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Abstract

Incomplete data problem is commonly existing in disease diagnosis with multi-modality 

neuroimages, to track which, some methods have been proposed to utilize all available subjects by 

imputing missing neuroimages. However, these methods usually treat image synthesis and disease 

diagnosis as two standalone tasks, thus ignoring the specificity conveyed in different modalities, 

i.e., different modalities may highlight different disease-relevant regions in the brain. To this 

end, we propose a disease-image-specific deep learning (DSDL) framework for joint neuroimage 

synthesis and disease diagnosis using incomplete multi-modality neuroimages. Specifically, with 

each whole-brain scan as input, we first design a Disease-image-Specific Network (DSNet) with 

a spatial cosine module to implicitly model the disease-image specificity. We then develop a 

Feature-consistency Generative Adversarial Network (FGAN) to impute missing neuroimages, 

where feature maps (generated by DSNet) of a synthetic image and its respective real image are 

encouraged to be consistent while preserving the disease-image-specific information. Since our 

FGAN is correlated with DSNet, missing neuroimages can be synthesized in a diagnosis-oriented 

manner. Experimental results on three datasets suggest that our method can not only generate 

reasonable neuroimages, but also achieve state-of-the-art performance in both tasks of Alzheimer’s 

disease identification and mild cognitive impairment conversion prediction.

Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/
publications/rights/index.html for more information.

yspan@mail.nwpu.edu.cn . 

HHS Public Access
Author manuscript
IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2022 November 
01.

Published in final edited form as:
IEEE Trans Pattern Anal Mach Intell. ; PP: . doi:10.1109/TPAMI.2021.3091214.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.ieee.org/publications_standards/publications/rights/index.html


Index Terms—
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disease diagnosis

1 Introduction

Multi-modality neuroimaging data, such as structural magnetic resonance imaging (MRI) 

and fluorodeoxyglucose positron emission tomography (PET), have been shown that 

they can provide complementary information to improve the computer-aided diagnosis 

performance of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) [1], [2], 

[3], [4]. In practice, the missing data problem has been remaining a common challenge in 

automated brain disease diagnosis using multi-modality neuroimaging data, since subjects 

may lack a specific modality due to patient dropout or poor data quality. For example, more 

than 800 subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) database [5] 

have baseline MRI scans, but only ~ 400 subjects have baseline PET data.

Conventional methods typically discard those modality-incomplete subjects and use only 

modality-complete subjects to train diagnosis models [1], [6], [7], [8], [9], [10], [11]. Such 

strategy significantly reduces the number of training samples and also ignores the useful 

information provided by data-missing subjects, thus degrading the diagnostic performance. 

Several data imputation methods [12], [13] have been proposed to estimate the hand-crafted 

features of missing data subjects using the features of data-complete subjects. Thus, multi-

view learning methods [2], [3], [14] can be developed to make use of all subjects. However, 

these methods rely on hand-crafted imaging features, which may not be discriminated for 

brain disease diagnosis, thus leading to sub-optimal learning performance.

A more promising alternative is to directly estimate missing data through deep learning 

[15], [16]. In our previous work, we directly impute missing PET images based on 

their corresponding MRI scans by the cycle-consistency generative adversarial network 

(CycGAN) [4]. This model, however, equally treats all voxels in each brain volume, 

thus ignoring the disease-image specificity conveyed in multi-modality neuroimaging data. 

Herein, such disease-image specificity is two-fold: (1) not all regions in an MRI/PET scan 
are relevant with a specific brain disease [17]; and (2) disease-relevant brain regions may 
differ in different modalities (e.g., MRI and PET) [7], [18]. For the first aspect, existing 

deep learning methods usually treat all brain regions equally in the image synthesis process, 

ignoring that several regions (e.g., hippocampus and amygdala) are highly relevant with 

AD/MCI [17], [19], [20] in comparison to other regions. For the second aspect, existing 

methods directly synthesize images of one modality (e.g., PET) based on images of another 

modality (e.g., MRI), without considering the modality gap in terms of disease-relevant 

regions [7], [11], [18]. It is worth noting that previous studies have shown that disease 

diagnosis models can implicitly or explicitly capture the disease-image specificity through 

regions-of-interest (ROIs) and anatomical landmarks [4], [7], [8], [17], [19], [21]. Therefore, 

to capture and utilize the disease-image specificity, it is intuitively desirable to integrate 
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disease diagnosis and image synthesis into a unified framework, by imputing missing 

neuroimages in a diagnosis-oriented manner.

In this paper, we propose a disease-image-specific deep learning (DSDL) framework for 

joint disease diagnosis and image synthesis using incomplete multi-modality neuroimages 

(see Fig. 1). As shown in Fig. 1 (a)–(b), our method mainly contains two single-modality 

Disease-image-Specific Network (DSNet) for MRI- and PET-based disease diagnosis and a 

Feature-consistency Generative Adversarial Network (FGAN) for image synthesis. Herein, 

DSNet encodes disease-image specificity in MRI- and PET-based feature maps to assist 

the training of FGAN, while FGAN imputes missing images to improve the diagnostic 

performance. Since DSNet and FGAN can be trained jointly, missing neuroimages can be 

synthesized in a diagnosis-oriented manner. Using complete MRI and PET scans (after 

imputation), we can perform disease diagnosis via the proposed multi-modality DSNet 

(shown in Fig. 1 (c)). Experimental results on subjects from three public datasets suggest 

that our method can not only synthesize reasonable MR and PET images, but also achieve 

the state-of-the-art results in both AD identification and MCI conversion prediction.

Comparing to our previous works, the contributions of this work are as follows. More 

detailed information could be seen in Section I of the Supplementary Materials.

1. We proposed a unified framework called DSDL for joint image synthesis and AD 

diagnosis using incomplete multi-modality neuroimages. The missing images are 

imputed in a diagnosis-oriented manner, and hence the synthetic neuroimages are 

more consistent with real neuroimages from a diagnostic point of view.

2. We designed a spatial cosine module to model the disease-image specificity in 

whole-brain MRI/PET scans implicitly and automatically.

3. We proposed a feature-consistency constraint, which can assist the image 

synthesis model to preserve the disease-relevant information during modality 

transformation.

2 Related Work

2.1 Synthesis of Missing Neuroimages

By providing complementary information, multi-modality neuroimaging data have shown 

to be effective in achieving holistic understanding of the brain and improving automated 

identification performance of brain disorders [22]. Since subjects may lack a specific 

imaging modality the missing data problem has been remaining a common challenge in 

multi-modality-based diagnosis systems.

Rather than estimating the hand-crafted features of missing images, many machine learning 

techniques have been developed to impute the missing images directly. For problems with 

multi-modality imaging data, a popular solution is to perform cross-modality estimation, 

i.e., synthesizing an image of a specific modality based on the corresponding image of 

another modality. For instance, Huynh et al. [23] proposed to estimate patches of each 

computerized tomography (CT) image from its corresponding MR image patches using the 

structured random forest and auto-context model. Jog et al. [24] attempted to transform 
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T1-weighted MR patches to T2-weighted MR patches by training a bagged ensemble of 

regression trees. Bano et al. [25] designed a cross-modality convolutional neural network 

(CNN) with a multi-branch architecture operated on various spatial resolution levels for 

inference between T1-weighted and T2-weighted MRI scans. Li et al. [22] proposed a 

3-layer CNN for estimating PET images from MRI scans for data completion.

Generative adversarial networks (GANs) have been developed for image transformation 

from a source domain/modality to a target domain/modality [26], [27], [28], [29], [30], [31], 

[32], [33]. A typical GAN [26] consists of two neural networks: (a) a generator trained to 

synthesize an output that approximates the real data distribution, and (2) a discriminator 

trained to differentiate between the synthetic and real images. Recently, variants of GAN 

have been used in synthesizing medical images [4], [34], [35], [36], [37]. Ben et al. [35] 

combined a fully CNN with a conditional GAN to predict PET from CT images. Yi et 
al. [36] used GAN to generate missing magnetic resonance angiography images from T1- 

and T2-weighted MR images. Sun et al. [11] studied the latent variable representations of 

different modalities and proposed a flow-based generative model for MRI-to-PET image 

generation. Pan et al. [4] employed CycGAN to predict PET images from MRI scans and 

achieved good results in brain disease diagnosis using both real and synthetic multi-modality 

images. Yan et al. [37] added a structure-consistency loss to the original CycGAN and 

applied it to estimate MRI data from CT data. In general, these GAN-based image synthesis 

techniques only pose constraints on data distribution, without considering the discriminative 

capability of synthetic images in a particular task (e.g., neuroimaging-based brain disease 

diagnosis). Hence, it is desirable to synthesize missing images via GAN in a task-oriented 

manner.

2.2 Identification of Disease-relevant Brain Regions

Multi-modality neuroimages have been widely used in automated diagnosis of brain 

disorders, such as AD and MCI. Previous studies have verified that there exits disease-image 

specificity. For example, AD and MCI are relevant with brain atrophy, especially in specific 

regions such as hippocampus and amygdala [17], [38], [39]. Zhang et al. [7] combined the 

volumetric features extracted from 93 regions of interest (ROIs) in both MRI and PET scans 

and reported that the most discriminative MRI- and PET-based features are from different 

brain regions. Zhang et al. [8] further studied the volumetric features of PET and MRI 

and found that the most discriminative brain regions differ in different tasks. Wachinger 

et al. [19] studied shape asymmetries of neuroanatomical structures across brain regions 

and found that the subcortical structures in AD is not symmetric, e.g., shape asymmetry 

in hippocampus, amygdala, caudate and cortex is predictive of disease onset. Cui et al. 
[39] focused on hippocampus regions and used a 3D densely connected CNN to combine 

global shape and local visual features of hippocampus to enhance the performance of 

AD classification. However, these ROI-based methods ignore relative changes in multiple 

regions, while relying solely on rigid partition of ROI may ignore small or subtle changes 

caused by diseases.

To tackle this limitation, patch-based methods have been proposed to capture diseased-

relevant pathology in a more flexible manner, without using pre-defined ROIs. Liu et al. 
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[40], [41] partitioned each volume into multiple 3D patches and hierarchically combined 

patch-based features for AD/MCI identification. Suk et al. [9] developed a deep Boltzmann 

machine to find latent hierarchical feature representation from paired 3D patches of 

MRI and PET. Based on hand-crafted morphological features, Zhang et al. [42], [43] 

first defined multiple disease-relevant anatomical landmarks via group-wise comparison, 

and then extracted features from image patches around these landmarks for automated 

disease diagnosis. Similarly, Li et al. [44] detected anatomical landmarks and developed 

a multi-channel CNN for identifying autism spectrum disorder. Liu et al. [21] and Pan 

et al. [4] proposed deep learning models with multiple sub-networks to learn image-level 

representations from multiple local patches located by anatomical landmarks. Note that 

these methods generally rely on hand-crafted features to select disease-relevant locations 

(via ROIs or anatomical landmarks), Hence, they have to treat patch selection and classifier 

training as two standalone steps, thus leading to that those selected patches may not well 

coordinated subsequent classifiers.

Without pre-defining disease-relevant regions and patches, Lian et al. [17] developed a 

hierarchical fully convolutional network (FCN) to automatically identify discriminative local 

patches and regions in whole-brain MR images, upon which task-driven MRI features were 

then jointly learned and fused to construct hierarchical classification models for disease 

identification. However, this method cannot explicitly reveal the importance of different 

brain regions, and also cannot be applied to problems with incomplete multi-modality 

images.

3 Method

3.1 Problem Formulation

We aim to construct a computer-aided diagnosis system based on multi-modality data, such 

as MRI (denoted as A) and PET (denoted as ℬ) data. Denote M = Ai, Bi, yi i = 1
N  as a 

dataset consisting of N subjects, where Ai ∈ A and Bi ∈ ℬ represent, respectively, the MRI 

scan, PET scan of the ith subject. Also, yi ∈ {0, 1} denotes the class label of the ith subject, 

e.g., 1 for AD and 0 for cognitively normal (CN) subjects. An automated diagnosis model 

with multi-modality data can be formulated as

yi = ℙ Ai, Bi , (1)

where yi is the estimated label for the ith subject.

In practice, however, not all subjects have complete data of both modalities. Accordingly, we 

assume only the first Nc subjects have complete data (i.e., paired MRI and PET scans) and 

the remaining N − Nc subjects have only one imaging modality (e.g., MRI). The diagnosis 

model ℙ can only be learned based on the first Nc subjects with complete multi-modality 

data as
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ℙ = arg 
ℙ

min ∑
i = 1

Nc
ℙ Ai, Bi − yi , (2)

where those N − Nc modality-incomplete subjects cannot be used for model learning. 

Meanwhile, the model defined in Eq. 2 cannot be used to perform prediction for test subjects 

with only one imaging modality.

To address this issue, one can impute the missing data (i.e., Bi) for the ith subject, by 

estimating a virtual Bi based on the available modality (i.e., Ai), considering the underlying 

relevance between two imaging modalities. Denote GA:A ℬ as the mapping function 

from MRI to PET, i.e., Bi = GA Ai . Then, the diagnosis model can be executed on modality-

incomplete subjects as

yi = ℙ Ai, Bi ≈ ℙ Ai, Bi = ℙ Ai, GA Ai , (3)

Based on modality-complete (after imputation) data, ℙ can be learned by using all subjects 

as

ℙ = arg 
ℙ

min ∑
i = 1

Nc
ℙ Ai, Bi − yi + ∑

i = Nc + 1

N
ℙ Ai, GA Ai − yi . (4)

According to Eqs. 3–4, there are two sequential tasks in the automated diagnosis of 

incomplete multi-modality data, including (1) learning a reliable mapping function for data 
imputation (i.e., GA:A ℬ) to synthesize missing data for modality-incomplete subjects, 

and (2) learning a classification model (i.e., ℙ) to effectively use multi-modality data 

for brain disease diagnosis. If these two tasks are performed independently [4], [13], the 

synthesized data may not be well coordinated with the subsequent diagnosis task. Therefore, 

we propose the DSDL framework to jointly perform both tasks of image synthesis and 

disease diagnosis. As illustrated in Fig. 1, this framework include three major components: 

(1) two single-modality DSNets, i.e., ℙA and ℙB, for disease diagnosis and learning disease-

image specificity; (2) a FGAN for missing image synthesis; and (3) a multi-modality 

DSNet (i.e., ℙAB) for brain disease identification. By jointly training DSNet and FGAN, 

we can encourage that the disease-image specificity learned by DSNet can be preserved in 

the image synthesis process, and also those synthetic images are task-oriented for disease 

diagnosis by focusing on disease-relevant brain regions in each modality.

3.2 Single-modality DSNet

A specific brain disease is often highly relevant with particular regions [17], [18], [19], 

[21], and disease-relevant regions may differ in MRI and PET scans [7], [8]. To model such 

disease-image specificity, we propose two single-modality DSNets (see Fig. 2 (a)) for real 

MRI and real PET scans, respectively. Using both models, we can directly extract features 
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from each input whole-brain image, and identify disease-relevant regions implicitly in each 

modality. The identified disease-image specificity will be further employed to aid the image 

synthesis process conducted by FGAN.

3.2.1 Network Architecture—Each single-modality DSNet contains sequentially a 

backbone feature extraction module (i.e., FA or FB) and a classification module (i.e., ℂA
or ℂB). The feature extraction module has 5 Conv layers, with 16, 32, 64, 64, and 64 

channels, respectively. The first 4 and the last Conv layers are respectively followed by the 

max-pooling and average-pooling with the stride of 2 and the kernel size of 3 × 3 × 3. For 

an input image, the feature extraction module outputs its feature maps at each Conv layer. 

The classification module first l2-normalizes the feature vectors in the feature map of the 

5th Conv layer, then concatenates them to construct a spatial representation, and finally uses 

a fully-connected layer with a spatial cosine kernel to compute the probability score of a 

subject belonging to a particular category.

3.2.2 Classification with Spatial Cosine Kernel—To facilitate analysis, we 

decompose each MR/PET image X (X stand for A ∈ A or B ∈ ℬ) into a disease-relevant 

part and a residual normal part. After feature extraction by FX( * ), the output feature map 

U can be decomposed accordingly into the disease-relevant part Ud and the residual normal 

part Ur

U = FX(X) = αUd + (1 − α)Ur, (5)

where α is a coefficient that weighs the relationship between those two parts of a specific 

subject. Since the residual normal part Ur is not relevant to the disease, the diagnosis result 

should be independent of it. In other words, the response of the classifier ℂX( * ) to the entire 

feature map is only relevant with the disease-relevant part, i.e., ℂX(U) = ℂX Ud .

Since it is difficult to estimate the true value of α for each brain image, we propose a 

spatial cosine module to suppress the effect of α in DSNet, making the disease-relevant 

features conspicuous and easy to be captured. Denote U = {v1, v2, ⋯, vK} as the feature map 

generated by the final Conv layer in a feature extractor, where the kth (k = 1, ⋯, K) element 

is a vector corresponding to a the kth spatial location in the brain and K = 4 × 5 × 4 is the 

number of elements in the feature map when input size is 144 × 176 × 144. We first perform 

l2-normalization on each vector in U, and then concatenate them as the spatial representation 

of an MRI/PET scan:

U =
v1

T

∥ v1 ∥2
,

v2
T

∥ v2 ∥2
, ⋯,

vK
T

∥ vK ∥2

T
, (6)

through which we can avoid estimating the values of α for different images. Instead of using 

only the first-order representation in Eq. 6, we further propose the following multiple-order 

features to represent each input image:
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U =
v1

T

∥ v1 ∥2
,

v1
T 2

∥ v1 ∥2
2 , ⋯,

vK
T

∥ vK ∥2
,

vK
T 2

∥ vK ∥2
2

T

. (7)

Suppose ℂX( * ) is a classifier with hyperplane parameters w. With the feature representation 

u(U or U) of an input scan, ℂX( * ) is defined as the following spatial cosine kernel

ℂ(u; w) = cos u, w = uTw
∥ u ∥2 ∥ w ∥2

= uT

∥ u ∥2
⋅ w

∥ w ∥2
, (8)

which is equivalent to the product of l2-normalized u and w (both having the constant unit 

norm). The constant norm forces F( * ) to focus on the disease-relevant part, since all features 

have the same norm after l2-normalization (in Eq. 8), and thus suppresses the influence of 

the residual normal part. More detailed explain of the theory of spatial cosine kernel could 

be seen in Section 5.4.

3.3 FGAN

Since a pair of MR and PET images scanned from the same subject have underlying 

relevance but probably different disease-relevant regions, we develop FGAN to synthesize 

a missing PET image based on its corresponding MRI with a feature-consistency constraint 

for generating diagnosis-oriented images and an adversarial constraint for generating 

real-like data. As shown in Fig. 3, our FGAN mainly contains a generative adversarial 

learning component and two feature-consistency components for MRI and PET modalities, 

respectively.

3.3.1 Generative Adversarial Learning Component—Using the generative 

adversarial learning component, we aim to learn an image generator GA:A ℬ on 

modality-complete training subjects, and thus can impute the missing PET image for a 

test subject with only MRI scan via GA(A). An inverse mapping GB:ℬ A GB = GA
−1  is 

also learned to build the bi-directional mapping between MRI and PET domains. Denote 

DA and DB as two discriminators that can tell whether an input image is real or synthetic, 

corresponding to the MRI and PET domains, respectively. With two generators (i.e., GA and 

GB) and two discriminators (i.e., DA and DB), the adversarial loss is defined as

La A, ℬ; GA, GB, DA, DB = E
(A, B) ∈ M

log DB((B)) + log 1 − DB GA(A)
+ log DA(A) + log 1 − DA GB(B) .

(9)

3.3.2 Feature-consistency Component—To employ the disease-image specificity 

into FGAN, we design the feature-consistency constraint to encourage that the feature maps 

of a synthetic image should be consistent with feature maps of its corresponding real image. 

With each feature extractor (e.g., FA) containing 5 Conv layers, we denote the feature map 

of its jth layer as FA, j(j = 1, ⋯, 5). As shown in the left and right parts of Fig. 3, to encourage 
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features of a synthetic and its respective real images to be consistent at different abstraction 

levels, we design the feature-consistency constraint for PET and MRI as

∥ FA GB(B) − FA(A) ∥ + ∥ FB GA(A) − FB(B) ∥

= ∑
i = 1

5
FA, j GB(B) − FA, j(B) + FB, j GA(A) − FB, j(B) , (10)

through which the disease-image specificity identified by DSNet (based on real MRI/PET 

data) can be used to constraint FGAN to focus on those modality-specific disease-relevant 

regions, rather than the whole-brain image. Namely, FGAN is encouraged to generate 

diagnosis-oriented images by using the feature-consistency constraint components.

Based on the feature-consistency constraint, the proposed feature-consistency loss is defined 

as

Lf A, ℬ; GA, GB, FA, FB = E
(A, B) ∈ M

FA GB(B) − FA(A)
+ FB GA(A) − FB(B) ,

(11)

which encourages that a pair of synthetic and real scans from the same modality share the 

same disease-image specificity.

Finally, the overall loss function of FGAN is defined as

L A, ℬ; GA, GB, DA, DB, FA, FB = Lf A, ℬ; GA, GB, FA, FB
+ La A, ℬ; GA, GB, DA, DB . (12)

3.3.3 Network Architecture—As shown in Fig. 3, each generator (e.g., GA) in our 

FGAN consists of 3 Conv layers (with 8, 16, and 32 channels, respectively) to extract the 

knowledge of images in the original domain (e.g., A), 6 residual network blocks (RNBs) 

[45] to transfer the knowledge from the original domain to the target domain (e.g., ℬ), and 

2 deconvolutional (Deconv) layers (with 32 and 16 channels, respectively) and 1 Conv layer 

(with 1 channel) to construct the image in the target domain. Each discriminator (e.g., DB) 

contains 5 Conv layers, with 16, 32, 64, 128, and 1 channel(s), respectively. It outputs an 

indicator to tell whether the input pair of real image (e.g., B) and synthetic image (e.g., 

GA(A)) are distinguishable (output: 0) or not (output: 1). Besides, each feature-consistency 

component contains two parallel subnetworks (e.g., FB) that share the same architecture 

and parameters with the feature extractor in each modality in our DSNet (e.g., ℙB). Note 

that FA and FB in Fig. 1 (b) are initialized by those learned in Fig. 1 (a) and kept frozen 

in FGAN. It inputs a pair of real image (e.g., B) and synthetic image (e.g., GA(A)), and 

outputs a differential score to indicate the similarity between the feature maps of the real and 

its corresponding synthetic image. Hence, the disease-image specificity learned in DSNet 

can be used to aid the image imputation process in FGAN, i.e., the modality-specific 

disease-relevant regions will be more effectively synthesized in a diagnosis-oriented manner. 
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In turn, synthetic images could be more relevant to the task of brain disease diagnosis, thus 

boosting the learning performance.

3.3.4 Model Extension—Besides the loss function defined in Eq. 12, we further extend 

our FGAN model by using several additional constraints, such as the voxel-wise-consistency 

constraint [28] and cycle-consistency constraint [4], [32]. In this work, we denote the FGAN 

with an additional voxel-wise-consistency constraint as FVoxGAN, and denote the FGAN 

with an addition cycle-consistency constraint as FCycGAN. Specifically, the corresponding 

losses of FVoxGAN and FCycGAN are defined, respectively, as

LE1 A, ℬ; GA, GB, DA, DB, FA, FB = Lf A, ℬ; GA, GB, FA, FB
+ La A, ℬ; GA, GB, DA, DB + Lv A, ℬ; GA, GB , (13)

and

LE2 A, ℬ; GA, GB, DA, DB, FA, FB = Lf A, ℬ; GA, GB, FA, FB
+ La A, ℬ; GA, GB, DA, DB + Lc A, ℬ; GA, GB , (14)

where the voxel-wise-consistency loss in Eq. 13 and cycle-consistency loss in Eq. 14 are 

defined, respectively, as

Lv A, ℬ; GA, GB = E
(A, B) ∈ M

∥ GB(B) − A ∥ + ∥ GA(A) − B ∥ , (15)

and

Lc A, ℬ; GA, GB = E
(A, B) ∈ M

∥ GB GA(A) − A ∥ + ∥ GA GB(B) − B ∥ , (16)

Different from the adversarial loss and feature-consistency loss that rely on specific 

sub-networks, the voxel-wise-consistency loss in FVoxGAN and cycle-consistency loss in 

FCycGAN can be directly apply to paired real and synthetic images. Therefore, our FGAN 

and its two extensions share the same network architecture (see Fig. 3) but have different 

loss functions.

3.4 Multi-modality DSNet

Using the proposed FGAN, one can obtain synthetic MRI/PET scans for modality-

incomplete subjects, and thus each subject will be represented by complete multi-modality 

data (i.e., a pair of MRI and PET scans). To handle classification problems with multi-

modality data, we extend our single-modality DSNet to a multi-modality version, called 

mDSNet.

As shown in Fig. 2 (b), our mDSNet ℙAB consists of sequentially two parts: (1) two 

parallel feature extraction modules (i.e., FA and FB) followed by a feature map concatenation 

operation to fuse futures of MRI and PET and (2) a classifier (i.e., ℂAB) with the multi-

order feature representation U (see Eq. 7) as its input. The feature extraction modules 

in mDSNet have the same network architecture as DSNet but different parameters. The 
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proposed mDSNet is trained from sketch using both the real and synthetic images. Since the 

classifier ℂAB can also input the first-order feature representation U (see Eq. 6), we denote 

mDSNet with first-order features as mDSNet-1st in this work.

3.5 Implementation Details

In the training stage, the proposed DSDL framework is executed via the following three 

stages: (1) using only the real MRI (i.e., A) and real PET (i.e., B) data to train two 

single-modality DSNets (i.e., ℙA and ℙB), respectively, for Disease-image Specificity 

Identification; (2) using modality-complete subjects with real MRI and PET data to train 

FGAN for image synthesis; and (3) using the complete (after imputation) paired MRI and 

PET scans of all training subjects to train mDSNet for disease diagnosis. Note that, to 

augment the number of samples, The combination (Ai, GA(Ai)) will also be used as a 

training sample to train mDSNet even Bi exists.

In the test stage, for an unseen test subject with complete multi-modality data, we directly 

feed its MRI and PET scans to mDSNet for classification. Given an unseen test subject with 

missing MRI/PET scan, we first impute the missing scan using our trained FGAN model 

and then feed the complete (after imputation) paired MRI and PET scans into mDSNet for 

classification.

Our proposed models are implemented by Python with Tensorflow on a platform with GTX 

1080 Ti and Intel Core i7-8700. We first train two DSNets ℙA and ℙB for 40 epochs using 

complete subjects (i.e., those with paired PET and MR images). We then train DA and DB
by minimizing −La( * ) with fixed GA and GB, and train GA and GB by minimizing L( * ) with 

fixed DA and DB, iteratively, for 100 epochs. After that, we train mDSNet for 40 epochs 

using both real and synthetic data. We use SGD solver with a learning rate 1 × 10−3 to train 

DSNets and mDSNet, and use the Adam solver [46] with a learning rate of 2 × 10−3 to train 

FGAN. The batch size is set to 1 due to the limitation of GPU memory. More details on 

hyper-parameter settings could be seen in the Supplementary Materials.

4 Experiments

4.1 Materials and Image Pre-processing

We first evaluated the proposed method on two subsets of ADNI [5], including ADNI-1 

and ADNI-2. Subjects in these two datasets were divided into four categories: (1) AD, 

(2) CN, (3) progressive MCI (pMCI) that would progress to AD within 36 months after 

baseline, and (4) static MCI (sMCI) that would not progress to AD. After removing these 

subjects appearing in both ADNI-1 and ADNI-2 from ADNI-2, there are 205 AD, 231 CN, 

165 pMCI and 147 sMCI subjects in ADNI-1, while there are 162 AD, 209 CN, 89 pMCI 

and 256 sMCI subjects in ADNI-2. All the above subjects in ADNI-1 and ADNI-2 have 

baseline MRI data, while only 356 and 581 of these subjects have PET images in ADNI-1 

and ADNI-2, respectively. We also used the AIBL [47] dataset for performance evaluation, 

containing 71 AD and 447 CN subjects. Similar to ADNI-1 and ADNI-2, all subjects in 

AIBL have MRI scans, and only part of them have PET scans. The demographic and clinical 
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information of three datasets are listed in Table 1. More details of these data are described in 

Section 2 of the Supplementary Materials.

For data pre-processing, we first performed skull-stripping on MRI scans using FreeSurfer 

[48], and then linearly aligned each PET scan to its corresponding MRI scan. Next, we 

affine each MRI scan to the commonly-used MNI template using SPM [49], while its 

corresponding PET scan (if existed) is also affined using the same affination parameter. In 

this way, each pair of MRI and PET scans of a same subject have the spatial correspondence.

We performed two groups of experiments on the ADNI-1 and ADNI-2 datasets: synthesizing 

MR and PET images and diagnosing brain diseases, including AD identification (AD vs. CN 

classification) and MCI conversion prediction (pMCI vs. sMCI classification). To evaluate 

the generalization capability of our proposed models for image synthesis and disease 

classification, we further performed an extra group of experiments on the AIBL dataset.

4.2 Evaluation of Synthetic Neuroimages

4.2.1 Competing Methods—We first evaluate the quality of synthetic images generated 

by three typical GANs, including (1) conventional GAN with only an adversarial loss, (2) 

cycle-consistency GAN (CycGAN) [4], [32] with an additional cycle-consistency constraint, 

and (3) GAN with a voxel-wise-consistency constraint (VoxGAN) [28], our FGAN, and 

its two variants, i.e., FVoxGAN and FCycGAN. For the fair comparison, FGAN and its 

variants share the same network architecture as shown in Fig. 3 but have different losses. 

The other three GANs have the same architecture as the generative adversarial learning 

component of FGAN (the middle part of Fig. 3) but different losses.

4.2.2 Experimental Setup—We trained six GANs using the subjects with real MRI 

and PET scans in ADNI-1, and tested the trained models on complete subjects (with both 

real MRI and real PET scans) in ADNI-2. We used four metrics to measure the quality of 

synthetic images, including (1) the mean absolute error (MAE), (2) the mean square error 

(MSE), (3) peak signal-to-noise ratio (PSNR), and (4) structural similarity index measure 

(SSIM) [50].

To evaluate the reliability of synthetic MR and PET images in disease diagnosis, we further 

reported the values of the area under receiver operating characteristic (AUC) achieved by 

our single-modality DSNet model on both AD identification (denoted as AUC*) and MCI 

conversion prediction (denoted as AUC†). We first trained MRI- and PET-based DSNet 

models on complete subjects (i.e., with both real MRI and real PET scans) in ADNI-1, 

respectively, and then applied these two DSNets to subjects in ADNI-2 represented by 

synthetic MR and PET images, respectively, for classification.

4.2.3 Results of Image Synthesis—In Table 2, we report the results achieved by 

six different methods in synthesizing MRI and PET scans. Four interesting observations 

can be found from Table 2. First, five advanced GAN methods (i.e., CycGAN, VoxGAN, 

FCycGAN, FVoxGAN, and FGAN) generally yield better results than the baseline GAN. 

This implies that the cycle-consistency loss, voxel-wise-consistency loss, and feature-

consistency loss are positive constraints to help synthesize images with higher quality, in 

Pan et al. Page 12

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms of both image similarity and discrimination in subsequent diagnosis tasks. It verifies 

that spatial structure information is useful for computer-aided AD diagnosis. Second, The 

AUC values obtained by using synthetic images generated by our FGAN-based methods 

(i.e., FGAN, FCycGAN, and FVoxGAN) are significantly higher than those using synthetic 

images generated by three competing methods (i.e., GAN, CycGAN, and VoxGAN) in both 

classification tasks. The possible reason is that the proposed feature-consistency constraint 

is effective to encourage GAN models to generate diagnosis-oriented images (rather than 

focusing on whole-brain regions), thus helping boost the performance of brain disease 

diagnosis. Besides, regarding four metrics for image quality (i.e., MAE, MSE, SSIM and 

PSNR), our FGAN models consistently outperforms CycGAN and GAN in synthesizing 

both MRI and PET scans, but only achieves comparable results compared with VoxGAN. 

This implies that the proposed feature-consistency loss is a strong constraint to encourage 

good quality of synthetic images, but not as strong as the voxel-wise-consistency loss 

used in VoxGAN. However, using the voxel-wise-consistency loss and feature-consistency 

loss simultaneously (as we do in FVoxGAN) does not significantly improve the quality of 

synthetic images. It implies that the feature-consistency loss and voxel-wise-consistency loss 

may have potential competitive relationships. Furthermore, the AUC values (i.e. AUC* and 

AUC†) achieved by six methods based on synthetic PET data are observably lower than 

based on synthetic MRI, which indicates it may be more hard to synthesize classifiable PET 

from MRI than synthesize MRI from PET. The possible reason is that PET scans contain 

comparable structure information with MRI while MRI contain insufficient functional 

information to be passed to synthetic PET.

Fig. 4 visualizes the ground truth MR and PET images of a CN subject (Roster ID: 4386) 

and an AD subject (Roster ID: 4997) in ADNI-2 and the synthetic images generated by 

GAN, cycGAN (used in our previous work), VoxGAN, and our FGAN, respectively. To 

show sufficient details, the region in the pink / green rectangular on each image was 

enlarged and displayed to the right of the image. It reveals that the images synthesized 

by our FGAN (4th column) are more consistent with the ground truth (5th column) than 

those synthesized by other GANs (1st-3rd columns), particularly in terms of the ventricle size 

and sulcus width. It can be attributed to the fact that, comparing to the voxel-consistency 

constraint and cycle-consistency constraint, the feature-consistency constraint used in FGAN 

is a high-level constraint, which can encourage pattern similarities rather than only voxel-

level similarities. More views and more examples and supplied in Figs. S3–S5 of the 

Supplementary Materials.

4.3 Evaluation of Automated Diseases Diagnosis

4.3.1 Competing Methods—We further evaluated our mDSNet on both tasks of AD 

identification and MCI conversion prediction against two conventional methods using 

concatenated MRI and PET features, i.e., (1) ROI method [7], [51], and (2) patch-based 

morphology (PBM) [9], [52] and two deep learning models, i.e., (3) landmark-based deep 

multi-instance learning (LDMIL) method [21], and (4) a conventional CNN method. For 

ROI, PBM and LDMIL methods, we used default parameter settings in their original 

papers. For the fair comparison, the CNN method shares the similar network architecture 

with our mDSNet (see Fig. 2 (b)) but a different classification module. That is, CNN 
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globally averages the feature map of the last Conv layer and uses a fully connected layer 

for classification (instead of using the spatial cosine module in mDSNet). To investigate 

the effect of multi-order representation in Eq. 7, we compare the mDSNet-1st that use 

first-order features defined in Eq. 6.

4.3.2 Experimental Setup—These classification methods utilize all subjects with both 

real multi-modality scans and synthetic PET images generated by our FGAN. We also 

performed experiments on complete subjects (with real paired MRI and PET scans), and 

denoted the corresponding methods as “-C”. Since all subjects have MRI scans in ADNI-1 

and ADNI-2 datasets, we also reported the results of different methods using only MRI 

modality, and denoted the corresponding methods as “-M”. For all methods, classifiers are 

trained on ADNI-1, and tested on the independent ADNI-2 and AIBL datasets, respectively. 

We employ six metrics for performance evaluation in disease diagnosis, including (1) AUC, 

(2) accuracy (ACC), (3) sensitivity (SEN), (4) specificity (SPE), (5) F1-Score (F1S), and (6) 

Matthews correlation coefficient (MCC) [53].

4.3.3 Disease Identification Results on ADNI-2—With models trained on ADNI-1, 

the disease classification results achieved by different methods on ADNI-2 are reported in 

Table 3. From Table 3, we can see that our mDSNet generally achieves the best performance 

in most cases. For instance, using both real and synthetic images, our mDSNet method 

achieves the highest AUC values (97.23%, 84.44%) in the tasks of AD vs. CN and pMCI vs. 

sMCI classification. This suggests that our mDSNet is reliable in automated AD diagnosis 

and progression prediction of MCI patients, which is potentially very useful in practice. 

Besides, our mDSNet yields slightly better results compared to LDMIL that pre-defines 

disease-relevant regions in brain images via anatomical landmarks [54]. This implies that 

the proposed spatial cosine kernel provides an efficient strategy to capture the disease-image 

specificity embedded in neuroimages. On the other hand, methods (e.g., mDSNet) using 

all subjects with complete multi-modality data (after imputation via FGAN) consistently 

outperform their counterparts (e.g., mDSNet-C) that utilize modality-complete subjects 

with real MRI and PET scans, and are superior to their counterparts (e.g., mDSNet-M) 

using all subjects with real MRI scans. For example, mDSNet achieves an MCC value of 

52.47 in MCI conversion prediction, which is higher than the results of mDSNet-C (46.52) 

and mDSNet-M (51.27). The possible reason could be that, compared with mDSNet-C, 

more subjects are used for model training in mDSNet. Even though mDSet-M (using only 

real MRI data) and mDSNet used the same number of training subjects, mDSNet takes 

advantage of data from an additional imaging modality (i.e., real and synthetic PET images). 

These results demonstrate that neuroimages generated by our FGAN model are useful in 

promoting the diagnostic performance.

4.3.4 Disease Identification Results on AIBL—We further use AIBL as the testing 

set for classification performance evaluation. Different from the ADNI, we only use 

synthesized PET in AIBL for testing to simulate the case that all subjects refused PET 

scanning. For the fair comparison, six methods utilize all subjects with real MRI scans and 

synthetic PET scans (generated by FGAN). Results of different methods in AD vs. CN 
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classification are reported in Table 4, considering that AIBL contains a limited number of 

MCI subjects.

From Table 4, we can see that four deep learning methods (i.e., LDMIL, CNN, mDSNet-1st, 

and mDSNet) generally outperform two conventional approaches (i.e., ROI and PBM) 

that use hand-crafted imaging features. This suggests that integrating feature extraction 

and classifier construction into a unified framework can boost the diagnosis performance. 

Besides, mDSNet based on multi-order representation usually outperforms mDSNet-1st 

(using first-order features) and CNN (using average-pooling-based features). This implies 

that using both first-order and second-order features in our mDSNet is more efficient in 

capturing the disease-image specificity embedded in neuroimages, compared with using 

only first-order representation and average pooling based features.

5 Discussion

5.1 Effect of Feature Maps

In the feature-consistency component (Fig. 3), we add the feature-consistency constraint at 

each of five Conv layers. To investigate the effect of our feature-consistency constraint at 

different layers, we perform an experiment by adding such a constraint at only one single 

Conv layer, and denote the generated FGAN variants as li i = 1
5 . Based on the resulting 

FGAN models, we can obtain synthetic MRI and PET images. The image quality of these 

images (regarding SSIM and PSNR) and their performance in AD vs. CN classification 

(with AUC values marked as *) and pMCI vs. sMCI classification (with AUC values marked 

as †) are shown in Fig. 5. Fig. 5 reveals that adding the feature-consistency constraint 

on early layers (e.g., l1) generally results in better synthesis results (in term of SSIM 

and PSNR) but lower classification results (in term of AUCs). Also, models using such 

a constraint at the late layers (e.g. l5) usually generate the reverse results (i.e., better 

classification performance but low image quality). Therefore, we add the feature-consistency 

constraint to feature maps of all five Conv layers to balance the synthesis results and 

classification results.

5.2 Comparison of Different Losses

To evaluate the influence of different losses used in our image synthesis models (i.e., FGAN, 

FCycGAN and FVoxGAN), we further train the generative model (with only GA and GB in 

Fig. 3) with only one of the following losses: (1) adversarial loss La , (2) cycle-consistency 

loss Lc , (3) voxel-wise-consistency loss Lv , and (4) feature-consistency loss Lf . Using 

each of four different losses, the corresponding generative model can generate synthetic 

MRI and PET scans. In Fig. 6 (a)–(b), we show the resulting MAE values of these synthetic 

image along the training epochs. Based on these generated images, we further report the 

AUC values of our mDSNet in AD vs. CN classification in Fig. 6 (c)–(d), with models 

trained on ADNI-1 and tested on ADNI-2. Fig. 6 (a)–(b) suggests, when using four different 

losses, the model that uses only the voxel-wise-consistency loss can produce the most 

visually realistic image (with respect to MAE values). From Fig. 6 (c)–(d), one can observe 

that the model using the feature-consistency loss consistently achieves the best classification 
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performance (regarding AUC values), compared with those using the other three losses. 

Meanwhile, models with the voxel-wise-consistency loss and our feature-consistency loss 

are more stable compared to those with cycle-consistency loss and adversarial loss. This 

could be due to the fact that the calculation of the latter two losses relies on updating 

modules, i.e., another generator and discriminator.

5.3 Enhancing Diagnosis Performance by More Subjects

In the previous experiments, we only use these subjects in ADNI-1 to train our diagnosis 

model. Since more data may result in better performance, it is possible to use more subjects 

(e.g., those from ADNI-2) to further improve the performance of the diagnosis performance. 

Accordingly, we perform another experiment by using both the images in ADNI-1 and 

ADNI-2 to train the diagnosis model (i.e., mDSNet) but using only complete subjects in 

ADNI-1 to train the FGAN model. Then we apply the obtained models on the AIBL dataset, 

with results (denoted as mDSNet-2) reported in Table 5 as well as the original results 

(denoted by mDSNet). It seems this strategy slightly improves the diagnosis performance 

(e.g. the AUC score increases from 94.92% to 95.31%). The possible reason could be 

that more training data make the learned model more general among different sites, thus 

improving the diagnosis performance.

5.4 More Details of Spatial Cosine Kernel

Following the description of spatial cosine kernel in section 3.2.2, the input of our DSNet 

is a neuroimage of size 144 × 176 × 144 and the l2-normalized feature map (spatial 

representation) is denoted as u = (u1, u2, ⋯, uK) where uk =
vk

∥ vk ∥2
. The spatial cosine kernel 

(defined in Eq. 8) is

ℂ(u, w) = cos u, w = uTw
∥ u ∥2 ∥ w ∥2

(17)

where w is the ensemble of hyper-parameters. Due to having the same dimension as u, w 
can be partitioned into K elements, i.e., w = (w1, w2, ⋯, wK), where wk has same dimension 

as uk. Let βk =
K ∥ wk ∥2

∥ w ∥2
, Eβ ∈ β1, β2, ⋯, βK β2 = 1 , then the spatial cosine kernel can be 

rewritten as accumulating the similarity between wk and the k-th element in a feature map as

ℂ(u; w) = 1
K ∑

k = 1

K vk
T

∥ vk ∥2

wk
∥ wk ∥2

βk = 1
K ∑

k = 1

K
βkC vk, wk (18)

Herein, ℂ vk, wk ∈ [ − 1, 1] is a cosine kernel that indicates the group difference 

corresponding to the k-th elements. Meanwhile, βk, directly proportional to the norm of 

wk, indicates the contribution coefficient of the k-th cosine kernel to the classification result. 

Since βk is learned automatically and implicitly while training DSNet, it is very convenient 

to capture the disease-relevant patterns by finding the disease-relevant part of the feature 

map (Ud), in which each uk corresponds to a large βk.
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Furthermore, it should be noted that the disease-relevant part (Ud), the residual normal part 

(Ur), and α are mutually dependent but only one constraint in Eq. 5 should be satisfied. 

Hence, the decomposition of disease-relevant part and residual normal part is not unique. 

For example, a possible decomposition of a feature map U could be

αUd = w1v1w1
∥ w1 ∥2

2 , w2v2w2
∥ w2 ∥2

2 , ⋯, wKvKwK
∥ wK ∥2

2

(1 − α)Ur = v1 − w1v1w1
∥ w1 ∥2

2 , v2 − w2v2w2
∥ w2 ∥2

2 , ⋯, vK − wKvKwK
∥ wK ∥2

2

(19)

where the disease-relevant component of each pattern is placed to the disease-relevant part, 

and the disease-irrelevant component of each pattern is placed to the residual normal part. In 

this case, ℂ(U, w) = ℂ αUd, w .

Alternatively, we can use a threshold τ to binarize βk as follows

αk =
1,  if βk > τ
0,  otherwise 

(20)

and thus decompose U as

αUd = α1v1, α2v2, ⋯, αKvK
(1 − α)Ur = 1 − α1v1, 1 − α2 v2, ⋯, 1 − αK vK

(21)

It means that we directly place the disease-relevant patterns to disease-relevant parts and 

place the disease-irrelevant patterns to residual normal part. In this case, ℂ(U, w) ≈ ℂ αUd, w . 

When considering only the prediction labels, we have

ℂ(U, w) ≈ ℂ αUd, w ≈ ℂ α
2 Ud, w (22)

Namely, if the disease-relevant parts and residual normal parts can be separated, the 

coefficient α will not affect the predicted labels.

5.5 Statistical Significance Analysis

The major hypothesis in this work is that a generative model with the feature-consistency 

constraint can generate the synthetic images which are diagnostically similar to real images. 

It means that the synthetic images and corresponding real images can deliver similar 

diagnosis of medical conditions. To verify this, we calculated the inter-class averaged 

dissimilarity (ICAD) of 80 brain regions in synthetic MRI and PET images and displayed 

them in Fig. 7. The definition of ICAD is as follows.

Suppose the i-th (i ∈ {1, 2, ⋯, N}) scan has a feature map ui = (u1,i, u2,i, ⋯, uK,i)(∥uk,i∥2 = 

1) and a class label yi ∈ {0, 1}. The similarity of two feature maps ui and uj is measured by 

the spatial cosine kernel,
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ℂ ui, uj = uiTuj
∥ ui ∥2 ∥ uj ∥2

= 1
K ∑

k = 1

K
uk, i

T uk, j (23)

Then, the ICAD, denoted by S, can be calculated as

S = 1 − E
yi ≠ yj

ℂ ui, uj = 1 − 1
K ∑

k = 1

K
E

yi ≠ yj
uk, i

T uk, j (24)

A large ICAD value indicates that two classes are easy to be distinguished. Similarly, we can 

use

sk = 1 − E
yi ≠ yj

uk, i
T uk, j (25)

to measure the distinguishability regarding the k-th location.

For each modality in Fig. 7, the top six rows (denoted as S1, S2, ⋯, S6 from top to bottom) 

are the ICAD of the synthetic images generated by GAN, cycGAN, voxGAN, FGAN, 

FcycGAN, and FvoxGAN, respectively, and the 7th row (denoted as S7) is the ICAD of real 

images. The bottom row for each modality depicts the values of {βk}, which have been 

rescaled to [0, 1], indicating the contribution coefficient of each region to the classification 

task. Where, a larger value means that the region is more relevant to the classification 

task. Comparing the 7th row and the bottom row, it suggests that most of the regions 

with higher inter-class dissimilarities are recognized as more relevant to disease diagnosis. 

Meanwhile, it reveals that most disease-relevant regions are different across two modalities, 

which renders the cross-modality image synthesis a challenging task and also makes the 

feature-consistency constraint a must for any solutions to this task.

We now conduct the statistical significance analysis for our major hypothesis. The null 

hypotheses (H0), alternative hypotheses (H1), and the p-values of H0 for MRI and for PET 

are listed in Table 6. It shows that all obtained p-values are smaller than 0.05. Therefore, 

H1 is accepted,, which means that a generative model with the feature-consistency constraint 

can generate images more diagnostically similar to real images.

5.6 “Hallucination” in Generative Unseen Patterns

Currently, it is arguable to first train a generative model on available data for absent data 

generation and then to use the generated data, together with the available data, to train 

another model for classification. Especially, the generated data may be affected by the 

dataset used to train the generative model. For example, if each training image contains a 

tumor, the data generated by the trained model may also contain a tumor, although it is 

expected to generate the scan of a normal control. On the other hand, if each training data 

was acquired from a normal control, it is less impossible for the trained generative model to 

generate a scan with tumors.

In this study, the abovementioned “hallucination” issue must be addressed when we attempt 

to use cross-modality image generation to impute missing PET data for the multi-modality 
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based AD diagnosis. The reason lies in the fact that, at an early stage of AD progression, 

subtle functional changes can be detected by PET long before any structural changes 

become evident on MRI scans. Thus, when using the MRI scan of a subject with early 

AD to generate a PET scan, the generative model must be able to produce the disease-related 

patterns, which do not exist on the input MRI scan. Otherwise, the generated PET scan may 

not be indeed helpful for disease diagnosis. The major contribution of this work is to address 

this issue using several tricks, listed below.

• The dataset used to train the generative model contains the cases from all 

categories (e.g., AD, CN, and MCI). Hence, there will be no “unseen” case 

in the inference stage.

• We perform image generation in a supervised way. It means that we know 

the class label of each input MRI scan and accordingly know, statistically, the 

disease-image-specifics of the PET scans of that class.

• We introduce a feature-consistency constraint to the generative model, 

encouraging the generated PET scan to preserve the disease-image-specifics for 

the subsequent diagnosis task. Specifically, the feature-consistency constraint 

encourages the multi-layer feature maps of a synthetic PET scan (produced by 

DSNet) and the features of real PET scans of the same class to be consistent. In 

this way, our FGAN correlates with DSNet, and hence the generated PET scans 

become consistent with real PET scans from the perspective of classification/

diagnosis.

The proposed solution was evaluated in two perspectives: (1) visual similarity and (2) 

clinical usefulness. The results in Table 2 and Fig. 4 show that the synthetic PET scans 

generated by our FGAN are similar to real PET scans. Also, the results in Table 3 show 

that, with our imputed PET scans, the proposed multi-modality based classification model 

achieves substantially improved performance for AD diagnosis.

Now let us further elaborate the advantage of the proposed solutions over existing generative 

models like GAN, cycGAN, voxGAN, and condition GAN. The target of this study is 

to impute missing PET scans and thus to improve the multi-modality diagnosis of AD. 

However, the distribution matching constraints used in existing generative models may not 

be able to preserve the discriminative information in the generated images. Although the l1 

(MAE) loss encourages the pixel/voxel-wise consistency, it remains incapable of preserving 

sufficient discriminative information, as evidenced in our supporting experiments and the 

experiments in [55]. The potential reason that these generative models are not suitable 

for this study is that both distribution matching constraints and pixel-wise-consistency are 

class-independent. Take the pixel-wise-consistency for example, if the input is an MRI scan 

of an AD subject, the output PET scan is forced to be pixel-wise-consistent with training 

PET scans, which are from both AD subjects and normal controls. Although the generated 

PET scan looks like a real PET scan, it may not contain enough disease-image-specifics, i.e., 

the pathological patterns of AD that can be observed using PET. In contrast, the proposed 

FGAN generates images in a supervised way, in which the feature-consistency constraint 

encourages the multi-layer feature maps of a generated PET scan (produced by DSNet) 

to be consistent with the features of real PET scans of the same class. Hence, the PET 

Pan et al. Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scan generated by our FGAN contains rich discriminative information and can help the 

subsequent diagnosis task.

5.7 Potential Applications in other Scenarios

In practice, applications of image-image translation (besides cross-modality image 

translation) have been increasingly used in many vision applications, such as security 

surveillance and autonomous driving. In these applications, sometimes we may encounter 

a similar issue of requiring a specific modality of data. Although the proposed DSDL 

framework was developed for neuroimage synthesis and AD diagnosis, the ideas of 

supervised image generation and feature-consistency constraint are generic and can be 

extended to these applications of task-specific image-image translation.

Various image-image translation tasks, including “edges to photo”, ”aerial to map”, ”day 

to night”, and ”BW to color”, have been summarized in [28]. However, using only the 

distribution-match constraint or pixel-wise-consistency constraint may not handle it well 

when we want to use the generated images for a classification purpose. For instance, on 

the task of ”BW to color” for flower classification, the color information, which plays a 

pivotal role in distinguishing a flower species from others, should be generated during the 

translation from a grayscale image to its color version. In this scenario, we can apply our 

proposed feature-consistency constraint to encourage the generated color images to preserve 

the discriminative information for flower classification (as Section 7 in the Supplemental 

Materials).

5.8 Limitations and Future Work

The proposed DSDL framework has three major limitations.

First, the spatial cosine kernel used in this model has a fixed stride (i.e., 32 voxels along 

each axis). Hence, it can only roughly capture disease-specific regions with a fixed size of 

32 × 32 × 32 voxels. To capture more precise disease-specific regions, hierarchical structures 

or multi-scale features will be investigated in our future work.

Second, PET protocols used for building these three databases are very different, particularly 

those for AIBL. The proposed method has no mechanism to handle this issue. As a result, 

it is hard to use the PET scans in AIBL, and we have to use synthetic PET scans for AIBL. 

Hence, data harmonization / adaptation techniques [56], [57] will be studied in our future 

work to capture unified features regardless of scanning protocols.

Third, the pre-processing pipeline used for this study is purely hand-crafted. It relies heavily 

on the experience of operators and can hardly be optimized for unseen datasets. In our 

further work, we plan to embed the pre-processing steps into the target task to avoid the 

devastating effect caused by inappropriate pre-processing.

6 Conclusion

We proposed a disease-image-specific deep learning framework for task-oriented 

neuroimage synthesis based on incomplete multi-modality data, where a diagnosis 
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network is employed to provide disease-image specificity to an image synthesis network. 

Specifically, we designed a single-modality disease-image-specific network (DSNet) trained 

on whole-brain images to implicitly capture the disease-relevant information conveyed in 

MRI and PET. We then developed a feature-consistency generative adversarial network 

(FGAN) to synthesize missing neuroimages, by encouraging that feature maps (generated by 

DSNet) of each synthetic image and its respective real image to be consistent. We further 

proposed a multi-modality DSNet (mDSNet) for disease diagnosis using complete (after 

imputation) MRI and PET scans. Experiments on three public datasets demonstrate that our 

method can generate reasonable neuroimages and achieve the state-of-the-art performance in 

AD identification and MCI conversion prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of our disease-image-specific deep learning (DSDL) framework. Two major 

components are included: (a) two single-modality Disease-image-Specific Networks 

(DSNet) for classification and learning disease-image specificity for MRI (i.e., 

ℙA = FA + ℂA) and PET (i.e., ℙB = FB + ℂB), respectively, and (b) a Feature-consistency 

Generative Adversarial Network (FGAN) for missing image synthesis, encouraging feature 

maps (e.g., generated by FA) of a synthetic image and its real image to be consistent. Note 

that FA and FB in (b) are initialized by those learned in (a) and kept frozen in FGAN. 

Based on complete (after imputation via FGAN) paired MRI and PET scans, we further 

develop a multi-modality DSNet (i.e., ℙAB = FA, FB + ℂAB) for brain disease identification 

by concatenating feature maps of MRI and PET (c). In (a) and (c), the backbone feature 

extractors (e.g., FA and FB) are followed by a spatial cosine module (e.g., ℂA, ℂB, and ℂAB) 

for classification.
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Fig. 2. 
Illustration of the proposed disease-image-specific network (DSNet) for disease 

classification and modeling disease-image specificity. (a) two single-modality DSNets (i.e., 

ℙA and ℙB) using MRI and PET data, receptively, with each containing a backbone (i.e., 

FA or FB) for feature extraction and a classifier (i.e., ℂA or ℂB) for classification. (b) a multi-

modality DSNet (mDSNet) that use paired MRI and PET data as input (i.e., ℙAB), with two 

parallel backbones (i.e., FA for MRI and FB for PET) and a classifier (i.e., ℂAB based on 

concatenation of features maps generated from two modalities). The backbones (i.e., FA and 

FB) in single-modality DSNet and mDSNet share the same network architecture but have 

different input modalities, containing 5 convolutional layers (size: 3 × 3 × 3) with instance 

normalization and “relu” activation. Also, feature maps of the first 4 convolutional layers are 

max-pooled, while the feature map of the last layer in each backbone is average-pooled with 

the stride of 2 × 2 × 2. Here, K denote the elements in the feature map generated by FA or FB
and K = 4 × 5 × 4 in this work.
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Fig. 3. 
Illustration of our feature-consistency generative adversarial network (FGAN) for image 

synthesis. It contains (1) two feature-consistency components (i.e., MRI-based and PET-

based components) to encourage feature maps of a synthetic image to be consistent with 

those of its corresponding real image, and (2) a generative adversarial learning component 

to synthesize images under the constraints of feature consistency (i.e., Lf) and distribution 

consistency (i.e., La). Note that FA and FB in two feature-consistency components have 

same architecture but are learned in MRI-based and PET-based DSNet models, respectively, 

through which the disease-image specificity learned in DSNets will be employed in the 

image synthesis process, encouraging FGAN to focus on those disease-relevant regions in 

each modality. Also, the adversarial components, i.e., DA and DB), are used to constrain 

the synthetic MRI and PET scans follow the same data distribution of those real MRI and 

PET scans, respectively. Besides, two generators (i.e., GA and GB) are learned to construct 

bi-directional mappings between two imaging modalities.
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Fig. 4. 
PET and MRI scans synthesized by four methods for two typical subjects (Roster IDs: 

4386, 4997) in ADNI-2, along with their corresponding ground-truth images. All six image 

synthesis models are trained on ADNI-1.
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Fig. 5. 
Quality (a) and classification performance (b) of synthetic images generated by five FGAN 

variants using the feature-consistency constraint on feature maps at only one single Conv 

layer (e.g., the i-th layer li) in FA and FB.
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Fig. 6. 
Performance of the generative component of FGAN in image synthesis versus the numbers 

of training epochs. The model was trained on ADNI-1 with only single loss and tested 

on ADNI-2. Four loss functions were evaluated, including the adversarial loss La , cycle-

consistency loss Lc , voxel-wise-consistency loss Lv , and feature-consistency loss Lf .
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Fig. 7. 
The inter-class averaged dissimilarities (ICAD) and rescaled contribution coefficients of 80 

brain region in synthetic MRI and PET images. For each modality, the top six rows are the 

ICAD of the synthesized images generated by GAN, cycGAN, voxGAN, FGAN, FcycGAN, 

and FvoxGAN, respectively, the 7th row is the ICAD of real images, and the 8th row is 

the rescaled value of contribution coefficient. It shows that the disease-relevant regions are 

different across two modalities.
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TABLE 1

The demographic and clinical information of studied subjects with four categories (Cat.) from three datasets. 

The education (Edu.) years and the mini-mental state examination (MMSE) values are reported in terms of 

mean ± standard deviation. M: Male; F: Female.

Dataset Cat. MRI/PET M/F Age Edu. MMSE

ADNI-1

AD 205/95 106/99 76 ± 8 14 ± 4 23 ± 2

CN 231/102 119/112 76 ± 5 16 ± 3 29 ± 1

pMCI 165/76 100/65 75 ± 7 16 ± 3 27 ± 2

sMCI 147/83 101/46 75 ± 8 16 ± 4 27 ± 2

ADNI-2

AD 162/142 95/70 75 ± 8 16 ± 3 23 ± 3

CN 209/186 99/110 73 ± 6 16 ± 3 27 ± 2

pMCI 89/80 52/37 73 ± 7 16 ± 3 28 ± 2

sMCI 256/173 146/110 71 ± 8 16 ± 3 27 ± 2

AIBL
AD 71/62 30/41 73 ± 8 – 27 ± 4

CN 447/407 192/254 72 ± 7 – 28 ± 4
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TABLE 4

Diagnosis results (%) achieved by six different methods using all subjects with only real MRI scans (denoted 

as “-M”) and with both real MRI images and synthetic PET images (generated by FGAN) in AC vs. CN. 

classification. Classification models are trained on ADNI-1 and tested on AIBL.

Method
AD vs. CN Classification

AUC ACC SPE SEN F1S MCC

ROI-M 83.49 73.69 76.06 73.32 44.26 36.02

PBM-M 86.34 78.34 80.28 78.03 50.44 43.80

LDMIL-M 93.81 87.64 87.32 87.70 65.96 61.70

CNN-M 91.23 83.78 83.09 83.89 58.41 53.00

DSNet-1st-M (Ours) 93.98 88.80 85.92 89.26 67.78 63.43

DSNet-M (Ours) 94.39 89.77 83.10 90.83 69.01 64.41

ROI 87.25 79.69 85.92 78.70 53.74 48.45

PBM 90.63 80.66 85.92 79.82 54.95 49.76

LDMIL 93.64 88.03 87.32 88.14 66.67 62.45

GANN 92.77 88.42 84.51 89.04 66.67 62.05

mDSNet-1st (Ours) 94.37 89.77 87.32 90.16 70.06 66.05

mDSNet (Ours) 94.92 90.35 87.32 90.83 71.26 67.34
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TABLE 5

Comparison of our mDSNet on AIBL while using only ADNI-1 or using both ADNI-1 and ADNI-2 for 

training in stage (3).

Method
AD vs. CN Classification

AUC ACC SPE SEN F1S MCC

mDSNet 94.92 90.35 87.32 90.83 71.26 67.34

mDSNet-2 95.31 90.73 88.73 91.05 72.41 68.74
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