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Abstract

Objective: We develop a model-based optimization algorithm for “one-step” Dual-Energy (DE) 

CT decomposition of three materials directly from projection measurements.

Approach: Since the three-material problem is inherently undetermined, we incorporate the 

volume conservation principle (VCP) as a pair of equality and nonnegativity constraints into 

the objective function of the recently reported Model-Based Material Decomposition (MBMD). 

An optimization algorithm (Constrained MBMD, CMBMD) is derived that utilizes voxel-wise 

separability to partition the volume into a VCP-constrained region solved using interior-point 

iterations, and an unconstrained region (air surrounding the object, where VCP is violated) solved 

with conventional two-material MBMD. CMBMD is validated in simulations and experiments 

in application to bone composition measurements in the presence of metal hardware using DE 

Cone-Beam CT (CBCT). A kV-switching protocol with non-coinciding low- and high-energy (LE 

and HE) projections was assumed. CMBMD with decomposed base materials of cortical bone, fat, 

and metal (Titanium, Ti) is compared to MBMD with (i) fat-bone and (ii) fat-Ti bases.

Main Results: Three-material CMBMD exhibits a substantial reduction in metal artifacts 

relative to the two-material MBMD implementations. The accuracies of cortical bone volume 

fraction estimates are markedly improved using CMBMD, with ~5–10x lower Normalized Root 

Mean Squared Error (NRMSE) in simulations with anthropomorphic knee phantoms (depending 

on the complexity of the metal component) and ~2–2.5x lower in an experimental test-bench 

study.

Significance: In conclusion, we demonstrated one-step three-material decomposition of DE 

CT using volume conservation as an optimization constraint. The proposed method might 

be applicable to DE applications such as bone marrow edema imaging (fat-bone-water 

decomposition) or multi-contrast imaging, especially on CT/CBCT systems that do not provide 

coinciding LE and HE ray paths required for conventional projection-domain DE.
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1. Introduction

Dual-energy (DE) CT is of interest in many clinical imaging applications due to its ability 

to provide material discrimination (Johnson et al 2007, Nicolaou et al 2012, Patino et al 
2016). Algorithms for DE material decomposition can be divided into three categories: 

i) image-domain decomposition (IDD), ii) projection-domain decomposition (PDD), and 

iii) one-step (i.e., optimization-based) decomposition. In IDD, material volume fractions 

are estimated (e.g., by voxel-wise inversion of a decomposition matrix) from individual 

reconstructions of the low-energy (LE) and high-energy (HE) channel data (Goodsitt et al 
1987, Maaß et al 2009, Zbijewski et al 2014). The primary advantage of IDD is that it is 

applicable to most DE acquisition protocols; the potential disadvantage is that it requires 

additional beam hardening pre-correction (Joseph and Spital 1978) to achieve accurate 

material density maps. PDD addresses the beam hardening issue by the direct estimation 

of material line integrals from LE and HE projections, typically by means of pre-calibrated 

polyenergetic lookup tables (Alvarez and Macovski 1976, Zhao et al 2021). However, PDD 

cannot be applied to DE sampling patterns that do not provide geometrically matched ray 

paths between two spectral channels, e.g., dual/triple-source scanner configurations (Macari 

et al 2010, Kaza et al 2012, Liu et al 2019, 2020b) and single-source image acquisitions with 

slow kV-modulation (Szczykutowicz and Chen 2010, Rigie and La Riviere 2014, Sisniega 

et al 2014). One-step decomposition overcomes this limitation of PDD. Decomposition 

and reconstruction are performed simultaneously by optimizing a data discrepancy function 

between the measured DE data and a polyenergetic forward model (Long and Fessler 2014, 

Barber et al 2016, Mory et al 2018, Tilley et al 2019). The object is typically parameterized 

as the product of unknown material densities and their energy-dependent mass-attenuation 

coefficients. The forward model can capture arbitrary acquisition geometries, so matching 

ray paths are no longer needed.

In principle, the physics of DE imaging permits a maximum of two base materials. However, 

three-material decompositions are desirable in many clinical scenarios, such as contrast-

enhanced DE imaging of the liver (Wortman et al 2018), bone mineral density (BMD) 

measurements (Goodsitt et al 1987, Wichmann et al 2014), and detection of bone marrow 

edema (Ali et al 2018, Müller et al 2020). Since direct estimation of three materials from DE 

data is inherently underdetermined, the Volume Conservation Principle (VCP, Goodsitt et al 
1987, Liu et al 2009, Long and Fessler 2014) is often used as the constraint to enable such 

decomposition. (Note that even with more energy channels, three-material decomposition is 

ill-posed in the absence of K-edges, because most tissues belong to the span of two bases, 

namely photoelectric and Compton effects, Alvarez and Macovski 1976). VCP is typically 

posed as: i) an equality constraint that sums volume fractions of all base materials to one 

at each image voxel, and ii) a nonnegativity constraint for all fractions. As these constraints 

are specified in the reconstruction domain, VCP is incompatible with PDD. Therefore, three-

material decomposition is typically achieved using either IDD (Granton et al 2008, Ding et 
al 2018, Jiang et al 2020) or a hybrid approach, whereby a preliminary two-material PDD is 

followed by image-domain basis change that applies VCP (Yu et al 2009, Liu et al 2022). 

Here, we propose an algorithm that incorporates VCP into the one-step decomposition 

framework to provide direct estimation of volume fractions of three materials from DE data. 
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This method aims to combine the benefits of VCP-constrained IDD, namely the ability to 

include a third material through VCP and the applicability to geometries with unmatched 

LE and HE ray paths, with the capacity to utilize the projection information obtained in two 

spectral channels to account for beam hardening, similar to PDD but without the potentially 

noise-amplifying multi-stage processing of the hybrid approach.

Our algorithm extends the previously reported Model-Based Material Decomposition 

(MBMD, Tilley et al 2019) by applying a constrained optimization framework to impose 

VCP on the Penalized-Weighted Least-Squares (PWLS) polyenergetic objective function 

of MBMD. Compared to the Poisson likelihood model used in other recently proposed 

constrained one-step methods for spectral CT (Long and Fessler 2014, Barber et al 
2016), the PWLS objective permits straightforward inclusion of system blur and the 

associated noise correlations, potentially enabling simultaneous model-based deblurring 

and decomposition (Wang et al 2021). The proposed Constrained MBMD (CMBMD) 

is formulated as a partitioned optimization scheme, where each voxel receives either 

constrained or unconstrained updates depending on its location. This heuristic strategy was 

developed because any realistic object is likely to contain regions where the constraint 

needs to be relaxed because of the presence of materials – for example, air – that cannot 

be decomposed into the CMBMD three-material base set without violating the VCP (we 

assume that the region where VCP is applicable is known a priori.) Other proposed solutions 

to this challenge include: i) estimating best-matching material n-tuples in each voxel as 

part of the optimization objective (Long and Fessler 2014), or ii) replacing VCP with other 

constraints such as the nonnegativity of a virtual monochromatic image synthesized from the 

decomposition (Barber et al 2016).

An early version of CMBMD with initial validation results was previously presented in 

a conference publication (Liu et al 2021a). This paper provides a substantially expanded 

derivation of the algorithm and additional implementation details, and reports on new 

feasibility studies in simulations and physical experiments involving quantitative DE cone-

beam CT (CBCT) imaging in the presence of metal implants. For smaller components 

made of relatively low-density metals, such as Titanium, photon starvation and noise 

amplification effects are minimal. In such cases, beam hardening is among the dominant 

sources of artifacts. One-step DE decomposition should be fairly robust to these distortions, 

because it inherently accounts for polyenergetic attenuation. However, since the objective 

of DE imaging is typically not to minimize metal artifacts, but rather to discriminate other 

materials (e.g., mineralized bone from bone marrow), it is often undesirable to use the metal 

as one of the two decomposition bases in an unconstrained DE inversion. We show that such 

scenarios can be efficiently handled by adding the metal as a third base enabled by VCP 

and solved using CMBMD. Our studies specifically address the application of DE CBCT to 

quantify bone mineral density (BMD).

2. Algorithms

Table 1 summarizes the key variables used in algorithm derivation. Matrices are denoted in 

bold upright (non-italic) uppercase and vectors are in bold italic lowercase; their components 
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are represented by dropping the bold-face and adding subscripts. Constants are always in 

non-bold letters; among them, the dimensions of variables are written using script letters.

The algorithm derivations are presented below using a fairly general notation that does 

not explicitly restrict the number of energy channels and base materials. However, the two 

numbers are related to each other by the need to yield a well determined decomposition 

problem. Therefore, for a DE acquisition, the number of base materials k is 2 for the 

unconstrained MBMD and 3 for constrained MBMD with VCP. Typically, the total number 

of projections rays i is approximately equally split between LE and HE spectra.

The algorithmic methods are described as follows. Sec. 2.1 reviews the multi-energy 

imaging system model employed in the decomposition. Sec 2.2 introduces the unconstrained 

MBMD algorithm, including a new voxel-separable update term (in contrast to the voxel- 

and material-separable updates in Tilley et al 2019). Sec. 2.3 shows how MBMD can 

be expanded to include the volume conservation constraint. Finally, Sec. 2.4 provides a 

detailed outline of the proposed CMBMD framework, which integrates the constrained 

optimization in Sec. 2.3 with an optimization strategy that enables regional application 

of the constraints. (Note that since we anticipate that almost any practical application 

of constrained decomposition will require a partitioned approach similar to Sec 2.4, we 

apply the term “CMBMD” to this regional formulation instead of the general constrained 

algorithm of Sec. 2.3).

2.1. Polyenergetic Forward Model

Both the constrained and unconstrained algorithms employ a discretized polyenergetic 

forward model which assumes that the object consists of k base materials (Tilley et al 
2019):

yi(π) = ∑
ϵ = 1

e
si(ϵ)Δϵexp ∑

κ = 1

k
− Aiμ κ (ϵ)π κ (1)

The spatial distribution of volume fractions of the base material κ is encapsulated by vector 

π κ ∈ ℝj. The intensity measured by the projection ray i is given by yi(π). Ai ∈ ℝ1 × j is 

the ith row of the projection matrix A ∈ ℝi × j. The x-ray spectrum and detector response 

for ray i at the discretized energy ϵ (ranging from 1 to e keV, where e is the tube potential) 

are included in si(ϵ). Δϵ is the energy bin width. In a DE image acquisition, some of the 

rays are obtained using an HE spectrum and some using an LE spectrum; the spectra are 

appropriately included in si(ϵ) of each ray.

As shown by Tilley et al 2019, the forward model for an entire DE image acquisition of i
rays y(π) ∈ ℝi can be re-written analogous to a system with (linear) blur:
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y(π) = y1(π) ⋯ yi(π) T

=
B1

⋱
Bi

exp −
M1
⋮

Mi

π = Bexp( − Mπ) (2)

where π ∈ ℝjk is the column concatenation of the volume fractions of all k bases:

π ≔
π 1

⋮
π k

=
π1

1 ⋯ πj
1 T

⋮

π1
k ⋯ πj

k T
(3)

and Mi ∈ ℝe × jk and Bi ∈ ℝ1 × e are respectively defined as (with zero entries omitted):

Mi ≔
μ 1 ϵ1 ⋯ μ k ϵ1

⋮ ⋮ ⋮
μ 1 ϵe ⋯ μ k ϵe

Ai
⋱

Ai

(4a)

Bi ≔ si ϵ1 ⋯ si ϵe Δϵ (4b)

Essentially, the application of matrix M ∈ ℝiℯ × jk computes the line integrals of the 

object for every projection ray i at each discretized beam energy ϵ. The matrix B ∈ ℝi × iℯ

applies the summation over the energy bins weighted by the system spectral response si(ϵ), 

equivalent to the outer energy integral in Eq. (1).

2.2. Unconstrained MBMD

This section briefly recapitulates the unconstrained MBMD algorithm. Importantly for the 

proposed CMBMD approach, we introduce a new optimization scheme that does not rely on 

material-wise separable surrogates originally employed in Tilley et al 2019.

In MBMD, the reconstruction of the unknown base material fraction maps π is formulated 

as the minimization of a PWLS objective function Φ(π) (Tilley et al 2017, 2019):

π = arg min
π ≥ 0

Φ(π)

= arg min
π ≥ 0

1
2 ∥ y − Bexp( − Mπ) ∥Σy − 1

2 + r(π)
= arg min

π ≥ 0
l(π) + r(π)

(5)

where l(π) is the data fidelity term and r(π) is the regularization term. We assume that 

the measurements y ∈ ℝi follow an uncorrelated Gaussian distribution with mean y(π) and 

covariance Σy ∈ ℝi × i, where Σy
−1 is diagonal with entries equal to the reciprocal of y. For 

r(π), we use the following general form:

Liu et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2023 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



r(π) = ∑
κ = 1

k
r κ π κ = ∑

κ = 1

k
β κ ψ π κ (6)

Throughout this work, we apply the same smoothness penalty ψ(π{κ}) for each of the base 

material images; however, the penalty strength β{κ} is different for each basis κ.

We optimize Φ(π) using separable surrogates. For each iteration n, the current estimate 

π(n) is updated by taking a Newton-Raphson (NR) step towards the optimum of an iteration-

dependent surrogate function φ(π; π(n)) that majorizes Φ(π). In Tilley et al 2019, φ(π; 

π(n)) was designed such that the resulting update equation was separable in both voxels 

and materials (i.e., entry-wise separable). Here, however, we applied the additive convexity 

technique (Erdogan and Fessler 1999) to obtain φ(π; π(n)) that is separable only in voxels, 

but not in materials (see derivation in Appendix I). This yields the following NR update 

equation:

π(n + 1) = π(n) − αNR(n)ΔπNR(n) (7a)

Hφ
(n)ΔπNR(n) = ∇φ π(n); π(n) = ∇Φ π(n) (7b)

where ∇φ π(n); π(n) ∈ ℝjk and Hφ
(n) ∈ ℝjk × jk denote the gradient and the Hessian of 

φ(π; π(n)) evaluated at π = π(n), respectively. Importantly, due to the voxel-wise separability, 

∇φ(π(n); π(n)) is equivalent to the gradient of the original objective ∇Φ π(n) ∈ ℝjk

evaluated at the current iteration; Hφ
(n) is block-diagonal and is equivalent to the Hessian 

of the original objective HΦ
(n) ∈ ℝjk × jk but with all cross-voxel second-order derivatives 

set to zero (Tivnan et al 2020). Specifically:

∇Φ π(n) = ∇l π(n) + ∇r π(n)

= MTD exp −Mπ(n) TBTΣy
−1 y−y π(n) + ∇r π(n) (8a)

HΦ
(n) = Hl

(n) + Hr
(n)

= ∇T ∇l π(n) + ∇T ∇r π(n)

= MTD exp −Mπ(n) TBTΣy
−1BD exp −Mπ(n) M + ∇T ∇r π(n)

(8b)

where ∇r π(n) ∈ ℝjk and Hr
(n) ∈ ℝjk × jk represent the gradient and the Hessian of the 

regularization term evaluated at π = π(n), respectively. Procedurally, HΦ(n) is obtained by: 

1) forward projecting a volume of ones for each material κ (can be precomputed before 

iterations), 2) applying weight terms computed using the current estimate π(n), and 3) 

backprojecting the weighted projections.

During the optimization, the NR search direction for each iteration n, ΔπNR(n) ∈ ℝjk, is first 

obtained by solving the linear system in Eq. (7b). The voxel- and material-wise separability 
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used in Tilley et al 2019 led to a diagonal linear system for ΔπNR
(n), which could be solved 

by simply finding the reciprocals of all diagonal entries of the Hessian (i.e., coordinate 

descent). Here, as we do not apply material-wise separability, Eq. (7b) is block-diagonal 

and thus requires solving a dense (yet small) k × k linear system at every voxel j. However, 

this additional computational burden is acceptable compared to the entry-wise separable 

surrogate in Tilley et al 2019, because of the resulting improvement in the convergence rate 

(Tivnan et al 2020). To further accelerate convergence, momentum-based updates (Nesterov 

2005) and Ordered Subsets (OS, Hudson and Larkin 1994) can be easily incorporated. The 

resulting algorithm is referred to as OS-NR.

The search direction ΔπNR
(n) obtained from Eq. (7b) is then applied to compute the new 

estimate π(n+1) for the next iteration following Eq. (7a). The step length αNR
(n) ∈ (0, 1] can 

be either pre-defined or obtained from standard line search (Nocedal and Wright 2006).

2.3. Interior-Point Algorithm for MBMD with Volume Conservation Constraint

We now introduce VCP as a pair of linear equality and nonnegativity constraints for the 

PWLS problem in Eq. (5):

π = argmin
π

Φ(π) s.t . ∑
κ = 1

k
π κ − 1 = Cπ − 1 = 0

π ≥ 0
(9a)

C ≔
1T

⋱
1T

=
1 ⋯ 1

⋱
1 ⋯ 1

(9b)

where 0 and 1 are vectors of zeros and ones, respectively. The first constraint in Eq. (9a) 

sums the base material fractions at each voxel to one (the summation matrix C ∈ ℝj × jk is 

defined in Eq. (9b)); the second constraint enforces the nonnegativity of π.

To derive the update term for Eq. (9a), we first integrate the nonnegativity constraint into the 

objective function using the barrier technique (Fiacco and McCormick 1990):

π = argmin
π

Γτ(π) = argmin
π

Φ(π) − oτ(π)  s . t . Cπ − 1 = 0 (10a)

oτ(π) ≔ τ ∑
j = 1

j
∑

κ = 1

k
ln πj

κ = τ1T ln(π) (10b)

where Γτ(π) is the new objective consisting of Φ(π) and the Fiacco-McCormick log-barrier 

function oτ(π) defined in Eq. (10b). The barrier strength τ > 0 is adapted per iteration using 

the Predictor-Corrector (PC) framework (Shanno and Vanderbei 2000, Nocedal et al 2009, 

Zanelli et al 2020) as explained in Sec. 2.5 such that the updates remain within a close 

neighborhood about the central path.
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Following Nocedal et al 2009, we can derive the Lagrangian Lτ(π, λ) of Eq. (10a):

Lτ(π, λ) = Γτ(π) − λT(Cπ − 1) = Φ(π) − oτ(π) − λT(Cπ − 1) (11)

and its associated first-order Karush-Kuhn-Tucker (KKT) optimality conditions that define 

the primal-dual feasibilities and complementarity:

∇πLτ(π, λ) = ∇Φ(π) − CTλ − τ 1
π = ∇Φ(π) − CTλ − θ = 0 (12a)

∇λLτ(π, λ) = Cπ − 1 = 0 (12b)

θ ≔ τ 1
π D{π}D{θ}1 − τ1 = 0 (12c)

π ≥ 0 (12d)

θ ≥ 0 (12e)

where vectors λ ∈ ℝj and θ ∈ ℝjk are the KKT multipliers, and (1/π) ∈ ℝjk denotes the 

vector of element-wise reciprocals of π. The first three KKT equalities in Eqs. (12a) – (12c) 

respectively represent zeroing the gradient of Lτ with respect to the primal-dual variables π, 

λ and θ. (Note that the third KKT condition in Eq. (12c) can be obtained by setting θ ≔ τ⁄π 
in oτ(π), and then zeroing ∇θLτ).

To estimate the unknown π and the associated KKT multipliers λ and θ, we approximate the 

KKT equalities in Eqs. (12a) – (12c) using the nonlinear Interior-Point (IP) iterations (the 

nonnegativities in Eqs (12d) – (12e) are ascertained by the selection of τ described in Sec. 

2.5):

π(n + 1)

θ(n + 1)

λ(n + 1)
=

π(n)

θ(n)

λ(n)
− αIP(n)

ΔπIP(n)

ΔθIP
(n)

ΔλIP
(n)

(13a)

J∇Lτ
(n)

ΔπIP(n)

ΔθIP
(n)

ΔλIP
(n)

= ∇Lτ

π(n)

θ(n)

λ(n)
(13b)

where the constant αIP
(n) ∈ (0, 1] denotes the step length, 

∇Lτ π(n); θ(n); λ(n) ∈ ℝ(jk + jk + j) is the gradient of Lτ(π, θ, λ) at a given τ evaluated 

at the current iteration (i.e., the left-hand-sides of the KKT equalities in Eqs. (12a) – (12c)):
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∇Lτ

π(n)

θ(n)

λ(n)
=

∇πLτ
∇θLτ
∇λLτ

=
∇φ π(n); π(n) − CTλ(n) − θ(n)

D π(n) D θ(n) 1 − τ1

Cπ(n) − 1

(14)

and J∇Lτ
(n) ∈ ℝ(jk + jk + j) × (jk + jk + j) is the corresponding Jacobian (independent of 

τ):

J∇Lτ
(n) = ∇T ∇Lτ

π(n)

θ(n)

λ(n)
=

Hφ
(n) −CT −I

D θ(n) 0 D π(n)

C 0 0

(15)

where I ∈ ℝjk × jk is the identity matrix.

Similar to the procedures for the unconstrained MBMD, the primal-dual variables 

are simultaneously updated by applying the IP steps ΔπIP(n) ∈ ℝjk, ΔθIP
(n) ∈ ℝjk and 

ΔλIP
(n) ∈ ℝj that can be obtained by solving the linear system in Eq. (13b). We adopt the 

same iteration-dependent voxel-wise separable surrogate φ(π; π(n)) as in the unconstrained 

MBMD to compute ∇Lτ π(n); θ(n); λ(n)  and J∇Lτ
(n) associated with the primal-dual 

variables π, θ and λ. In this manner, Eq. (13b) becomes block-diagonal per voxel after 

proper rearrangement (similar to Eq. (7b) for the unconstrained MBMD) such that ΔπIP
(n), 

ΔθIP
(n) and ΔλIP

(n) can be obtained by solving a small k + k + 1 × k + k + 1  linear 

system at each voxel. In our implementation, row reduction provides further reduction of the 

size of the system in Eq. (13b).

2.4. CMBMD: Constrained Model-Based Decomposition with Regional Constraints

It is unlikely that VCP with one specific set of k materials will hold globally for a realistic 

object. Even if the base materials are chosen such that their attenuation curves span the 

entire range of tissue attenuations present in the object, the surrounding air – which is 

typically excluded from the base set – will violate the VCP constraints, as it should have 

voxel values of zero in all material images. Therefore, we propose a heuristic strategy 

whereby the volume is partitioned into a constrained region denoted πC ∈ ℝpk (p voxels 

in total) and an unconstrained region πU ∈ ℝqk (q voxels in total) based on some prior 

knowledge. Due to the application of VCP, one can estimate the volume fraction of one more 

material in πC than in πU. We assume that the first k − 1 bases are solved for in both regions, 

whereas the kth material is only estimated in πC and set to zero for all voxels in πU and its 

gradient.

To jointly estimate πC and πU, we exploit voxel-wise separability and update the material 

fractions in πC using the IP iterations of Eq. (13), whereas the NR iterations of conventional 

MBMD (Eq. (7)) are applied in πU. Since both the constrained and unconstrained algorithm 
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employ the same surrogate gradient and Hessian, the two regions are coupled in the 

computation of these two terms. This involves forward- and backprojection of a composite 

volume π obtained as a union of πC and πU.

The pseudocode of this locally constrained optimization approach is shown in Table 2. Each 

iteration begins by computing ∇φ(π(n); π(n)) and Hφ
(n) from the current solution for the 

entire volume π(n) (row 3a in Table 2). This is the only instance in the algorithm where 

global operations of forward and backprojection are performed. The remaining steps are 

applied to individual voxels, now partitioned into the constrained and unconstrained sets 

πC n  and πU n  by simple index selection within vector π(n) (row 3b in Table 2). The 

gradient and Hessian are partitioned in the same manner.

The voxels in πU n  are updated using the NR steps of Eq. (7) (rows 3c and 3d in Table 2). 

It is again worth emphasizing that this involves solving a simple linear system of equations 

in each voxel; the equation coefficients are obtained from the gradient and Hessian of π(n) in 

that voxel.

The update of the constrained voxels πC n  is more complex than for πU n , 

because it involves iteration-dependent optimization of the barrier strength τ(n) using 

the PC framework (Nocedal et al 2009, Zanelli et al 2020). For each voxel in 

πC n , Eq. (13b) is first solved with τ = 0 to obtain preliminary “predictor” 

directions ΔπC*; Δθ*; Δλ* ∈ ℝ(pk + pk + p) (row 3e in Table 2). The predictors are 

then used to estimate τ(n) (row 3f in Table 2). Eq. (13b) is then solved again 

using τ(n) and the predictors to obtain the desired “centered corrector” directions 

ΔπCPCIP
(n); ΔθPCIP

(n); ΔλPCIP
(n) ∈ ℝ(pk + pk + p) (row 3g in Table 2), which are then 

applied to update πC n  (row 3h in Table 2). Although the PC steps require solving the 

linear system of search directions twice for each voxel, this can be efficiently parallelized 

and is computationally trivial compared to forward and back-projections of π(n) involved in 

obtaining ∇φ(π(n); π(n)) and Hφ(n).

We applied momentum-based acceleration and OS to the CMBMD optimization in Table 2; 

these modifications have been implemented in the standard manner and are omitted from 

Table 2 for clarity.

2.5. IDD with Volume Conservation Constraint

To investigate the benefits of beam hardening correction inherent to CMBMD, we performed 

a comparison to VCP-constrained IDD (Granton et al 2008, Ding et al 2018). This 

approach also achieves three-material decomposition, but since it acts on individual FDK 

reconstructions of LE and HE projection data, it does not account for beam hardening unless 

additional ad hoc pre-processing is applied. The IDD decomposition was performed by 

minimizing a constrained least-squares problem in each voxel:
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πj = argmin
πj

1
2 Uπj −

zj
LE

zj
HE

2

2

 s . t . 1Tπj − 1 = 0
πj ≥ 0

(16)

where zj
LE  and zj

LE  are the jth voxel of LE and HE FDK reconstructions, respectively, 

and U ∈ ℝ2 × 3 contains the linear attenuations of the three materials at effective energies of 

the LE and HE beams. Since the problem in Eq. (16) is convex, it was efficiently optimized 

using an IP algorithm analogous to Sec. 2.3.

3. Experimental Validation

3.1 Simulation Study

We evaluate CMBMD in simulations emulating quantitative DE CBCT of bone composition 

in the presence of surgical implants made from Titanium (Ti). Three-material decomposition 

is performed to discriminate adipose tissue (yellow marrow), bone, and Ti under the 

assumption that the inclusion of Ti in the CMBMD base material set will partly mitigate 

metal artifacts.

3.1.1. Digital Phantom and Metal Implants—Fig. 1 shows the multi-material 

phantom used in the simulations. It was obtained by segmentation of an CBCT scan of 

a knee. Voxel size was 0.25 × 0.25 × 0.25 mm3. Volume dimensions were 150 × 150 × 

30 mm3. The relatively narrow longitudinal extent of the volume was consistent with x-ray 

beam collimation assumed in the simulations and benchtop experiments (see below). The 

phantom consisted of an outer adipose (fat) layer surrounding a layer of muscle tissue 

(simulated as water) and two bone regions – tibia and fibula.

The tibia and fibula were modeled as a mixture of cortical bone, fat, and water. First, 

thresholding was applied to identify voxels containing calcified tissue. The volume 

concentration of cortical bone in these voxels was assumed proportional to the attenuation 

coefficient, with fractions of one assigned to the most attenuating voxels in this set. The 

remaining volume of each calcified voxel was filled with fat and water at a ratio of 9:1. 

Voxels interior to tibia and fibula that fell below the calcified tissue threshold were simulated 

as a mixture of water and fat only, also at a ratio of 9:1 by volume, consistent with a 

dominant contribution of yellow marrow (Zankl et al 2007). Linear attenuation coefficients 

and densities of all phantom materials were obtained from Spektr3 (Punnoose et al 2016).

Two Titanium implants (uniform density of 4,510 mg/mL) emulating an intramedullary (IM) 

nail (14 mm outer diameter, 8 mm inner diameter) and a locking screw (3 mm diameter, 

60 mm length) were assembled on the tibia as illustrated in Fig. 1. The Ti construct was 

surrounded by four target inserts (14 mm diameter each) to assess BMD accuracy in the 

vicinity of metal. Cortical bone concentrations in the inserts were 100 mg/mL, 150 mg/mL, 

200 mg/mL and 250 mg/mL; the remainder of insert volume consisted of fat and water at a 

9:1 ratio.
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In addition to the decompositions of the phantom with the Ti construct, we also provide 

reference decompositions of the phantom without the metal, where the Ti regions were filled 

with bone, fat, and water based on the original segmented CBCT image.

3.1.2. CBCT System Model and DE Protocol—Polyenergetic simulations of DE 

imaging were performed in a configuration emulating an interventional C-arm CBCT system 

(Schafer et al 2011). The source-axis distance (SAD) was 600 mm; the source-detector 

distance (SDD) was 1,200 mm. For the purpose of this initial feasibility study, we assumed 

a kV-switching DE protocol, whereby the x-ray source energy alternated between projection 

views. In total, 180 LE and 180 HE views were acquired over a 360° rotation at 1° angular 

steps. The LE beam was 60 kV (+2.0 mm Al, +0.25 mm Cu), and the HE beam was 140 kV 

(+2.0mm Al, +0.25 mm Cu) with an additional high-Z filtration of + 0.225 mm Ag. X-ray 

spectra were obtained from Spektr3 (Punnoose et al 2016). The area of the simulated x-ray 

field was 300 mm (trans-axial) × 50 mm (axial) at the detector.

Projection data were modeled following Eq. (1). We assumed a flat-panel detector consisting 

of 0.388 × 0.388 mm2 pixels with a 0.6 mm thick CsI:Tl scintillator with quantum detection 

efficiency included in the spectral response term of Eq. (1). Incident quanta were assumed to 

be Poisson noise with a mean of 2 × 105 photons/pixel.

To focus the study on the fundamental performance characteristics of CMBMD, we did 

not include scatter in the current simulation. Such an assumption is reasonable given a 

high-fidelity scatter correction, e.g., using Monte Carlo simulations (Sisniega et al 2013) 

or deep-learning models (Erath et al 2021) as well as axially collimated, narrow-beam data 

acquisition, similar to the settings in the experiments described below.

3.1.3. Reconstruction Methods—Prior to reconstruction, the projections were binned 

to 0.776 × 0.776 mm2 pixels. This step guards against the “simulation crime” (using 

matched discretization in simulation and reconstruction) and approximates the non-linear 

partial volume effect that is present in real data. In all reconstructions, the voxel size was 0.5 

× 0.5 × 0.5 mm3.

For CMBMD experiments, the air voxels surrounding the knee were identified from an 

initial CBCT image and assigned to the unconstrained region πU . In reconstructions of the 

digital phantom containing implants, fat, cortical bone and Ti formed the decomposition 

basis set for the constrained region πC , and fat and cortical bone were used in the 

unconstrained region. We used 1/3 to initialize each base in πC, whereas πU was initialized 

with 1 for fat fractions and 0 for cortical bone fractions. Reference CMBMD reconstructions 

of the phantom without metal were also obtained. Here, the decomposition basis set in πC
was fat and cortical bone, each initialized with 1/2. In this configuration, the VCP was only 

applied on the sum of bone and fat volume fractions.

During CMBMD optimization, the search directions for both PCIP (constrained region) and 

NR (unconstrained region) were obtained by voxel-wise Gaussian elimination parallelized 

in the CPU; the Jacobians were first perturbed following Vanderbei and Shanno (1999) 

whenever needed to achieve positive definiteness. The step length in NR was fixed to 0.9. In 

Liu et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2023 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCIP, we applied the searched MSL (Nocedal et al 2009) scaled by 0.995 for the centered 

corrector step.

Unconstrained MBMDs of the entire volume were obtained for comparison with CMBMD. 

Two base material sets were considered: i) fat and cortical bone (denoted fat-bone MBMD), 

and ii) fat and Ti (fat-Ti MBMD). The search directions and step length for the MBMD 

updates were obtained in the same manner as for the unconstrained region in CMBMD.

Both algorithms incorporated a quadratic regularizer ψ for each base material κ:

ψ π κ = 1
4 ∑

x
∑

w ∈ ℕ(x)
πx

κ − πw
κ 2

(17)

where ℕ(x) represents the indices of six nearest neighbors of the xth voxel. A voxel separable 

surrogate of Eq. (17) was obtained using additive convexity (De Pierro 1995) to compute 

the gradient and Jacobian terms associated with ψ. Penalty strengths were as follows: 102 

for fat in all algorithms, 103 for cortical bone in fat-bone MBMD, fat-bone CMBMD and 

fat-bone-Ti CMBMD, 103 for Ti in fat-Ti MBMD, and 10−2 for Ti in fat-bone-Ti CMBMD. 

These values were obtained from a parameter sweep to minimize the normalized root mean 

squared error (NRMSE) between the true and estimated bone content of the test inserts 

(see Sec. 4.3). MBMD and CMBMD optimizations involved 500 iterations computed with 

15 subsets. All algorithms were implemented in Python 3.7 and executed on a personal 

workstation equipped with Intel Xeon processor (2.30 GHz) and NVIDIA Quadro RTX 

5000 GPU (a custom GPU library was used for forward and back-projection).

In addition to MBMD and CMBMD, VCP-constrained IDD (Sec. 2.5) of the phantom with 

metal was also performed. The input to IDD consisted of FDK reconstructions of the LE 

and HE projections obtained using a Hann-apodized ramp filter with cutoff at 0.8x Nyquist 

frequency and the same 0.5 × 0.5 × 0.5 mm3 voxels as in the model-based decomposition 

algorithms.

3.2. Experiments on an Imaging Test Bench

Initial empirical validation involved an imaging test bench configured to replicate the 

interventional C-arm CBCT geometry of the simulation study. The system employed a 400 

× 300 mm2 Varex 4030CB (Varex Imaging, Salt Lake City, UT, USA) flat-panel detector 

(FPD) with 0.194 × 0.194 mm2 pixels and a 0.6 mm thick CsI:Tl scintillator. The same 

kV-switching DE protocol as in the simulations was executed (180 views at 1° step for each 

energy, 60 kV LE beam, 140 kV + 0.225 mm Ag HE beam). Axial collimation was 15 mm 

to minimize x-ray scatter.

The x-ray spectra for use in CMBMD and MBMD were estimated by adjusting the added 

filtration in Spektr3 (Punnoose et al 2016) for the LE and HE beams to match exposure 

measurements obtained at varying thicknesses of added Al attenuation (1 – 6 mm).

The imaging phantom (Fig. 2) consisted of a cylindrical water bath (~100 mm diameter, 

~150 mm height) containing three Gammex (Gammex Inc., Middleton, WI, USA) bone-

mimicking inserts (28 mm diameter, 60 mm height) and metal surgical hardware. Calcium 
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concentrations in the inserts were 100 mg/mL, 200 mg/mL, and 400 mg/mL Ca (Fig. 2C). 

Two metal implant configurations were considered: 1) a Ti nail (12 mm diameter) shown in 

Fig. 2A, and 2) the same Ti nail accompanied by a Ti plate (16 × 4 mm2 in the axial plane) 

in Fig. 2B. Projections of the phantom without the metal implants were also acquired as a 

reference.

Glare deconvolution followed by fast Monte Carlo scatter estimation and subtraction 

(Sisniega et al 2013, Liu et al 2021b) were performed prior to reconstruction. Projections 

were binned 2 × 2 to 0.388 × 0.388 mm2 pixel size and reconstructed with 0.5 × 0.5 × 0.5 

mm3 voxels. The constrained region in CMBMD was the interior of the phantom, and the 

unconstrained region was the surrounding air, identified by thresholding a preliminary FDK 

HE reconstruction. Other CMBMD and MBMD settings were the same as in the simulation 

studies.

3.3. Performance Metrics

The decompositions were displayed as a composite monochromatic image μmono(ϵ) ∈ ℝj, 

equal to a sum of the estimated volume fractions of the base materials scaled by their linear 

attenuation at energy ϵ, here set to 70 keV:

μmono(ϵ) ≔ ∑
κ = 1

K
μ κ (ϵ)π κ

(18)

To quantify the uniformity of the monochromatic image, we evaluated the coefficient-of-

variation (CV) of soft-tissue regions-of-interest (ROIs) indicated with dashed circles in Fig. 

1. CV was computed individually for each axial slice of the reconstruction as the ratio 

of ROI standard deviation to its mean. In objects without the Ti hardware, CV is mostly 

affected by noise. Since the same regularization settings were used in fat-bone MBMD 

and fat-bone CMBMD, any CV differences in the metal-free cases might reflect potential 

additional noise suppression due to the VCP constraint. In the objects with metal, CV is 

primarily a metric of image artifacts.

For the simulation studies, we report the distribution of CV (mean and standard deviation) 

in two subsets of 16 slices each. One subset was vertically centered on the screw (denoted 

as “Nail + Screw”), whereas the other one was centered on a nail-only region superior to 

the screw (denoted as “Nail”); the central slices of these subsets are shown in Fig. 1. (The 

metal-free case was evaluated using the same two axial regions and thus we will use the 

“Nail” and “Nail + Screw” terminology also in the implant-free setting.) For the test bench 

experiments, the CV distributions are reported over all water voxels of the monochromatic 

image (24 slices total). These voxels were identified by thresholding an initial CBCT 

reconstruction of the metal-free phantom.

Decomposition accuracy was evaluated in terms of the normalized root-mean squared error 

(NRMSE) of the estimated cortical bone volume fraction in the four target inserts in the tibia 

(Fig. 1) for the simulation study, and in the three Ca inserts for the physical experiments. For 

each of the inserts, the NRMSE was computed individually in each axial slice as:
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NRMSE =
mean π bone  − π bone  2

π bone 
(19)

where π bone   and π bone   are the estimated and true bone fractions in a given axial 

cross section of the insert (excluding a 2-voxel annulus at its boundary). To investigate 

the decomposition error fluctuations within the reconstructed volume, we report mean and 

standard deviation of insert NRMSEs across the same sub-volumes as in the CV analysis: 

the Nail and Nail + Screw slices in the simulation study, and the water voxels in the 

benchtop experiment.

To enable this performance assessment procedure for fat-Ti MBMD, the estimated fat and Ti 

volume fraction maps were first linearly combined to yield a bone map. The coefficients of 

this combination were found as the weights of a weighted sum of linear attenuations of fat 

and Ti that best approximated linear attenuation of cortical bone.

4. Results

4.1. Simulation Study

Fig. 3 shows MBMD and CMBMD decompositions of the digital phantom. For reference, 

Fig. 3A provides the results for the implant-free case. In this setting, there are no noticeable 

differences between fat-bone MBMD (left column) and fat-bone CMBMD (right column); 

both decompositions are free of major artifacts and present adequate visualization of the 

test inserts and sufficient uniformity in soft-tissue and fat regions. In the presence of metal 

(Fig. 3B), MBMD suffers from strong beam-hardening effects evident as blooming, ringing, 

and streaks. The artifacts are particularly severe in slices containing both the nail and the 

screw (bottom row), likely because the long axis of the nail is parallel to the axial plane. The 

artifacts are somewhat diminished in fat-Ti MBMD (2nd column of Fig. 3B) compared to 

fat-bone MBMD (1st column of Fig. 3B), suggesting a benefit to including the metal directly 

in the base material set; however, this precludes discrimination of endogenous tissues when 

using unconstrained MBMD.

Compared to MBMD, fat-bone-Ti CMBMD (3rd column of Fig. 3B) shows substantially 

reduced metal artifacts. The visual quality appears less affected by the complexity of the 

implant; both for the nail-only and nail-and-screw slices, the visualization of the test inserts 

is similar to MBMD of metal-free object. The remaining slight blooming and streaks are 

attributed to nonlinear partial volume effects and regularization mismatches between base 

material volumes. We note the piecewise constant appearance of the fat region, where noise 

appears suppressed because the constraint favors solutions with fat fractions of 1.0.

Fig. 4 compares CV for the decompositions presented in Fig. 3; the results for the slices 

in the Nail-only axial region (see Sec. 3.3) are in Fig. 4A, the Nail + Screw slices are in 

Fig. 4B. In the implant-free case, CVs are small both for MBMD and CMBMD (mean 

of ~0.012), regardless of the axial location. CMBMD achieves slightly lower CV in the 

measurement region located closer to the bone (Location 2), likely because some noise 
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fluctuations are suppressed by the VCP constraint. In the presence of metal, the mean CV 

of fat-bone and fat-Ti MBMDs reach ~0.025 – 0.04 for the Nail slices (simple hardware) 

and >0.04 for the Nail + Screw slices (complex hardware), reflecting the artifacts visible 

in Fig. 3. Using the proposed three-material CMBMD, the CV is reduced to <0.020 for the 

Nail slices and <0.024 for the Nail + Screw slices, approaching the values measured in the 

reference metal-free phantom and consistent with substantial artifact reduction observed in 

Fig. 3.

Fig. 5 summarizes the accuracy of estimated cortical bone concentrations in the test inserts, 

identified by their nominal bone concentrations on the horizontal axis. For the reference 

MBMD of the implant-free phantom (dash-dot lines), NRMSE across slices is 6.2% - 

14.8%, decreasing with increasing bone volume fraction; the cross-slice variability was 

0.4% - 1.1%. The NRMSE of two-material CMBMD of the metal-free object is within 1% 

difference from the NRMSE of MBMD; hence, it was omitted from Fig. 5 for clarity. In the 

presence of metal, the accuracy of MBMD is substantially reduced, with average NRMSE 

for nail-only slices of 37.2% - 81.9% for the fat-bone base material set (Fig. 5A) and 29.5% 

- 50.0% for the fat-Ti base set (Fig. 5B). The error increases to >60% for nail-and-screw 

slices (light gray solid lines). The wide cross-slice variability of the NRMSE of MBMD 

(error bars) reflects the artifacts visible in Fig. 3 and is quantified using CV in Fig. 4.

By incorporating the metal as the third basis, CMBMD yields improved quantification of 

cortical bone concentrations. As shown in Fig. 5C, CMBMD reduces NRSME to below 20% 

and 26% for the Nail and Nail + Screw slices, respectively, approaching the accuracy of the 

implant-free reference.

Fig. 5D investigates the convergence of MBMD and CMBMD in the phantom with metal. 

The data fidelity term of the PWLS objective, l(π(n)), is plotted as a function of iterations 

n. Fat-bone MBMD requires ~500 iterations to achieve a stable solution. However, this 

solution is of relatively poor fidelity (large values of l(π(n))) – consistent with the severe 

artifacts in Fig. 3. Replacing bone with metal in the MBMD base set improves data fidelity 

compared to fat-bone MBMD, but leads to poorer convergence. CMBMD, which includes 

both metal and bone in its three-material basis set, achieves the fastest convergence and the 

lowest error compared to either form of unconstrained two-material MBMD. In terms of 

computing time, CMBMD is slightly slower than MBMD due to additional variables and the 

application of the PC framework: the times per iteration using the hardware reported in Sec. 

3.1.3 are ~3.25 min (15 sub-iterations) for CMBMD compared to ~1.63 min for MBMD.

4.2. Comparison to Constrained IDD

Fig. 6 shows constrained IDD decompositions of the phantom with the implant. In slices 

containing only the nail, IDD achieves somewhat better delineation of the Ca inserts than 

fat-bone MBMD, but appears overall visually inferior to CMBMD. This is confirmed by the 

NRMSE measurements, which range from 15% to 25% (depending on Ca concentrations) 

in the Nail slices, which is slightly worse than for CMBMD. However, IDD was unable 

to overcome metal artifacts in the Nail + Screw slices, resulting in a decomposition that is 

much less accurate than CMBMD, with NRMSE ranging from 40% to 100%.
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4.3. Experiment on an Imaging Test Bench

Fig. 7A shows the reference fat-bone MBMD and CMBMD of the physical phantom 

without metal implants. Visually, both approaches produce similar decompositions, with 

the CMBMD image exhibiting more pronounced piecewise constant characteristics. Fig. 

7B compares the test bench results for the objects with metal (top row: Ti Nail-only, bottom-

row: Ti Nail + Plate) using fat-bone MBMD, fat-Ti MBMD and fat-bone-Ti CMBMD. 

CMBMD reduces metal artifacts relative to MBMD in both implant configurations, yielding 

a more uniform appearance of the Ca inserts even in areas adjacent to the metal.

The visual image assessment is confirmed by CV measurements in Fig. 8A and NRMSE 

of Ca concentrations in Fig. 8B–D. In the object without metal, the two-material MBMD 

and CMBMD result in CV values (0.0136 and 0.0132, respectively) that are comparable but 

slightly lower for CMBMD, likely due to noise mitigation provided by the VCP constraint. 

In the presence of metal, CMBMD achieves ~2-fold reduction in CV compared to MBMD 

and more accurate Ca volume fraction estimates (e.g., ~2x improvement in NRMSE for 100 

mg/mL and 200 mg/mL Ca inserts) regardless of the implant configuration. Interestingly, 

fat-Ti MBMD does not achieve the same improvement in image quality and accuracy over 

fat-bone MBMD as in the simulation studies (note also that we did not find improved 

convergence for fat-Ti MBMD in real data). This discrepancy, as well as the residual 

artifacts in CMBMD, are attributed to mismatches between the forward model and the 

experimental setup that might result in local minima in the decomposition – for example, 

incomplete scatter subtraction and inaccuracies in x-ray spectrum and Ti alloy composition.

5. Discussion and Conclusions

We developed an optimization-based three-material decomposition algorithm for DE CT 

that incorporates volume conservation as a pair of local linear constraints. Initial validation 

of the proposed CMBMD was performed in application to DE CBCT measurements of 

bone densities in the presence of metal. The results of simulations and physical test 

bench experiments demonstrated improved image quality (e.g., fewer streaks and less 

blooming) and quantitative accuracy using CMBMD compared to the previously developed 

unconstrained two-material MBMD (Tilley et al 2019). Artifact mitigation was reflected in 

~2x decrease of monochromatic image CV measured in soft-tissue regions neighboring the 

implants both in the simulations and the benchtop study. The reduction of bone volume 

fraction NRMSE ranged from ~5-fold to ~10-fold in the simulations and ~2-fold to ~2.5-

fold in the experiments, depending on the amount of metal and nominal bone concentration. 

The more pronounced error mitigation in the simulations can be attributed primarily to 

differences in implant configurations between the two studies. Compared to the physical 

phantom, where the metal was oriented longitudinally, the digital phantom involved a 

locking screw placed lengthwise in the axial plane, which resulted in more severe artifacts 

– and thus larger initial NRMSE - across the entire volume (because of beam divergence, 

the artifacts propagated into slices that did not contain the screw). The absolute bone 

volume fraction errors after the application of CMBMD were similar in the simulations 

and experiments, yielding a ~10% - 20% accuracy that approached the performance of 

two-material MBMD of the object without metal.
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While the primary objective of this work was to demonstrate the application of three-

material CMBMD in the presence of metal, the results presented in the manuscript also 

include constrained two-material decomposition of metal-free cases. In this setting, the 

performance of MBMD and CMBMD is generally comparable. However, CMBMD appears 

to provide a degree of additional noise suppression, likely because it prohibits random 

fluctuations that violate the VCP. Future work will investigate whether VCP might similarly 

reduce artifacts due to missing data, e.g. in slow kV-switching DE CBCT with sparse view 

sampling.

In addition to the VCP constraint, two other features of the proposed algorithm merit a 

brief discussion. First, while MBMD was originally derived using an objective function 

surrogate that was separable both in voxels and materials, the CMBMD surrogate is 

only separable in voxels. The new formulation is consistent with the strong correlation 

between material fractions in each voxel and typically leads to faster convergence than the 

fully separable surrogate (Tivnan et al 2020). The improved convergence tends to offset 

the increased computational burden associated with the need to solve a linear system of 

equations at each voxel to compute the image update, which was not required in the original 

MBMD implementation. The second important feature of the proposed CMBMD is that 

it permits regional imposition of the constraints, whereby the NR updates are applied to 

the unconstrained voxels and the IP updates are applied in the constrained region – a 

partitioned optimization scheme that relies on the voxel-separable surrogate. This approach 

allowed us to accommodate the presence of air voxels that cannot be represented as a linear 

combination of the base materials under VCP. In this case, the air region is relatively easy to 

delineate and can be initialized close to its known solution of zero, such that the convergence 

of the algorithm is determined by the updates occurring in the constrained voxels. Further 

investigation is merited to assess the performance of this approach in the more general case 

of an unconstrained region that contains unknown mixture of tissues, or in a partitioned 

scheme where there are multiple constrained sub-volumes with different sets of base 

materials. In these settings, the algorithm might be less robust to mismatched regularization 

or different convergence rates in the different regions compared to the application considered 

here.

It needs to be recognized that the volume conservation principle implies fairly strict 

assumptions on object composition. It not only assumes that all materials are in the span 

of the base material set as in conventional DE, but also that the decomposition coefficients 

are always positively add to one. To use an example from our experiments, we cannot 

reconstruct fat voxels with density lower than nominal adipose density – even if that was 

more consistent with the measured voxel attenuation due to noise or bias, for example – 

leading to the piecewise-constant appearance of the decompositions. Our results indicate 

that the VCP constraints are not overly restrictive for the proposed application in orthopedic 

extremity imaging, where tissues appear to be reasonably well represented using fat and 

cortical bone. In other body sites with more complex composition, however, robust three-

material decomposition might require new optimization schemes where the constraint is 

not strictly enforced, such as solving the IP linear system inexactly (Arreckx and Orban 

2018, Estrin et al 2020) or directly replacing the constraint with inexact smooth penalty 
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(Nocedal and Wright 2006). Alternatively, it might be possible to replace VCP with another 

constraint, e.g., total variation of a virtual monochromatic image as in Barber et al 2016.

VCP has conventionally been applied in image domain (Granton et al 2008, Ding et al 2018, 

Jiang et al 2020), where its performance might be hampered by the need for accurate artifact 

pre-corrections during reconstruction of the LE and HE projections. Our comparison of 

the proposed CMBMD to VCP-constrained IDD demonstrated the advantages of the direct 

decomposition approach in CMBMD, particularly in the settings where a complex metal 

structure is present in the object (e.g., the Nail + Screw slices of the digital phantom). 

In this configuration, IDD would likely require sophisticated multi-pass water-bone-Ti 

beam hardening corrections, possibly combined with metal in-painting, whereas CMBMD 

was able to produce nearly artifact-free reconstructions owing to the use of the spectral 

forward model. However, despite the lack of advanced pre-corrections in the experiments 

presented here, the performance of VCP-constrained IDD was not substantially worse than 

two-material MBMD (fat-bone or fat-Ti). For accurate direct decomposition in the presence 

of metal, the spectral model needs to capture beam hardening properties of both the metal 

and the endogenous tissues, which appears to benefit from the three-material capability 

provided by CMBMD.

As discussed in the previous paragraph, the primary benefit of CMBMD in DE imaging 

in the presence of surgical hardware is to provide the decomposition with accurate models 

of beam hardening in both the bone tissue and the metal component. For the Ti implants 

considered here, this approach yields substantial artifact reduction compared to two material 

MBMD, where only one of the two highly attenuating materials can be accounted for. 

However, in configurations where photon starvation is significant – e.g., involving large 

and/or higher density hardware – the resulting missing projection data may preclude 

CMBMD from converging to the global minimum to avoid artifacts and quantitative 

inaccuracies. For such scenarios, we are investigating a combination of CMBMD with a 

prior implant model (Stayman et al 2012, Xu et al 2017, Liu et al 2020b), with CMBMD 

applied at the boundary of the known metal region to resolve partial-volume effects and 

other localized mismatches between the component model and measured data.

The clinical motivation to focus the initial feasibility evaluation of CMBMD on bone 

composition measurements in the vicinity of metal is to improve monitoring of fracture 

healing, where a DE technique could be used to quantify callus mineralization. New 

technologies to evaluate bone fusion are highly desirable because of the substantial 

healthcare burden of delayed unions and non-unions: for example, ~25% of tibial shaft 

fractures exhibit protracted healing (Heckman and Sarasohn-Kahn 1997), leading to 

additional hospitalizations and re-operations. Typically, non-unions are diagnosed only after 

6–9 months of observation (Antonova et al 2013), suggesting that there is a need for better 

biomarkers of bone healing. Prior work indicates that DE CT might achieve more accurate 

BMD measurements than single-energy quantitative CT (Kalender et al 1987, Wichmann 

et al 2014, Arentsen et al 2017), thus motivating the proposed use of DE imaging for 

assessment of callus composition. The ability to perform material decomposition in the 

presence of metal is essential to enable this application, since metal fixation hardware 

is commonly used in complex fractures. This capability might be particularly valuable 
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in combination with the recently introduced CBCT devices for weight-bearing imaging 

(for example, extremity CBCT (Koskinen et al 2013, Carrino et al 2014, Demehri et al 
2015, Thawait et al 2015) or multi-purpose robotic x-ray systems (Grunz et al 2020, 2021, 

Falkowski et al 2021), which could provide quantitative assessment of fracture stability as an 

additional marker of healing. Related clinical applications include evaluation of bone quality 

around joint replacement and spine fusion constructs.

Future translation of CMBMD to clinical applications will likely require accelerating the 

computations. The execution times are primarily affected by forward and back-projections 

of the volume (here, a total of 3 forward and 3 back-projections implemented per iteration) 

and the application of the spectral model. To address these bottlenecks, we are currently 

investigating: i) multiresolution reconstruction that employs a finer voxel grid in the regions 

of interest (Cao et al 2016, Sisniega et al 2021), and ii) polynomial approximation of 

the polyenergetic forward model (Abella et al 2019). Another important consideration for 

clinical translation is ensuring robust convergence of the algorithm. Both the NR update 

in the unconstrained region and the IP update in the constrained region were originally 

developed for convex nonlinear programming; however, convexity is not guaranteed for 

the CMBMD objective, and this might affect algorithm convergence. Although we did not 

observe such issues in our study, it is likely that applications of CMBMD to problems 

that are more poorly posed, for example fat-water-bone decomposition in for detection of 

bone marrow edema (Pache et al 2010) will require algorithm modifications to address 

possible non-convexity. These might include i) better variable initialization (e.g., optimized 

image-based DE decomposition), ii) Jacobian perturbation (Shanno and Vanderbei 2000), 

and iii) cubic regularization (Benson and Shanno 2014) with merit- or filter-based line 

searching (Benson et al 2002).

In summary, we presented a new algorithm for one-step three-material decomposition of 

DE data. The proposed CMBMD incorporates volume conservation as an optimization 

constraint in the previously developed MBMD algorithm. Initial simulation and test-bench 

validation studies in DE imaging of bone composition in the vicinity of metal demonstrated 

improved quantitative accuracy and substantial artifact reduction compared to unconstrained 

two-material MBMD. Potential applications of the algorithm include DE configurations in 

which a lack of coinciding LE and HE projection rays precludes conventional projection-

domain decomposition, for example orthopedic DE CBCT using the recently introduced 

extremity CBCT system with a three-source x-ray unit (Gang et al 2018, Liu et al 2020a, 

2020b). The three-material decomposition capability provided by CMBMD is of interest not 

only for DE imaging in the presence of metal, but also for body DE CT/CBCT with multiple 

contrast agents (Symons et al 2017, Tao et al 2019) and detection of bone marrow edema 

(Pache et al 2010, Zbijewski et al 2015, Ali et al 2018, Gosangi et al 2020, Müller et al 
2020).
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Appendix

I. Voxel-wise Separable Surrogate

To optimize the PWLS problem in Eq. (5), Tilley et al 2019 originally implemented the 

Separable Parabolic Surrogate (SPS) algorithm that computes coordinate descent steps 

based on consecutive separable and quadratic approximations of Φ at π = π(n); the final 

surrogate is separable per voxel j and per material κ. However, when material bases are 

strongly inter-correlated (possessing similar mass attenuation coefficients over a wide range 

of energies, e.g., cortical bone and titanium), the material-wise separability used in SPS 

could be inefficient, resulting in slow speed of convergence.

We improve the convergence by computing the NR step based on a voxel-wise separable 

surrogate of Φ(π) at π = π(n), with no quadratic or material-wise separable surrogates. We 

first re-write Φ(π) as:

Φ(π) = Φ ∑
j = 1

j
∑

κ = 1

k
πj

κ ej
κ

= Φ π(n) + ∑
j = 1

j
∑

κ = 1

k
πj

κ − πj
κ (n)

ej
κ

= Φ ∑
j = 1

j
γj

(n)π(n) + ∑
j = 1

j
∑

κ = 1

k
πj

κ − πj
κ (n)

ej
κ

= Φ ∑
j = 1

j
γj

(n) π(n) +
∑κ = 1

k πj
κ − πj

κ (n)
ej

κ

γj(n)

(A.1)

where πj
κ  is an entry of π at the κth material of the jth voxel, and ej

κ ∈ ℝjk is the 

standard basis vector that has an entry of 1 at the κth material of the jth voxel and 0 

elsewhere. The coefficients 0 < γj(n) ∈ ℝ sum to unity:

∑
j = 1

j
γj(n) = 1 (A.2)

Assuming the Hessian HΦ
(n) has been properly perturbed (whenever necessary) to be 

positive definite, the voxel-wise separable surrogate φ(π; π(n)) can be obtained following 

additive convexity (De Pierro 1995, Erdogan and Fessler 1999):
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φ π; π(n) ≔ ∑
j = 1

j
γj(n)Φ π(n) +

∑κ = 1
k πj

κ − πj
κ (n)

ej
κ

γj(n)

≥ Φ ∑
j = 1

j
γj(n) π(n) +

∑κ = 1
k πj

κ − πj
κ (n)

ej
κ

γj(n) = Φ(π)

(A.3)

Note that ∑κ = 1
k πj

κ ej
κ ∈ ℝjk in the numerator of φ(π; π(n)) contains material fractions 

only at the jth voxel and zeros elsewhere, indicating that an individual update for each voxel 

can be derived (i.e., voxel-wise separability).

One can easily show that φ(π; π(n)) in Eq. (A.3) satisfies the sufficiency conditions of 

optimization transfer defined in Erdogan and Fessler 1999:

φ π; π(n) ≥ Φ(π)
φ π(n); π(n) = Φ π(n)

∇φ π(n); π(n) = ∇Φ π(n)
(A.4)

Because of voxel separability, the Hessian of the surrogate Hφ
(n) has zero cross-voxel 

second-order derivatives and can be constructed as (Tivnan et al 2020):

Hφ
(n)

j1, j2 =
HΦ

(n)
j1, j2 if j1 = j2

0 otherwise
, ∀j1, j2 = 1, …, j (A.5)

where HΦ
(n) can be computed following Eq. (8b).
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Figure 1. 
The knee phantom consisting of fat, water, and cortical bone. Four fat-water-bone target 

inserts were placed inside the trabecular region, with bone densities indicated on the image. 

Two Ti implants, including an IM nail and a locking screw, were assembled as illustrated. 

Dashed circles on the fat axial images denote the regions for CV measurement (see Sec. 

3.3).
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Figure 2. 
The physical phantom containing a water bath with three Gammex Ca inserts. Two phantom 

realizations with different Ti implant configurations were used: (A) tibial nail only, and 

(B) tibial nail and a plate. Phantom specifications in terms of dimensions and material 

concentration are shown in (C) for the nail and plate case.

Liu et al. Page 28

Phys Med Biol. Author manuscript; available in PMC 2023 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Composite monochromatic (70 keV) images of decompositions of (A) the reference case 

with no metal, and (B) the phantom with implants. The images in (A) were obtained using 

two-material MBMD (left) and two-material CMBMD (right). In (B), the left and central 

columns are for two-material MBMD, the right column is three-material CMBMD. Two 

axial views and the central sagittal and coronal views are shown for each decomposition. 

Estimated concentration maps of cortical bone are overlaid in green; Ti maps (for CMBMD 

only) are in red. Dashed circles indicate the regions for CV measurement (same as in Fig. 1).
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Figure 4. 
CV of the composite 70 keV monochromatic images measured at the two locations indicated 

in Fig. 1 and 3. The distribution of CV in the nail-only slices (defined with respect to the 

phantom with metal) are shown in (A); the results for the Nail + Screw slices are in (B). Bar 

length and error bars represent the cross-slice CV mean and standard deviation, respectively.
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Figure 5. 
NRMSE of cortical bone concentration estimates for (A) fat-bone MBMD, (B) fat-Ti 

MBMD, and (C) fat-bone-Ti CMBMD (note than narrow-range NRMSE view in the inset). 

Regions with simple (nail only) and complex (nail+screw) metal configurations are assessed 

separately. Markers and error bars denote the mean and the standard deviation of the 

NRMSE, respectively. Dotted lines represent reference fat-bone MBMD of the implant-free 

phantom. (D) Convergence of the data fidelity term for the three decomposition methods.
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Figure 6. 
VCP-constrained three-material IDD decomposition of the phantom with the implant. Two 

axial views and the central sagittal and coronal views are shown. Estimated concentration 

maps of cortical bone and Ti are overlaid in green and red, respectively.
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Figure 7. 
Two-material MBMD, two-material CMBMD and three-material CMBMD decompositions 

of experimental CBCT test-bench data. (A) Reference cases with no metal using MBMD 

(top) and CMBMD (bottom). (B) Objects with metal. The top row in (B) is a phantom with 

tibial nail only, and the bottom row is a more complex configuration with a nail and a plate. 

Estimated Ca and Ti (for CMBMD only) concentration maps are overlaid onto a composite 

monochromatic (70 keV) image in green and red, respectively.
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Figure 8. 
CV (A) and NRMSE of Ca concentration estimates (B-D) measured in test bench 

experiments. White bars in (A) represent the phantom with a simple implant configuration 

(nail-only), gray bars are for a complex configuration (nail and plate). Error bars denote the 

cross-slice standard deviations. Mean CVs of the phantom without metal are provided as 

reference: the dash-dot line is for fat-bone MBMD, the dotted line is for fat-bone CMBMD. 

The NRMSE of fat-bone MBMD is shown in (B), fat-Ti MBMD is in (C), and fat-bone-Ti 

CMBMD is in (D). Errors for the Ti nail-and-plate phantom (complex implant scenario) are 

shown using gray continuous lines, black lines are for the nail-only phantom, and dash-dot 

lines are for the reference MBMD case without metal (CMBMD results for the metal-free 

case are nearly identical). Markers and error bars denote the mean and the standard deviation 

in NRMSE for each insert.
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Table 1.

Summary of mathematical notation.

Variable Description Unit

Forward Model

i Number of rays -

j Number of image voxels -

k Number of base materials -

π Volume fraction vector of reconstructed image -

μ{κ}(ϵ) Linear attenuation for the κth material at energy ϵ 1/mm

Si(ϵ) System spectral response for the ith ray at energy ϵ photons/kV

e Number of energy bins in the discretization of μ{κ} and si -

A i System matrix for the ith ray mm

M i Matrix operator to compute base material line integrals mm3/g

B i Matrix operator to apply system spectral response photons

Partitioned Optimization

p Number of constrained voxels -

q Number of unconstrained voxels -

πU Volume fraction vector of unconstrained voxels -

πC Volume fraction vector of constrained voxels -

λ,θ KKT multiplier vectors for constrained voxels -

τ Barrier strength -

Special Matrices and Operators

exp(·)/ln(·) Element-wise exponentiation/logarithm -

0/1 Vector of all zeros/ones -

I Identity matrix -

D{·} Diagonalization operator -
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Table 2.

Pseudocode for the regionally constrained CMBMD framework. Line search, OS, and momentum-based 

accelerations are omitted. The unconstrained (NR) and constrained (IP) blocks are performed in parallel. 

∇φπU, ∇φπC , and Hφ
πU(n)

 Hφ
πC(n)

 represent the unconstrained (constrained) voxels of ∇φ and Hφ
(n). In row 

3f, α* ∈ ℝ is the maximal step length for the predictor that can be obtained following Nocedal et al 2009.

1) Initialize π(0)

2) Set ξ(0) = 1 and initialize θ(0), λ(0) using KKT equalities in Eq. (12).

3) For iteration
n = 1, …, N:

a) Compute ∇φ (π(n); π(n)) and Hφ
(n)

 following Eq. (8).

b) Partition into constrained and unconstrained regions: 

π(n) Partition πC(n), πU(n)

∇φ π(n); π(n) Partition ∇φπC πC(n); πC(n) , ∇φπU(πU(n); πU(n))

Hφ(n) Partition Hφ
πC(n)

, Hφ
πU(n)

  # Unconstrained NR Update Block:

 c) Solve for NR search direction ΔπUNR n  : Hφ
πU(n)

ΔπUNR n = ∇φπU πU(n); πU(n)

 d) Update unconstrained voxels following Eq. (7a).

  # Constrained IP Update Block:

 e) Solve for predictors ΔπC*, Δθ*, Δλ* with τ = 0: J∇L0
(n)

ΔπC*
Δθ*
Δλ*

= ∇L0

πC(n)

θ(n)

λ(n)
where ∇Lτ and J∇Lτ are defined in Eqs. (14) and (15).

 f) Set barrier strength τ(n): τ(n) = σξ(n) = σ
πC(n)Tθ(n)

pk

where the centering parameter σ is: σ ≔ ξ*
ξ(n)

3
=

πC(n) + α*ΔπC* T θ(n) + α*Δθ*
pk /ξ(n)

3

 g) Solve for centered correctors ΔπCPCIP(n), ΔθPCIP
(n), ΔλPCIP

(n): 

J∇L0
(n)

ΔπCPCIP
(n)

ΔθPCIP
(n)

ΔλPCIP
(n)

= ∇L0

πC(n)

θ(n)

λ(n)
+

0
D ΔπC* D Δθ* 1 + σξ(n)1

0

 h) Update constrained voxels and KKT multipliers following Eq. (13a): 

πC(n + 1)

θ(n + 1)

λ(n + 1)
=

πC(n)

θ(n)

λ(n)
− αPCIP(n)

ΔπCPCIP
(n)

ΔθPCIP
(n)

ΔλPCIP
(n)

 i) Combine the updated πU(n + 1) and πC(n + 1) into the updated volume π(n+1).
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