT at term is a normal and physiologic process to ensure inflammation 

and membrane dysfunction and prepare the fetal tissues for parturition. The goal of 

understanding these mechanisms is to see whether the premature activation of EMT can 

cause pathways leading to PTB and pPROM. Unpublished reports from our lab have shown 

that EMT markers and inflammation are evident in PTB, but not in pPROM when tissues are 

gestationally age-matched. These markers include decreased E-cadherin (epithelial marker) 

and increased vimentin and N-cadherin (both mesenchymal markers). This contrasts with 

senescence, which was dominant in pPROM, but not in PTB when membranes were intact. 

We are not elaborating this section as it is still under investigation. In summary, PTB and 

pPROM may have similar risk factors but the cellular biologic mechanisms that generate 

inflammation in fetal membranes are different. pPROM involves an accelerated senescence, 

generating inflammation that collapses the structural and functional integrity of the fetal 

membrane, whereas PTB has a terminal state of EMT, forcing inflammation.

7. How do membrane senescence and EMT associated inflammation 

promote parturition?

Multiple mechanisms have been proposed to destabilize membranes. Collagenolytic 

processes by endogenously generated MMPs and an imbalance in MMP/inhibitor 

(tissue inhibitor of matrix metalloproteinase -TIMP) have been well reported. It was 

unclear, however, how these MMPs are activated. In this review, we introduced two 

new mechanistic events that can generate localized inflammation. Senescence and EMT-
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associated Inflammation of the membranes generate an array of cytokine mediators that 

belong to different classes with distinct functions that imbalance membrane function and 

cause them to collapse. These inflammatory mediators are disseminated to the maternal 

side via senescent and EMT impacted cell-derived extracellular vesicles (EV; exosomes of 

50-150 nm). Our studies have shown that EV carrying this inflammatory load at term can 

reach the myometrium, decidua, and cervix and cause parturition-associated inflammatory 

activation (Hadley et al., 2018; Jin & Menon, 2017; Menon, 2019; Menon et al., 2017; 

Sheller-Miller, Trivedi, Yellon, & Menon, 2019). These EV-mediated mechanisms can also 

be considered as “fetal signals of parturition”, indicating fetal readiness for delivery either at 

term or preterm. In preterm birth, maternal plasma contains fetal exosomes that are different 

to those in normal term birth. Fetal exosomes carrying inflammatory pathway mediators can 

be identified in maternal plasma as early as the late first trimester, indicating underlying 

pathophysiological conditions (Menon et al., 2020; Menon et al., 2019). Sheller-Miller et 

al. showed that exosomes carrying inflammatory mediators can cause preterm parturition in 

animal models (Sheller-Miller et al., 2019). As shown in Figure 4, senescent cells generate 

inflammatory mediator-enriched exosomes that can reach maternal uterine tissues and cause 

inflammatory activation (Hadley et al., 2018), and transition them into an active state of 

labor. Inflammatory mediators are not just cytokines, chemokines or immune cells, but 

also include SASP and DAMP-enriched exosomes (Sheller-Miller, Urrabaz-Garza, Saade, & 

Menon, 2017). In summary, we demonstrated two unique forms of inflammatory activation 

in fetal membranes and how they can mechanistically mediate parturition.
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Figure 1: Oxidative stress induces p38MAPK mediated activation of senescence and 
inflammation in fetal membranes at term.
Various factors as shown in the figure can contribute to excessive reactive oxygen species 

(ROS) build-up in the intra-amniotic cavity. This ROS can accelerate fetal membrane 

senescence and senescence-associated secretory phenotype (SASP). Senescence and SASP 

factors, in a feedback loop, can cause further damage to non-senescent and neighboring 

tissues to cause further enhanced inflammation. This is a natural and physiological process 

during normal parturition.
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Figure 2: Pregnancy risk factors increase oxidative stress and cause increased activation of 
p38MAPK, senescence and inflammation in fetal membranes in preterm pregnancies.
Multiple risk factors can cause an increase in ROS in the intra-amniotic cavity. Pathways 

of ROS generation, characteristics of oxidative stress and p38MAPK activation may not 

be the same for all risk factors. Regardless, many of these factors can increase p38MAPK 

activation pathologically prior to term. Senescence and SASP factors can cause preterm 

labor and or pPROM. Premature activation of p38MAPK is the pathological activation of 

senescence leading to preterm parturition.
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Figure 3: Schematics of changes to membrane structure during normal gestation and 
parturition.
Top panel: Membranes during gestation: Fetal membranes, specifically amnion layer 

undergoes a cyclic transition of EMT←→MET that maintains membrane homeostasis and a 

10:1 ratio between AEC and AMC.

Middle panel: During gestation, the TGF-b/TAB/p38MAPK-mediated pathway forces the 

EMT to shed AECs which are transformed into AMC. Since the accumulation of AMC 

is an unstable state, these cells are transitioned back to AMC by the P4/PGRMC2/c-MYC 

pathway.

Bottom panel: At term, ROS buildup and p38MAPK activation (see Figure 1), can lead to 

a terminal state of EMT with the accumulation of AMC and no MET to balance the cell 
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ratio between AEC and AMC. This is an unstable state of inflammation and cause local 

inflammatory build-up, matrix degradation and membrane weakening.
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Figure 4: Two distinct mechanisms of inflammatory activation in fetal membranes and fetal 
inflammatory signaling for parturition.
Physiologic (Fig 1) or pathologic (Fig 2) signals increase ROS in the intra-amniotic cavity 

and cause non-canonical activation of p38MAPK in human fetal membrane cells. p38MAPK 

activation can lead to:

1. Senescence of the fetal membrane cells, the production of SASP and the generation of 

DAMPS.

2. p38MAPK forces a terminal state of EMT and the accumulation of AMCs, causing 

membrane matrix damage and weakening along with increased localized inflammation.

Inflammatory mediators generated are packaged into extracellular vesicles released by fetal 

membrane cells – fetal signals – that can reach the myometrium and decidua and cause their 

activation (inflammation) which can transition these tissues from their quiescent state to an 

active state of labor.
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