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A 0.01-degree gridded precipitation 
dataset for Japan, 1926-2020
Misako Hatono   1 ✉, Masashi Kiguchi2, Kei Yoshimura   3, Shinjiro Kanae   4, Koichiro Kuraji5 
& Taikan Oki   6

We developed a 0.01-degree gridded precipitation dataset of Japan based on historical observation 
datasets covering 1926 to 2020. Historical observations conducted by the Japan Meteorological 
Agency and other Japanese bureaucratic agencies were spatially interpolated using the inverse 
distance weighting method at daily and hourly temporal resolutions. Optimal parameterization 
for our interpolation process was selected by comparing interpolated results of various parameter 
combinations with precipitation observation conducted by the University of Tokyo Forests. We 
conducted cross-validation for over 1,000 stations with sufficient data throughout our data period 
and verified our product can reproduce the temporal variability of local precipitation. The strong 
points of our precipitation dataset are its high spatiotemporal resolution and the abundance of point 
precipitation source data. We expect our dataset to be highly relevant to various future studies as it can 
serve multiple purposes such as forcing data for hydrological models or a database for analyzing the 
characteristics of historical rainfall events.

Background & Summary
Typhoon Prapiroon formed off the coast of Japan on June 29, 2018 and transformed into an extratropical cyclone 
over the Japan Sea on July 4. The stationary front over western Japan after July 5, combined with the already 
humid air from the typhoon, continued to supply large amounts of moisture and resulted in heavy rainfall 
across Japan, especially in the western region1. This extreme precipitation event caused several levee breaks and 
landslides, resulting in 221 deaths, 390 injuries and over 6,000 completely destroyed houses2. Fujibe (2018)3 
used historical point observations from local meteorological observatories from 1901 and indicated that, in this 
heavy rain event, 12 stations had daily precipitation ranking in the top ten. The Japan Meteorological Agency 
(hereinafter referred to as JMA) also estimated the return periods for each observation station registered in 
Automated Meteorological Data Acquisition System (hereinafter referred to as AMeDAS). While these insight-
ful estimations were made using only precipitation observed at certain stations, a detailed spatial distribution of 
precipitation is crucial when assessing rainfall events in regions of Japan that lack dense observation networks. 
In addition to analyzing precipitation patterns, gridded precipitation datasets have also been used as input for 
hydrological modelling and flood analysis in gauged and ungauged basins4–6. As many earlier studies have indi-
cated6–8, the spatial variability obtained from gridded precipitation datasets can also be crucial when assessing 
the severity and characteristics of an extreme precipitation event and its subsequent flooding.

There are various gridded datasets based on observations that cover Japan (e.g., GSMaP, RadarAMeDAS, 
REGEN)9–12, but most products either cover relatively short time periods or have coarse resolution. One product 
that overcomes these limitations is APHRO_JP, which is a 0.05-degree long-term daily precipitation dataset that 
covers 1900–200813. Since its focus was to develop a high-resolution dataset with consistent quality throughout 
the dataset period, APHRO_JP uses limited data available from JMA. For the historical period covering 1901–
1976, APHRO_JP uses less than 200 stations across Japan, which is insufficient for use in cases of extreme events 
in very localized areas. Additionally, a 0.05-degree spatial resolution (i.e., approximately 20 km2 near Tokyo) can 
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sometimes be too coarse for flood analysis in Japan where the catchment area of the smallest class A river, which 
are deemed important for national economy, is approximately 130 km2.

Here, we utilized all available point observations to develop a highly detailed gridded precipitation dataset. 
Our dataset was constructed with 0.01-degree spatial resolution (i.e., approximately 0.8 km2 near Tokyo) at 
hourly and daily temporal resolutions depending on the data source. Apart from the improved spatiotemporal 
resolutions, one of the major improvements of our dataset compared to other gridded datasets is the abundance 
of data. For the 1926–1975 historical period, we significantly increased the number of stations to over 1000. In 
order to utilize the large historical precipitation dataset digitized by other researchers that included only the sta-
tion names, we identified and allocated geographical coordinates for most stations by digitizing metadata listed 
in various historical reports. For the latter 1976–2020 period, we utilized point observations from the Ministry 
of Land, Infrastructure, Transport and Tourism (hereinafter referred to as MLIT) in addition to the data from 
JMA utilized in APHRO_JP, which nearly doubled the number of available point observation sites. Although we 
anticipate the increase in the source observation to be beneficial, Masson and Frei14 shows irregular patterns in 
long-term trends when using temporally varying station networks. Users should consider this fact to determine 
whether our dataset is well-suited for their intended purpose.

Methods
A flow diagram of our method is shown in Fig. 1.

Observation dataset.  Meteorological observations have been conducted by JMA since the beginning of the 
1900s. Daily precipitation records since 1926 from over one thousand stations have been digitized from image 
data stored in CD-ROMs (hereinafter referred to as hJMA). We note that daily precipitation in this dataset was 
recorded with different starting hours of the day (i.e., 09:00 and 10:00 JST) depending on the year15. Because the 
coordinates of each station were not listed in the original dataset, we utilized various documents to identify the 
geographical location of each observation station. We also considered certain location changes that happened 
over time. We encourage readers who are interested in the digitized point precipitation dataset to contact the 
corresponding researchers for further details.

AMeDAS is a regional meteorological observation system operated by JMA. Various observations of varia-
bles such as precipitation and air temperature are conducted automatically and published on their website in real 
time. A tipping-bucket rain gauge is used for precipitation observation by JMA. AMeDAS started its operation 
on November 1, 1974, and currently has around 1,300 stations at approximately 17 km intervals. We used hourly 
data from 1976 to 2020. Most of the full dataset utilized in this study was purchased in CD-ROM format from 
Japan Meteorological Business Support Center. AMeDAS data are currently available through the JMA website 
(https://www.data.jma.go.jp/obd/stats/etrn/index.php). We note that the minimum precipitation threshold in 
the acquired media was 1 mm.

Water Information System (in Japanese: Suimon Suishitsu Database; hereinafter referred to as SSDB) is a 
database that archives historical observations collected by regional development bureaus of the MLIT. Various 
observations such as precipitation and water quality have been collected and archived in near real-time. 
Although data in SSDB is available since the 1930s, we used hourly data from 1976 to 2020 to match that of 
AMeDAS. Data is available through the SSDB website (http://www1.river.go.jp).

Different quality control (hereinafter referred to as QC) measures are conducted by JMA and MLIT to 
ensure the published observation dataset do not contain errors. For example, Automatic Quality Control is 
conducted by JMA for AMeDAS before distribution based on various factors such as historical records exceed-
ance and equipment malfunction16. QC by MLIT is also conducted considering similar factors17. In addition, 
we conducted some QC during our interpolation process to exclude missed outliers. For daily precipitation, 
we excluded values exceeding the historical maximum 24-hour precipitation record of 1,317 mm recorded at 

Fig. 1  Flow diagram of the method in this study. The color indicates monthly precipitation [mm/mon].
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Tokushima in 200418. For hourly precipitation, we excluded values exceeding the historical maximum record of 
187 mm recorded at Nagasaki in 198218. It should be noted that additional QC is sometimes conducted by JMA 
and MLIT after data publication. Therefore, some of the observed precipitation values utilized in this study may 
be different from the most recently available data in each corresponding website. For example, the earlier periods 
in the AMeDAS dataset tend to have missing values which were later corrected. During the coordinate allocation 
process for hJMA stations, we manually checked for any errors in the data entry process by plotting all stations 
for each prefecture on a map and checking for any obvious outliers. If there were any strings in the digitized 
hJMA precipitation dataset, we edited the value based on information in the metadata and set as invalid if there 
were no information available.

Fig. 2 shows the temporal change in the number of stations with at least one valid data entry for each year 
throughout the data period. The solid line indicates the number of hJMA stations for which we were able to 
identify the coordinates; the dashed line indicates the total number of hJMA stations with valid data; the dotted 
line indicates the number of AMeDAS stations; the dash-dotted line indicates the sum of AMeDAS and SSDB 

Fig. 2  Temporal variation of the number of available observation stations. Solid line indicates the number of 
hJMA stations for which we were able to identify the coordinates; dashed line indicates the total number of 
hJMA stations that have valid data; dotted line indicates the number of AMeDAS stations; dash-dotted line 
indicates the sum of AMeDAS and SSDB stations.

Fig. 3  Spatial distribution of the available observation stations. (a–e) Spatial distribution of available hJMA 
stations in June of each year. (f–j) Spatial distribution of available AMeDAS and SSDB stations in June of each 
year. Red and blue dots represent AMeDAS and SSDB stations, respectively.
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stations. Fig. 3(a–e) show the spatial distribution of the hJMA observation stations that were available in 1926, 
1935, 1945, 1955 and 1965, respectively. Fig. 3(f–j) show the spatial distribution of AMeDAS and SSDB observa-
tion stations in 1976, 1985, 1995, 2005 and 2015, respectively. Stations available in June in each year are shown 
for simplicity. Apparent regions with no hJMA stations are prefectures for which we were thus far unable to find 
station coordinates. AMeDAS had similar number of stations compared to hJMA, which is reasonable consid-
ering that they are managed by the same agency. The additional SSDB stations enabled a more detailed spatial 
distribution in our interpolated dataset. Although many SSDB stations initiated precipitation monitoring in the 
1950s, we could not obtain data from earlier periods for many SSDB stations via their website. We will continue 
our efforts to identify the remaining hJMA station coordinates, expand our observation dataset and update our 
gridded dataset.

Spatial interpolation.  We applied the inverse distance weighting method (hereinafter referred to as IDW) 
in this study. The precipitation for grid j, Pj[mm/T], can be estimated as
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where pi [mm/T] and dij[m] are the precipitation and distance of the ith closest station to grid j, respectively. 
Unit T represents either daily or hourly intervals, depending on the data source. k is a weighting parameter that 
represents the extent to which distance from the grid is considered. sNum represents the number of observation 
stations used for interpolation. We set a radius of r [km] to search for nearby observation stations at each time-
step; if there were fewer than sNum stations with valid data within the radius, that grid was considered invalid 
and we set its value to −999. There have been numerous studies related to the impact of utilizing different spatial 
interpolation methods. In future updates, we hope to include various versions of our dataset considering differ-
ent spatial interpolation methods. In the Technical Validation section, we have included a preliminary compar-
ison using the angular distance weighting method (hereinafter referred to as ADW) described in New et al.19.

Parameter calibration and validation.  Earlier studies have investigated the impact of the parameters 
in Eq. (1). To consider the optimal parameter settings for our dataset, we used observations collected by the 
University of Tokyo Forests (hereafter referred to as UTF). We used daily precipitation data from 1990 to 1999 
for the parameter calibration and from 2000 to 2009 for validation. Data are available through the UTF website 
(http://www.uf.a.u-tokyo.ac.jp/research_division/data/kishou/index_english.html). We aggregated daily UTF 
precipitation to monthly precipitation to minimize the impact of different daily boundaries at some stations. 
For this analysis, we also aggregated our interpolated hourly precipitation data to monthly precipitation. If there 

Fig. 4  Impact assessment of parameter calibration. Difference in NSE due to various k and sNum combinations.
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were more than two days’ worth of missing data in a month, the respective monthly precipitation value would 
be deemed invalid and set to −999 to avoid an obvious underestimation. If a station had more than 12 months 
that were deemed invalid in either of the 10-year periods, it was excluded from our analysis. Four out of fourteen 
stations with data from 1990 onwards were excluded based on this criteria. k in Eq. (1) was set to be between 0 
and 5 with 0.5 increments and the number of closest stations sNum was set to range between 3 and 15. We also 
explored the option of using all available stations when there were more than 15 stations within radius r, which 
was adjusted to every 10 km between 10 and 100 km. The total number of parameter combinations considered 
for all stations was 2,475, and the combination patterns for each station ranged between 220 and 264. The com-
bination patterns differed among the stations depending on the radius necessary to obtain sNum stations. For 
evaluation, we used the Nash-Sutcliffe efficiency (hereafter referred to as NSE) which can be calculated as
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where Pm
t  is our interpolated monthly precipitation at month t, Po

t is the UTF monthly precipitation at month t, 
and Po is the UTF average monthly precipitation. NSE ranges from -∞ to 1, where 1 indicates that our interpo-
lated values match perfectly with the UTF precipitation. NSE is frequently utilized in hydrological studies 
because of its ability to evaluate variability and seasonality. Regarding the criteria, Moriasi et al.20 considered 
NSE s larger than 0.65 and 0.75 as good and very good, respectively. Although these thresholds were set for river 
discharge, they are still useful for qualitative comparison.

The average NSE in each UTF station had good accuracy ranging between 0.73 and 0.97. Fig. 4 shows the 
difference in NSE based on sNum and k combinations. If multiple r options were available for a given combina-
tion, the average NSE is shown. Precipitation at stations with relatively low NSE has irregular characteristics, as 
they are located in unique terrains without JMA stations nearby. Overall, NSE had relatively small fluctuations, 
although NSE seemed to decrease with combinations of larger sNum and smaller k. This may be because in order 
to use a larger sNum, the selected observation stations would be located further away from the UTF station. 
Therefore, larger k would be suitable to put more weight on those closer to the target site. This characteristic 
can also be seen when conducting a two-sample Kolmogorov-Smirnov test, whose null hypothesis is that the 
two distributions are identical. We examined the impact of sNum and k with the Kolmogorov-Smirnov test by 
adjusting one parameter and keeping the other fixed. For example, distributions with small and large sNum 
while keeping k fixed at 0 to 1.5 could reject the null hypothesis (i.e., p < 0.1). On the other hand, distributions 
with small and large k while keeping sNum fixed at over 10 could reject the null hypothesis. Based on these 
findings, we deemed it acceptable to use k = 2 which has been generally utilized in numerous studies using 

Name Latitude Longitude

Fudago 35°12′00″N 140°08′35″E

Kiyosumi 35°09′35″N 140°08′45″E

Amatsu 35°07′35″N 140°09′11″E

Godai 35°11′35″N 140°06′35″E

Tochimoto 35°56′40″N 138°51′47″E

Oochigawa 35°54′32″N 138°58′43″E

Kagemori 35°59′00″N 139°04′36″E

Shirasaka 35°13′08″N 137°19′53″E

Yamanakako 35°24′27″N 138°51′52″E

Aono 34°41′29″N 138°50′19″E

Table 1.  Coordinates of UTF observation sites.

Name

Mean monthly precipitation [mm/mon] NSE

UTF This study APHRO_JP This study APHRO_JP

Fudago 207 175 175 0.88 0.89

Kiyosumi 188 175 170 0.94 0.92

Amatsu 164 169 173 0.95 0.94

Godai 202 175 174 0.91 0.90

Tochimoto 127 135 132 0.92 0.94

Oochigawa 135 136 133 0.88 0.93

Kagemori 113 126 115 0.93 0.96

Shirasaka 148 125 146 0.92 0.95

Yamanakako 219 204 188 0.86 0.84

Aono 188 168 182 0.92 0.93

Table 2.  Validation results of UTF stations.
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IDW21,22. Because sNum did not seem to have a significant impact on the interpolated time-series when k is over 
1.5, we decided to use sNum = 3 to minimize the calculation cost. When considering the optimal search radius 
for this period, we were able to find at least three valid observation stations within 30 km of each grid containing 
a UTF site. Because the observation network for the first half of our dataset is relatively sparse, we decided to 
use r = 100 km which enabled interpolation of grids on most of the main island of Japan. We will be updating 
this radius in the future, as we continually find more observations that can be utilized in our dataset. From the 
parameter calibration results, we estimated the precipitation in each grid as follows:
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The validation using UTF data for 2000 to 2009 is shown in the Technical Validation section.

Data Records
UTF data for calibration and validation.  To quantitatively compare our data with observations not 
included in our interpolation process, we used precipitation observations conducted by the UTF. Meteorological 
observations, including daily precipitation using tipping-bucket rain gauges since 1989, are freely available 
through their website (http://www.uf.a.u-tokyo.ac.jp/research_division/data/kishou/index_english.html). We 
decided to aggregate daily values to monthly values because boundary times of daily data were different among 
sites. We used 1990 to 1999 for parameter calibration and 2000 to 2009 for validation. The coordinates of the 
stations are listed in Table 1.

APHRO_JP.  We used APHRO_JP to evaluate the characteristics of our long-term dataset. We only used 
months where there were less than 2-days’ worth of missing data. Their data, including coarser global versions, 
are available through their website (https://www.chikyu.ac.jp/precip/english/index.html).

Final dataset.  The final dataset is a 0.01-degree gridded precipitation dataset at daily and hourly time resolu-
tions for 1926 to 1975 and 1976 to 2020, respectively. The dataset is stored in netCDF format, archived at Harvard 
Dataverse23.

Fig. 5  NSE at stations included in cross-validaton analysis for each year.
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Technical Validation
We validated monthly precipitation at ten UTF sites for 2000 to 2009. Precipitation at the UTF sites were com-
pared to the respective 0.01-degree grids that includes each site. We also included APHRO_JP monthly pre-
cipitation data at the same sites in the comparison for reference. Table 2 shows the statistics for all stations. All 
stations exhibited very good accuracy, with NSE ranging between 0.86 and 0.95. Overestimation and underes-
timation were each evident in about half of the stations; therefore, our interpolated data did not exhibit distinct 
trends compared to the observations. These discrepancies may be due to the slight differences in the location 
of the UTF sites and our observation sites. There were no significant differences between our interpolated 
time-series and APHRO_JP. As preliminary comparison for difference in interpolated values with different 
interpolation methods, we compared NSE values in the ten UTF sites using IDW and ADW. The NSE difference 
between the two methods were relatively small, with a less than 0.01 difference at most stations. Although some 
stations had better accuracy using ADW, the NSE for IDW results are very good, nonetheless. As future works, 
we hope to expand our dataset to include different versions using various interpolation methods.

We also conducted cross-validation to investigate the accuracy of our high-resolution dataset. We excluded 
a certain site from our observation dataset and conducted IDW interpolation for that site using the remaining 
sites. This was repeated for every observation site. For simplicity and easier data handling, we evaluated the 
accuracy for each year at stations with less than 30 days’ worth of missing data. On average, 978 and 2298 sites 
were validated annually in this analysis for 1926–1975 and 1976–2020, respectively. For 1976–2020, we also con-
ducted cross-validation at the daily timescale for comparison. Fig. 5(a–j) shows the spatial distribution of NSE 
at stations included in this analysis. Overall, stations in areas with a dense observation network had especially 
high accuracy, and more than half of the stations in most years had NSE over 0.6. Only the latter period had 
eight years with a median NSE of less than 0.6. There was a significant decrease in NSE for hourly precipitation 
compared to the daily values before 1975, which is most likely because hourly precipitation tends to have larger 
variations compared to daily values. This can be confirmed with the daily timescale cross-validation for 1976–
2020, which had a significant improvement with 0.84 as the smallest median NSE in the 45 years. Although our 
interpolation method is relatively simple compared to other products such as APHRO_JP, the abundance of 
observation stations seems to provide good accuracy even in higher-resolution grids.

Fig. 6(a) shows the annual precipitation deviation compared with JMA point data. The deviation was cal-
culated following the method described by JMA. First, the deviation at 51 JMA observatories was estimated 
by comparing each year’s annual total precipitation with the average annual total precipitation of 1991–2020. 

Fig. 6  Temporal and spatial distribution of our precipitation dataset. (a) Annual precipitation deviation [mm/
year] compared to JMA point data averaged over Japan. Hokkaido is excluded in our calculation due to lack 
of data in earlier periods. Mean annual precipitation [mm/year] of our dataset for the periods (b) 1926–1975 
and (c) 1976–2020. Gray shaded area is not included in the FLOW river network for Japan. White area is where 
interpolation was not conducted mainly due to lack of observations nearby.
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8Scientific Data |           (2022) 9:422  | https://doi.org/10.1038/s41597-022-01548-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Subsequently, the annual precipitation deviation for Japan was calculated by averaging the deviation of the 51 
stations. We followed this method and applied it to our gridded dataset. Grids with one or more years that had 
more than 10 days of invalid data were excluded. We also excluded grids that were considered to be oceans in 
the FLOW river network map24. We note that our average values do not include Hokkaido because grids in 
Hokkaido were mostly deemed invalid in the early period in our dataset. Fig. 6(b,c) show the mean annual 
precipitation of our dataset for 1926–1975 and 1976–2020, respectively. Although the considered spatial charac-
teristics were different, our results were highly correlated with those of JMA, with R = 0.92.

To confirm the improvements associated with our high temporal and spatial resolutions, we examined two 
extreme precipitation events in Japan. Typhoon Kathleen brought heavy rainfall in September 1947 and resulted 
in catastrophic damage in Japan’s largest river basin. At that time, this extreme event was the largest flood since 
1910, and is still one of the largest flood events in Japanese history. Fig. 7(b,c) show the total precipitation on 
September 13–16, 1947 near Mt. Fuji using APHRO_JP and our dataset, respectively. Scatter plots show the total 
precipitation of the utilized hJMA observations. We note that because we do not have APHRO_JP source data, 
we plotted for reference the total precipitation of JMA surface observatories in Fig. 7(b), which should be similar 
to their utilized observation dataset. The domain is shown as a red square in Fig. 7(a). Because of the abundant 
observations, our dataset is able to exhibit a more detailed spatial distribution. For example, the eastern region, 
with total rainfall over 500 mm, is not visible in APHRO_JP. In addition, our dataset matches well with obser-
vations showing the lower rainfall regions near the east and west boundaries, indicating that the heavy rainfall 
distribution in this region was narrower than that shown in APHRO_JP. JMA indicates that the maximum 
hourly precipitation in Japan was 153 mm, which occurred at Katori, Chiba during 19:00–20:00 JST on October 
27, 1999. Fig. 7(d–f) show the region around Katori station. The domain is shown as a blue square in Fig. 7(a). 
Fig. 7(d,e) show the daily precipitation on that day using APHRO_JP and our dataset. Figure 7(f) shows the 
ratio of hourly precipitation during 19:00–20:00 JST to daily precipitation using our dataset. At Katori station, 
daily precipitation was 299 mm/dy, indicating that more than half of the daily precipitation occurred in one 

Fig. 7  Improvement of spatial and temporal resolution. (a) Map of mainland Japan indicating the compared 
domains. (b,c) Total precipitation [mm/3dy] for September 13–16, 1947, using APHRO_JP and our dataset, 
respectively. (d,e) Daily precipitation [mm/dy] on October 27, 1999, using APHRO_JP and our dataset, 
respectively. (f) Ratio of maximum hourly precipitation to daily precipitation on October 27, 1999 using our 
dataset. The domains for (b,c) and (d–f) are indicated as red and blue squares in map (a), respectively.
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hour. In Fig. 7(f), hourly precipitation accounts for approximately half of the daily precipitation in many grids. 
When gridded daily precipitation datasets are used as input in hydrological models, they are usually uniformly 
distributed to match the input time intervals. In the Katori case, this means that the evenly distributed hourly 
precipitation would be indicated as only 12 mm/hr which could lead to an underestimation of this short-term 
heavy rainfall event. With our hourly precipitation, we can consider 24-hour precipitation in addition to daily 
precipitation, which can increase the amount of precipitation while considering the same time interval. With the 
improved temporal and spatial resolutions, our dataset will be able to contribute to a better understanding of the 
characteristics and magnitude of a wide range of precipitation events.

Usage Notes
Data users should be aware that the precipitation data before 1976 is based on observation data with varying 
daily boundaries. This should be taken into account if data users aim to compare the early period with daily 
aggregated precipitation after 1976. Since our main focus was to use as many available observation stations as 
possible, we did not limit our station to only include homogenized time series. Data users should consider this 
upon usage for long term analysis. Also, it should be noted the time in this paper and dataset is registered in JST.

Code availability
The code used in this study can be accessed alongside the final dataset.

Received: 16 December 2021; Accepted: 7 July 2022;
Published: xx xx xxxx

References
	 1.	 Japan Meteorological Agency. Report on Heavy Rain Event of July 2018. https://www.data.jma.go.jp/obd/stats/data/bosai/

report/2018/20180713/jyun_sokuji20180628-0708.pdf (2018) (in Japanese).
	 2.	 Cabinet Office. Damage status caused by Heavy Rain Event of July 2018. http://www.bousai.go.jp/updates/h30typhoon7/

pdf/300821_1500_h30typhoon7.pdf (2018) (in Japanese).
	 3.	 Fujibe, F. ‘True causes’ of the Western Japan Heavy-Rain and ‘imminent danger’ taught by the past 100 years observation data. 

Business Insider Japan https://www.businessinsider.jp/post-171160 (2018) (in Japanese).
	 4.	 Tuo, Y., Duan, Z., Disse, M. & Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study 

in the Adige river basin (Italy). Sci. Total Environ. 573, 66–82 (2016).
	 5.	 Cole, S. J. & Moore, R. J. Distributed hydrological modelling using weather radar in gauged and ungauged basins. Adv. Water Resour. 

32, 1107–1120 (2009).
	 6.	 Klongvessa, P., Lu, M. & Chotpantarat, S. Response of the flood peak to the spatial distribution of rainfall in the Yom River basin, 

Thailand. Stoch. Environ. Res. Risk Assess 32, 2871–2887 (2018).
	 7.	 Douinot, A. et al. Accounting for rainfall systematic spatial variability in flash flood forecasting. J. Hydrol. 541, 359–370 (2016).
	 8.	 Saunders, K., Stephenson, A. G., Taylor, P. G. & Karoly, D. The spatial distribution of rainfall extremes and the influence of El Niño 

Southern Oscillation. Weather Clim. Extrem. 18, 17–28 (2017).
	 9.	 Yatagai, A. et al. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of 

rain gauges. Bull. Am. Meteorol. Soc. 93, 1401–1415 (2012).
	10.	 Kubota, T. et al. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and 

validation. IEEE Trans. Geosci. Remote Sens. 45, 2259–2275 (2007).
	11.	 Makihara, Y., Uekiyo, N., Tabata, A. & Abe, Y. Accuracy of Radar-AMeDAS precipitation. IEICE Trans. Commun. E79-B, 751–762 

(1996).
	12.	 Contractor, S. et al. Rainfall Estimates on a Gridded Network (REGEN) - A global land-based gridded dataset of daily precipitation 

from 1950 to 2016. Hydrol. Earth Syst. Sci. 24, 919–943 (2020).
	13.	 Kamiguchi, K. et al. Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 

years. Hydrol. Res. Lett. 4, 60–64 (2010).
	14.	 Masson, D. & Frei, C. Long-term variations and trends of mesoscale precipitation in the Alps: recalculation and update for 

1901–2008. Int. J. Climatol. 36, 492–500 (2016).
	15.	 Fujibe, F., Matsumoto, J. & Kobayashi, K. Digitization of daily precipitation data on a mid-20th-century high resolution network in 

central Japan. Tenki 55, 283–287 (2008) (in Japanese).
	16.	 Japan Meteorological Agency. Meteorological Observation Guidebook. https://www.jma.go.jp/jma/kishou/know/kansoku_guide/

guidebook.pdf (in Japanese).
	17.	 Ministry of Land Infrasturcture Tourism and Transport. Hydrological Observation Data Quality Check Guideline. http://www1.

river.go.jp/hinsitu_syosa.pdf (in Japanese).
	18.	 Kiguchi, M. & Oki, T. Point precipitation observation extremes in the world and Japan. J. Japan Soc. Hydrol. Water Resour. 23, 

231–247 (2010) (in Japanese with English abstract).
	19.	 New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 

monthly grids of terrestrial surface climate. J. Clim. 13, 2217–2238 (2000).
	20.	 Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 

50, 885–900 (2007).
	21.	 Chen, D. et al. Spatial interpolation of daily precipitation in China: 1951–2005. Adv. Atmos. Sci. 27, 1221–1232 (2010).
	22.	 Dirks, K. N., Hay, J. E., Stow, C. D. & Harris, D. High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall 

data. J. Hydrol. 208, 187–193 (1998).
	23.	 Hatono, M. Data for: A 0.01-degree gridded precipitation dataset for Japan, 1926-2020, Harvard Dataverse, https://doi.org/10.7910/

DVN/J215UY (2022).
	24.	 Yamazaki, D., Oki, T. & Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a  

fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 13, 2241–2251 (2009).

Acknowledgements
This work was supported by JSPS KAKENHI Grant numbers JP21K14252 and JP21H05002; Chugoku Kensetsu 
Kosaikai; the Integrated Research Program for Advancing Climate Models (TOUGOU) Grant Number 
JPMXD0717935457 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; 
the Collaborative Research Program of Research Institute of Applied Mechanics, Kyushu University, Japan; JST 
SICORP Grant Number JPMJSC20E3, Japan; the Environment Research and Technology Development Fund 

https://doi.org/10.1038/s41597-022-01548-3
https://www.data.jma.go.jp/obd/stats/data/bosai/report/2018/20180713/jyun_sokuji20180628-0708.pdf
https://www.data.jma.go.jp/obd/stats/data/bosai/report/2018/20180713/jyun_sokuji20180628-0708.pdf
http://www.bousai.go.jp/updates/h30typhoon7/pdf/300821_1500_h30typhoon7.pdf
http://www.bousai.go.jp/updates/h30typhoon7/pdf/300821_1500_h30typhoon7.pdf
https://www.businessinsider.jp/post-171160
https://www.jma.go.jp/jma/kishou/know/kansoku_guide/guidebook.pdf
https://www.jma.go.jp/jma/kishou/know/kansoku_guide/guidebook.pdf
http://www1.river.go.jp/hinsitu_syosa.pdf
http://www1.river.go.jp/hinsitu_syosa.pdf
https://doi.org/10.7910/DVN/J215UY
https://doi.org/10.7910/DVN/J215UY


1 0Scientific Data |           (2022) 9:422  | https://doi.org/10.1038/s41597-022-01548-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

(JPMEERF15S11401) of the Environmental Restoration and Conservation Agency of Japan; and Sumitomo Grant 
for Environmental Research Projects. The handwritten hJMA observation datasets owned by JMA were digitalized 
under JSPS KAKENHI Grant Numbers JP18340145 (PI: Fumiaki Fujibe) and JP23240122 (PI: Jun Matsumoto); 
the River Development Fund of The River Foundation, Japan (19-1212-006, PI: Haruhiko Yamamoto); and The 
Mitsui & Co. Environment Fund (Climate change projections and torrential rain rate analysis based on a century 
of databasing of temperature and rainfall information for Western Japan, PI: Haruhiko Yamamoto). The UTF data 
was provided by the Meteorology, Hydrology and Water Quality Division, Research Committee, The University 
of Tokyo Forests. A part of the SSDB data was acquired by Mr. Akira Takeshima. The river network maps were 
provided by Dr. Dai Yamazaki. We greatly appreciate their assistance.

Author contributions
M.H., M.K. and K.K. contributed to the data collection. M.H. conducted the data processing and drafted the 
manuscript. M.K., K.Y., S.K., K.K. and T.O. provided guidance and constructive advice for the data interpretation. 
All authors contributed to the methodological decisions and data quality assessment. All authors have revised and 
approved of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01548-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A 0.01-degree gridded precipitation dataset for Japan, 1926-2020

	Background & Summary

	Methods

	Observation dataset. 
	Spatial interpolation. 
	Parameter calibration and validation. 

	Data Records

	UTF data for calibration and validation. 
	APHRO_JP. 
	Final dataset. 

	Technical Validation

	Usage Notes

	Acknowledgements

	﻿Fig. 1 Flow diagram of the method in this study.
	Fig. 2 Temporal variation of the number of available observation stations.
	Fig. 3 Spatial distribution of the available observation stations.
	Fig. 4 Impact assessment of parameter calibration.
	Fig. 5 NSE at stations included in cross-validaton analysis for each year.
	Fig. 6 Temporal and spatial distribution of our precipitation dataset.
	Fig. 7 Improvement of spatial and temporal resolution.
	Table 1 Coordinates of UTF observation sites.
	Table 2 Validation results of UTF stations.




