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Towards a comprehensive evaluation of dimension
reduction methods for transcriptomic data
visualization

Haiyang Huang® '3, Yingfan Wang'3, Cynthia Rudin® ! & Edward P. Browne ® 2

Dimension reduction (DR) algorithms project data from high dimensions to lower dimensions
to enable visualization of interesting high-dimensional structure. DR algorithms are widely
used for analysis of single-cell transcriptomic data. Despite widespread use of DR algorithms
such as t-SNE and UMAP, these algorithms have characteristics that lead to lack of trust: they
do not preserve important aspects of high-dimensional structure and are sensitive to arbitrary
user choices. Given the importance of gaining insights from DR, DR methods should be
evaluated carefully before trusting their results. In this paper, we introduce and perform a
systematic evaluation of popular DR methods, including t-SNE, art-SNE, UMAP, PaCMAP,
TriMap and ForceAtlas2. Our evaluation considers five components: preservation of local
structure, preservation of global structure, sensitivity to parameter choices, sensitivity to
preprocessing choices, and computational efficiency. This evaluation can help us to choose
DR tools that align with the scientific goals of the user.
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critical tools that allow scientists to gain insight into high-

dimensional data. DR algorithms map high-dimensional
data to a low-dimensional embedding, enabling data visualiza-
tion. A high-quality visualization can help the user to gain
insights about cluster structure and distributional characteristics
of the data. On the other hand, a low-quality DR visualization can
create the appearance of structure in the data that does not
actually exist. For instance, DR methods often produce false
clusters, where subgroups of data cluster separately despite few, if
any, underlying biological differences. Unreliable discoveries from
DR results can lead to misguided and wasted effort trying to
interpret and clarify false clusters. Furthermore, DR methods can
be highly sensitive to the parameter and pre-processing choices,
so that seemingly innocuous choices by users can completely
dismantle the true structure of the data, leaving the user without a
way to explore the data or generate useful hypotheses.

DR is used extensively in the analysis of single-cell tran-
scriptomics datal=> and other types of high-dimensional
cytometry®*> (for a detailed evolution of the dimensionality
reduction method for transcriptomics data, please see Supple-
mentary Note 1). These are data types for which DR methods
have the potential to pinpoint clusters that are biologically
meaningful, but also have the potential for false clusters that
could be misinterpreted as interesting biological entities. To
demonstrate these points by directly comparing DR methods, we
ran parallel DR analyses using a benchmark dataset. Figure 1
shows DR visualizations of single-cell RNA sequencing (scRNA-
seq) data derived from peripheral blood mononuclear cells
(PBMCs) from HIV-infected individuals®. Altogether, the data
include transcriptional profiles from 59,286 cells. The clusters are
annotated by comparing differentially expressed genes defining
each cluster to known lineage markers and previously published
datasets. The dataset was processed by four DR algorithms, which
are t-SNE with the FIt-SNE implementation’~? (denoted as t-
SNE), UMAP!0, TriMap!!, and PACMAP!2, PACMARP is a recent
method that is designed to optimize both global and local
structure. In the data, dendritic cells (DCs) are present in blood as
two major subsets—myeloid DCs (mDCs) and plasmacytoid DCs
(pDCs) defined by expression of CD1c or CD303, respectively.
However, in the results shown in Fig. 1, UMAP separates the two
clusters of dendritic cells (mDCs and pDCs) into two spatially
distant groups, whereas t-SNE, TriMap, and PaCMAP correctly
map these DC subsets close to each other.

In the cases in Fig. 1, prior knowledge of DC subtypes and blood
cell progenitors allows us to identify the most accurate embedding
but, in other cases, ground truth labeling may not exist, forcing us
to rely on the DR results. Another example is shown in Supple-
mentary Fig. 1, showing cases where local or global structure in
scRNA-seq data is not well preserved in visualizations.

DR methods often become widely used without being carefully
evaluated, and these methods may contain flaws that are
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unknown to their users. As further evidence of this, there are now
many papers explaining how to use various popular DR methods
effectively e.g., “The Art of t-SNE,”13 and “How to use t-SNE
effectively”!4. These papers are only necessary because DR results
are often misleading, and because DR cannot be trusted out-of-
the box!>16, These papers, which teach us how to manipulate
parameters of DR algorithms, highlight the urgent need to
develop trustworthy DR methods. For this to be achieved, we will
first need to establish benchmarks regarding how DR evaluations
could be conducted, which is the purpose of this work.

Here, we propose an evaluation framework for DR methods in
biological domains. This framework includes many different
essential elements of DR results, such as local structure pre-
servation, global structure preservation, sensitivity to parameter
choices, sensitivity to pre-processing choices, computational
efficiency, and scalability. Many of these metrics are used ad hoc
in other papers but have not previously been integrated into a
comprehensive evaluation approach.

To demonstrate our proposed evaluation framework, we
compared eight DR methods. The eight methods are PCA!7,
t-SNE with the FIt-SNE variant (implemented by openTSNE”-?
and denoted as t-SNE), t-SNE with the hyperparameter described
by Kobak and Berens!? (denoted as art-SNE, see Supplementary
Note 4.1 for the reason for the difference between two t-SNE
variants), UMAPI0, TriMap!l, PACMAP!2, ForceAtlas218:19, and
PHATE?.

By applying this evaluation framework to popular DR algo-
rithms, we confirm findings from past works that t-SNE” and
UMAP!0 are highly sensitive to the parameter and/or pre-
processing choices and do not perform well with respect to global
structure metrics!21315. Furthermore, we find that the recent
PaCMAP method!? performs well in comparison to previous
methods. Nevertheless, our analyses indicate there is still sub-
stantial room for improvement in DR methodology.

Our framework is built upon the intuition that, ideally, a DR
method would preserve local structure and global structure, be
somewhat insensitive to parameter choices and pre-processing
and be computationally efficient. In this work, we propose eva-
luation criteria for each of these qualities, and use these criteria to
evaluate the performance of several popular DR methods using
publicly available datasets. Here, local structure preservation
means that neighbors in the high-dimensional space should still
be neighbors in the low-dimensional space. More generally, local
structure is preserved when local neighborhoods in the high-
dimensional space are similar to local neighborhoods in the low-
dimensional space. Global structure preservation means that
relative positions between clusters are preserved, as well as larger-
scale manifold structures.

Based on our experiments, t-SNE, art-SNE, UMAP, and PaC-
MAP perform well on local structure preservation metrics with
t-SNE and art-SNE performing the best on an unsupervised
metric, while PCA, TriMap, PACMAP, and ForceAtlas2 perform

UMAP PaCMAP

Fig. 1 Comparison of global structure preservation for DR methods. DR visualizations of a scRNAseq dataset of PBMCs from HIV-infected people from
ref. 6, pre-processed using the top 70 principal components. Labels for cell types were identified by differential expression analysis for each cluster. DC
clusters are circled. Note that DR algorithms can behave differently under different random seeds, and we discuss the implication of such behavior in

Supplementary Note 3 and Supplementary Fig. 5.
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Fig. 2 Measuring local structure preservation with SVM supervised classification. a Nine samples out of the 70,000 total samples from the MNIST
dataset. b DR results from four different methods using the MNIST dataset. acc indicates test accuracy score. The accuracy score and decision boundaries
were created by an SVM classifier. Here, 90% of the data were used for training, 10% for testing. ¢ Results of ForceAtlas2 on the MNIST dataset, following
the same procedures. ForceAtlas2 demonstrates inferior local structure preservation compared to the other DR methods.

well on global structure preservation metrics and are robust to
parameter choices. PACMAP is robust to pre-processing choices
and achieves the lowest running time.

Results

Evaluation 1: local structure preservation. We consider two
local evaluation methods as part of our framework: Local
Supervised Evaluation and Local Unsupervised Evaluation.

Local supervised evaluation requires a labeled classification
dataset, in the form (x;y;), for i=1,...,n, where x; is a high-
dimensional vector and y; takes a value between 1 and M, where
there are M classes.

To perform local structure evaluation, we perform DR on the
X/’s, associate each i with its label y;, run a supervised classification
algorithm on a subset of the low-dimensional data, and report
classification accuracy on the rest of the low-dimensional data.

We typically choose support vector machines (SVM) with
radial basis function kernels following ref. 12 or k-nearest-
neighbor (kNN, k = 5) classifiers following ref. 10 as our classifiers
because they are flexible and nonparametric.

The principle that this evaluation is premised on homophily:
members of each class should be close to other members of the
same class, and should be far from members of other classes.
Then, when we project the data using DR, the same property
should hold.

Figure 2 and Supplementary Fig. 3 provide evaluations of local
structure preservation for a complex high-dimensional
dataset-the MNIST handwritten digit dataset?l. An important
property of this dataset is that the major clusters (representing
each digit) are all well separated in high-dimensional space. Most
DR methods (t-SNE, UMAP, TriMap, and PaCMAP) are able to
preserve this structure when projecting to 2-D, based on
evaluation with SVM and kNN (k = 5) (Fig. 2 and Supplementary
Fig. 3). By contrast, ForceAtlas2 performs poorly and fails
preserve local structure well (Fig. 2¢).

The prediction accuracy scores of the SVM and kNN (k = 5)
classifiers over multiple datasets and DR methods are reported in
Supplementary Table 1 and Supplementary Table 2 and
summarized in Fig. 3b, c. Note that the results of art-SNE and
PHATE on Zheng Mouse and Cao are not included in the figure
since they are unable to finish these large datasets under a time
budget—see the caption of Supplementary Table 4 for more
information. All methods except ForceAtlas2 perform well on
SVM evaluation, with t-SNE, art-SNE, UMAP, and PaCMAP
arguably achieving the best results. On kNN evaluation, t-SNE,

art-SNE, UMAP, and PaCMAP achieve the best results, while
ForceAtlas2 and PHATE generate comparatively poor results.

Next, we propose another local evaluation method, this time
with unsupervised data (no y;s are available). In many cases,
ground truth labels are not known, such as when analyzing
scRNA-seq or flow cytometry data. In this case, the quality of the
visualization is evaluated based on how accurately the neighbor-
hood information from high dimensions has been preserved by
each algorithm.

To perform this evaluation, we compute N(i), the set of k=5
nearest neighbors for each point i in the high-dimensional space,
and N'(i), the k-nearest neighbors in the low-dimensional space.
We compute the proportion of intersection between N(i) and
N'(i), and then compute the average proportion of neighbors
preserved over all i.

This evaluation over multiple datasets and DR methods is
reported in Supplementary Table 3 and Supplementary Note 5.2,
and summarized in Fig. 3d. Using this approach, t-SNE and art-
SNE exhibited performance superior to the other DR methods by
achieving the highest fraction of neighborhood structure
preserved on all datasets selected. By contrast, PCA achieved
relatively poor results.

Evaluation 2: global structure preservation. Unlike local struc-
ture, which focuses on the relationships between points in a
neighborhood, global structure focuses on relationships between
neighborhoods. A DR result with high-quality global structure
preservation could help us understand, for instance, the degree of
similarity between different groups of cells.

An algorithm with high-quality global structure preservation
would, for example, preserve separate clusters of the major cell
lineages within PBMCs, and be less likely to create false clusters
or to separate a single cluster into two far away subclusters.
Figure 4a, b illustrates DR results on the Mammoth dataset?223, a
3-D dataset that we project to 2-D (think of crushing the
mammoth onto the page like a leaf). This is a dataset for which
global structure preservation is particularly important, and
ideally, DR will generate a 2-D picture that preserves recognizable
mammoth characteristics. Using this dataset, we observed that the
performance of several popular DR methods was poor, in that
they separate connected parts of the mammoth into false clusters.
t-SNE and UMAP in particular generate results that bare little
resemblance to the original mammoth.

We propose qualitative and quantitative evaluations for
determining the performance of DR methods in preserving
global structure. Both approaches are considered below.
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The evaluation of the mammoth dataset above is an example of
a qualitative evaluation—we know the mammoth’s true 3-D
structure, and we know that the 2-D projections do not fully
reflect it.

Intuition can also be helpful when we have some biological
knowledge about the relationships between parts of the plot; e.g.,
that certain cell types are related to each other as in
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Supplementary Fig. 2, and thus should be close to each other in
the DR projection.

Simulated data examples can also be very helpful here to
qualitatively evaluate DR preservation of the global structure. We
give two examples with novel simulated datasets with different
properties in Fig. 4c, d: a Gaussian Linear dataset and a Gaussian
Hierarchical dataset. Detailed generation procedures for the
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Fig. 3 Local and global structure evaluations. Bar plots represent the average evaluation metrics across five runs for each algorithm with standard
deviation shown as black error bars. Results of art-SNE and PHATE on Zheng Mouse and Cao are not included in this figure since they are unable to finish
these large datasets under a time/memory budget—see the caption of Supplementary Table 4 for more information. Zheng ERCC and Zheng Monocyte are
only used for unsupervised evaluation metrics. a Legend for all subfigures. b Local structure (supervised): SVM evaluation. Here methods that focus on
local structure, such as t-SNE, art-SNE, UMAP, and PaCMAP, perform well. € Local structure: kNN evaluation. Similar to (b), t-SNE, art-SNE, UMAP, and
PaCMAP perform well on this metric. d Local structure: proportion of neighborhood preserved. t-SNE and art-SNE achieved the best neighborhood
preservation ability on the datasets. e Global structure: random triplet accuracy. TriMap, PACMAP, and ForceAtlas2 perform well on this evaluation metric.
f Global structure: distance Spearman correlation. Consistent with (e), here PCA, TriMap, PaCMAP and ForceAtlas2 perform well. g Global structure:
k-nearest classes preservation. ForceAtlas2 and PCA perform the best on this metric. h Global structure: centroid distance correlation. On this metric,
TriMap, and ForceAtlas2 perform well.
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Fig. 4 Qualitative evaluation of global structure preservation using the Mammoth dataset, the Gaussian Linear dataset, and the Gaussian Hierarchical
dataset. a Visualization of the original Mammoth dataset. b DR results on the Mammoth dataset. Results of art-SNE, ForceAtlas2, PACMAP and PHATE are
created under default configurations (these algorithms automate their own parameter tuning), and results of DR algorithms t-SNE, UMAP, and TriMap are
created under different parameter configurations. We tune the most important parameter that controls the visual presentation of the figure, which is
perplexity for t-SNE, n_neighbors for UMAP and n_inliers for TriMap, with the parameter specified in the brackets. All DR algorithms preserve local
structure well, while only TriMap, PaCMAP, and ForceAtlas2 preserve global structure well. ¢ Results of DR algorithms on the Gaussian Linear dataset.
Sample points are annotated in gradient color, demonstrating their relative location in the high dimensional space. Although t-SNE, PHATE and UMAP
successfully preserve the local structure, the global structure is completely lost and the gradual change of color observed in other visualizations is not
observed. d Results of DR algorithms on the Hierarchical Gaussian dataset. The Hierarchical Gaussian dataset is particularly difficult, because it contains
structure at multiple scales that needs to be preserved. Here the points are colored by their meso-level cluster assignment (see definition in Supplementary
Note 7.1). t-SNE, UMAP and TriMap do not perform well, since micro clusters from the same meso clusters are not placed together, whereas art-SNE and
PacMAP perform better and ForceAtlas2 performs quite well. PHATE fails to preserve local structure on this dataset.
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Gaussian Hierarchical dataset can be found in Supplementary
Note 7.1.

In Fig. 4c, we observe from DR projections of these datasets
that, although most DR algorithms successfully capture the
general arrangement of the clusters, t-SNE and UMAP perform
poorly at preserving this global structure. In this dataset, the
sample points are annotated in gradient color that demonstrates
their relative location in high-dimensional space. Nevertheless,
the gradual change of color that can be observed in the
embedding of ForceAtlas2, TriMAP, and PaCMAP cannot be
observed in this embedding for t-SNE, art-SNE, UMAP, and
PHATE. TriMAP and ForceAtlas2 successfully preserve the line
structure of the dataset, whereas the other algorithms make use of
limited visual space instead by spreading their clusters out. In
Fig. 4(d), we observe that PHATE fails to preserve the local
structure. t-SNE, UMAP, and TriMAP, while preserving the local
clusters, fail to preserve the hierarchical structure. art-SNE,
PaCMAP, TriMAP, and ForceAtlas2 partially retain this
information, since the micro-level clusters from the same meso-
level clusters are placed closer to each other. However,
ForceAtlas2 fails to separate meso-level clusters from each other;
the boundary between different meso/macro clusters would be
unclear without coloring according to the labels. The other
methods additionally fail to separate both meso-level and macro-
level clusters.

Besides qualitatively evaluating global structure, we also
provide quantitative analysis. We first analyze the preservation
of distances between sample points. For this objective, we
recommend use of a quantitative evaluation metric called random
triplet accuracy first used in ref. 12, which is the percentage of
triplets (all combinations of three data points) whose relative
distance in the high- and low-dimensional spaces maintain their
relative order. For numerical tractability, we use a sample of
triplets rather than considering all triplets.

The random triplet accuracy evaluation over multiple datasets
and DR methods is reported in Supplementary Table 6 and
summarized in Fig. 3e. Notably, TriMap exhibits superior
(higher) triplet accuracy than other approaches, possibly because
TriMap optimizes a triplet loss. TriMap also tends to perform
well on other qualitative global structure assessments when
compared to other DR methods. PCA, PAaCMAP and ForceAtlas2
also perform well in this evaluation.

Based on similar ideas, we evaluate the distance Spearman
correlation, which is the Spearman rank-order correlation
between two vectors: distances between pairs of points in the
high-dimensional space and distances between those same points
in the low-dimensional space. Again, due to numerical tract-
ability, we use a sample of pairs rather than considering all pairs
in the dataset. The distance Spearman correlation evaluation over
multiple datasets and DR methods is reported in Supplementary
Table 7 and summarized in Fig. 3f. In this evaluation,
PCA, PaCMAP, TriMap, and ForceAtlas2 perform well on
most datasets, while t-SNE, art-SNE, and UMAP perform
relatively worse.

Beyond evaluating the preservation of relationships between
sample points, we also look into another perspective: the
preservation of relationships between different clusters. Evalua-
tion under this perspective, however, may not be as accurate as
those that assess relationships between different sample points,
due to label inaccuracies and class imbalance that widely exist in
scRNA-seq datasets. We use two metrics to measure the
preservation of cluster relationships based on the relative location
of the centroids. The first one is the k-nearest class preservation,
first introduced in Kobak and Berens!3. This metric evaluates the
fraction of the k-nearest-neighbor classes that are preserved in the
low-dimensional embedding. The neighboring relationship is

defined by the relative distances between cluster centroids. The
number of classes in the datasets we selected varies a lot, and
choosing the same k across datasets could ambiguate the meaning
of this metric. Therefore, we choose k to be a dynamic value,
k= L%J, where C is the number of classes in the dataset. This
evaluation over multiple datasets and DR methods is reported in
Supplementary Table 8 and summarized in Fig. 3g. In this
evaluation, every algorithm performs well on some datasets and
performs poorly on other datasets. In general, PCA and
ForceAtlas2 have better performance across datasets.

The third metric is the centroid distance correlation, which
evaluates the Spearman correlation between the set of centroid
distances in the high-dimensional space, and the set of distances
between centroids in the low-dimensional space. This evaluation
over multiple datasets and DR methods is reported in
Supplementary Table 9 and summarized in Fig. 3h. Similarly,
TriMap and ForceAtlas2 have better performance across all
datasets by achieving relatively high centroid distance correlation
score on most datasets. Note that some algorithms perform well
on some datasets while performing poorly on others, for example,
t-SNE performs well on Duo 4Eq** but performs poorly on
Muraro?® and Kang?®.

Evaluation 3: sensitivity to parameter choices. An ideal DR
algorithm should avoid complicated and confusing parameter
tuning. Ideally, one set of parameters works for most datasets.
The volatility of DR outcome during parameter tuning raises
doubts about the reliability of the results. How should we tune
these parameters? Without ground truth labels, tuning requires
qualitative evaluation of the visualization in light of some of the
known facts, but, in doing this, we risk the introduction of human
bias into parameter selection (for a detailed discussion of para-
meter choices, please see Supplementary Note 9).

Figure 5a provides an example of how parameter tuning can
change DR results. In this figure, the distance between the two
clusters of DCs varies with different parameter choices for t-SNE
and UMAP. In addition, in the t-SNE results, the distance
between clusters of plasmablasts and B cells varies substantially
depending on parameter choices. Figure 5b provides another
example, where the distance between red blood cell progenitors
(“Prog RBC”) and megakaryocyte progenitors (“Prog MK”)
varies considerably with different parameter choices for UMAP.
This demonstrates that these algorithms are sensitive to
parameter choices, which is not ideal.

Evaluation 4: sensitivity to pre-processing choices. An ideal DR
method should be robust to pre-processing methods. Conven-
tional pre-processing steps, as defined in ref. 27, consist of log-
normalization and PCA. PCA is often used to reduce the number
of dimensions to below 100 (in some cases, to below 20) before
applying DR. Using PCA after log-normalization has two
advantages: it reduces the computational time for DR, and it
tends to improve the stability of DR. However, PCA pre-
processing often does not preserve the original distances in the
high-dimensional space and could potentially harm the overall
results. Ideally, DR methods should be somewhat insensitive to
the number of principal components (PCs) from PCA pre-
processing that are used. Figure 6 shows DR results from two
RNAseq datasets, showing that t-SNE and UMAP’s results in
terms of distance for related cell types (e.g., mDCs and pDCs) are
not generally robust to the number of PCs chosen, while TriMAP
and PaCMAP are relatively robust.

Other commonly used pre-processing methods for scRNAseq
data, such as log-normalization, could also impact the outcome of
the DR tools. In an experiment, we selected the following three pre-
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Fig. 5 Sensitivity to parameter choices on the Kazer et al.6 dataset and Stuart et al.30 dataset. a For the Kazer et al. dataset, the distance relationship
between DC clusters varies dramatically when tuning algorithm parameters in t-SNE and UMAP. The parameter we varied in each algorithm controls the
spread of its attractive forces around each point. Clusters of DCs are circled, showing that in some cases, a single-cell type was split into two clusters by
DR. The dataset was pre-processed by PCA with 70 PCs generated. b For the Stuart et al.30 dataset, the distance relationship between red blood cell
progenitors (Prog_RBC) and megakaryocyte progenitors (Prog_MK) varies dramatically when tuning algorithm parameters in UMAP. Again, the
parameters we varied control the spread of attractive forces. The dataset was pre-processed by PCA with 70 PCs generated.
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Fig. 6 Sensitivity to the number of PCA dimensions used to initialize DR. a Here we varied the number of PCs on the Kazer et al.® dataset. t-SNE and
UMAP were not robust to the number of PCs from PCA pre-processing, having different distance relationships between two DCs clusters (pDCs and
mDCs), while TriMap and PaCMAP are relatively robust in this respect. b We varied the numbers of input PCs from the Stuart et al.30 dataset. Here,
UMAP is not robust to the number of PCs from PCA pre-processing, generating different results in terms of distance between red blood cell progenitors
(Prog_RBC) and megakaryocyte progenitors (Prog_MK) depending on the number of PCs, while t-SNE, TriMap and PaCMAP are rather robust in this
aspect. For this dataset, cell types Prog_RBC and Prog_MK should be close to each other, but UMAP with 50 PCs places points belonging to these two cell
types far away from each other. Additionally, the Prog_MK cluster is separated into two clusters in UMAP's result with 50 PCs.
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varies dramatically in t-SNE and UMAP when changing pre-processing methods. There are unfavorable outliers and tiny clusters in t-SNE and UMAP
results with GLM-PCA pre-processing. For raw data and log-normalized data, the number of dimensions from PCA is 70, for GLM-PCA pre-processed data,
the number of PCA dimensions is 50. GLM-PCA is computationally infeasible to run for more than 50 PCA dimensions.
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Fig. 8 Running time comparison. For each algorithm, the running time is
defined as the time required to transform the pre-processed dataset with
shape N x d into a low-dimensional embedding with shape N x 2, using the
default convergence criteria for each algorithm. Therefore, for ForceAtlas2,
the nearest-neighbor graph construction time is also included for fairness.
For the Zheng Mouse?4 (sample size: 1306127) and Cao3 (sample size:
2058652) datasets, art-SNE ran out of memory, and PHATE cannot finish
these datasets within a time limit of 24 h.

processing step combinations: (1) no log-normalization (raw data)
and include PCA, (2) include log-normalization and include PCA,
(3) include log-normalization and use the GLM-PCA method of
ref. 28, The experimental results are shown in Fig. 7. This figure
shows that t-SNE and UMAP are not robust to pre-processing
methods, and the distance relationship between two DCs clusters
(mDCs and pDCs) varies dramatically when changing the pre-
processing methods. By contrast, PACMAP was found to be
relatively robust to these pre-processing choices. t-SNE and
UMAP’s results using GLM-PCA pre-processing also produced a
large number of outliers and tiny clusters compared to PaCMAP.

Evaluation 5: computational efficiency and scalability. DR
algorithms are known for their long-running times when handling
large, high-dimensional datasets. This is problematic since with
the advancement of transcriptomic technology, scRNA-seq data-
sets are increasing in size, from hundreds of cells per sample to
tens of thousands of cells per sample. A faster algorithm could
save time for further analysis and allow researchers to try different
parameters to discover underlying structure more efficiently.
Figure 8 summarizes the running times of different DR
algorithms over the datasets with different sample size discussed
in this paper. More details of running times can be found in
Supplementary Table 4. Consistent with our previous work,
Wang et al.!2, PACMAP achieves the fastest run time for most of
the datasets, especially for large-scale datasets such as Zheng
Mouse24, and PaCMAP and UMAP achieve comparable results
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on datasets with sample size over 10000. UMAP, TriMap, and
t-SNE (with its recent implementations) can also complete
dimensionality reduction for these datasets in reasonably short
runtimes, while ForceAtlas2, PHATE, and art-SNE are much
slower. Indeed, art-SNE, as anticipated by Kobak and Berens!3,
was unable to process these datasets under the given memory
limit. PHATE was unable to process the large-scale datasets
within a given budget of time (24 h).

Discussion
In this work, we propose five different ways to evaluate DR
algorithms. By demonstrating this thorough evaluation on current
DR methods, our analysis yielded insight into their strengths and
weaknesses with various datasets. Several of the widely used DR
methods, such as t-SNE and UMAP have difficulty capturing
global structure, which leads to the possibility of misinterpreting
“false” clusters as real clusters, resulting in false hypothesis gen-
eration. In agreement with ref. 2°, we found that the algorithms
that preserve local structure not only tended to perform poorly on
global structure metrics, but also tended to perform poorly on
robustness and sensitivity checks, frequently leaving the results as
an arbitrary byproduct of choices made within the algorithm.
Finally, some DR methods are substantially more efficient than
others and can handle much larger datasets, which is an important
practical consideration, particularly for conducting some of the
other evaluations that require repeated runs of an algorithm. We
also observed that run time does not necessarily correlate with
either the quality of local or global structure preservation. Another
observation we made, through the use of simulated datasets, is that
even the most reliable DR methods often have trouble preserving
hierarchical (or more intricate) types of structures.

The framework we present here will be helpful for practitioners
and designers of DR methods. Importantly,

e Random triplet loss is a useful gauge of global structure
preservation, which should correlate with robustness and
stability to pre-processing choices. By examining triplet loss
(which can be done with either labeled or unlabeled data),
one can gain a sense of whether global structure might be
preserved in a DR projection of the data. Our results show
that t-SNE, UMAP, and several other methods do not
perform well with respect to this metric, but that others
such as TriMap and PaCMAP do perform well.

e Since robustness is correlated with global structure
preservation, if one desires the DR results to be more
robust to parameter choices, then it is worthwhile to choose
an algorithm designed for global preservation, and to
perform the evaluation in the section “Evaluation 3:
sensitivity to parameter choices”. Our results show that
t-SNE and UMAP are not usually robust; they provide
results that vary under different parameter selections
within the reasonable range.

e If the dataset is large, the user should consider algorithms
that have better scalability according to Supplementary
Table 4. Scalability is important especially when one would
like to choose different parameters for investigation and
thus needs to run the algorithm repeatedly.

e If the user does not have knowledge about whether local
structure or global structure is important in the dataset, an
algorithm that performs well on both local- and global-
structure preservation could be helpful, according to
Supplementary Table 1, Supplementary Table 2, and
Supplementary Table 6.

In writing this paper, we envisioned the user would evaluate
their chosen DR methods on several datasets besides their own to

understand whether the results on their dataset might be trust-
worthy in specific ways: does the algorithm tend to create false
clusters? Is it sensitive to initial conditions? The answers to these
questions inform how trustworthy the DR results are and whether
one should consider acting on what is shown in the DR
projections.

Methods

For all the methods except ForceAtlas2, we used their default hyperparameter
setting. Due to its diffusion-based nature, there is not a default hyperparameter
setting for generating the intermediate nearest-neighbor graph for ForceAtlas2.
Therefore, we used the hyperparameter settings described in ref. 2. A more
detailed description is as follows: we constructed a graph of nearest neighbors,
where two sample points are connected if and only if one of them is among the
five nearest neighbors of the other, defined by Euclidean distance. We fed the
graph into ForceAtlas2, initializing the embedding with the first two principal
components from PCA, and scaling the initialization to match the scale of
ForceAtlas2. We optimized the embedding for 750 iterations, with default set-
tings provided by the implementation!®. For the version of the implementation
of these algorithms being evaluated in this paper, please see Supplementary
Note 4.2.

We chose ten published scRNA-transcriptomics datasets to compare the per-
formance of these methods, discussed in Supplementary Note 7. These data are
from refs. 36:24-27:30, The Zheng ERCC and Zheng Monocyte datasets were taken
from ref. 24 These datasets were derived from lab-made cellular RNAs, and no
substantial biological variability was expected. Therefore, they were only used in
unsupervised evaluations. The Duo4Eq dataset and Duo8Eq datasets were taken
from ref. 27. These datasets were derived from purified PBMC subsets, and
therefore their labels are reliable as ground truth. For the remaining datasets, the
cluster labels were assigned computationally to real-world data and therefore, for
these datasets, supervised evaluations may be less reliable, whereas unsupervised
evaluations may be more reliable.

Besides the scRNA-seq datasets, we also used two well-studied general datasets
to demonstrate the visualization effects of DR algorithms, which are the Mammoth
dataset?>23, where sample points are 3-dimensional points forming a
3-dimensional mammoth skeleton, and the MNIST handwritten figure dataset?!,
where each sample point is an image belonging to one of ten classes (ten-digit
numbers). In addition, we used two synthetic datasets, the Gaussian linear dataset
which consists of 20 Gaussians along a line in 50-dimensional space, and the
Three-Stage Hierarchical Gaussians dataset (denoted as Hierarchical), which
consists of 125 micro clusters that are arranged into 5 meso and 25 macro clusters,
for a deeper look at the evaluation of global structure preservation. Details about
the generation process are provided in the section “Evaluation 2: global structure
preservation” and Supplementary Note 7.1 in the supplementary materials.

All biological datasets used in this paper except the three Zheng datasets and the
two Duo datasets were downloaded following links in the original publications. The
three Zheng datasets (ERCC, Monocyte and Mouse) were downloaded from 10x
genomics website. The Duo4Eq and Duo8Eq datasets were obtained through the
bioconductor package DuoClustering2018 in R.

The pre-processed versions of the datasets used in the experiment are either
available or can be prepared using the code from our code repository. This
repository also contains the code we used to perform the experiments and produce
all figures in this manuscript.

For pre-processing the scRNA-seq dataset, we use the packages Seurat?! and
SCANPY?2, The pre-processing workflows using these packages are similar, and here
we introduce how we do the pre-processing using the Seurat package. The raw count
matrix data was usually log-normalized using the “NormalizeData” function in the
Seurat package, where the feature counts for each cell are divided by the total counts
for that cell, multiplied by a scaling factor, and then log-transformed. The normal-
ization of the scRNA-seq counts is important to correcting for cell-to-cell differences in
capture efficiency, sequencing depth, and other technical confounders®3. Next, a group
of, for example, 2000 genes with high variability, were selected as relevant features,
using method “FindVariableFeatures” in the Seurat package, where feature variance is
calculated on the values standardized using their observed mean and expected var-
iance. Then, the chosen features will be scaled and centered using the “ScaleData”
method in Seurat package. Finally, PCA was applied to reduce the dimensionality of
the dataset to at most 100 PCs using the “RunPCA” method in the Seurat package.

In the section “Evaluation 4: sensitivity to pre-processing choices”, we studied
DR algorithms’ sensitivity to other pre-processing methods, specifically GLM-
PCA?8. GLM-PCA is a pre-processing method that attempts to address the pro-
blems caused by the arbitrary choice of pseudocount in the log-normalization, the
use of highly variable genes and the PCA step.

Statistics and reproducibility. We performed statistical analysis using the numpy
and scipy packages in Python. For all DR experiments, we use the DR algorithms to
process the datasets five times. For evaluation of the DR results, we perform the
evaluation on each of the five results, and means and standard errors are provided.
All results were analyzed by Student’s unpaired ¢ test.
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Research Reporting Summary linked to this article.

Data availability

All datasets used in this paper except the three Zheng datasets and the two Duo datasets
were downloaded following links in the original publications. The three Zheng datasets
(ERCC, Monocyte, and Mouse) were downloaded from https://support.10xgenomics.
com/single-cell-gene-expression/datasets. The Duo4Eq and Duo8Eq datasets were
obtained through the bioconductor package DuoClustering2018 in R. The pre-processed
version of the datasets used in the experiment is either available or can be prepared using
the code from our code repository https://github.com/hyhuang00/scRNA-DR2020. The
raw results from the experiment are available in Supplementary Data 1.

Code availability
The code we used to perform the experiment and produce all the figures in this
manuscript is available at https://github.com/hyhuang00/scRNA-DR2020.
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