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ABSTRACT
Osteoporosis is a systemic skeletal disease characterized by low bone mass and bone structural deterioration that may result in fra-
gility fractures. Use of bone imaging modalities to accurately predict fragility fractures is always an important issue, yet the current
gold standard of dual-energy X-ray absorptiometry (DXA) for diagnosis of osteoporosis cannot fully satisfy this purpose. The latest
high-resolution peripheral quantitative computed tomography (HR-pQCT) is a three-dimensional (3D) imaging device to measure
not only volumetric bone density, but also the bone microarchitecture in a noninvasive manner that may provide a better fracture
prediction power. This systematic review and meta-analysis was designed to investigate which HR-pQCT parameters at the distal
radius and/or distal tibia could best predict fragility fractures. A systematic literature search was conducted in Embase, PubMed,
andWeb of Science with relevant keywords by two independent reviewers. Original clinical studies using HR-pQCT to predict fragility
fractures with available full text in English were included. Information was extracted from the included studies for further review. In
total, 25 articles were included for the systematic review, and 16 articles for meta-analysis. HR-pQCT was shown to significantly pre-
dict incident fractures and/or major osteoporotic fractures (MOFs). Of all the HR-pQCT parameters, our meta-analysis revealed that
cortical volumetric bone mineral density (Ct.vBMD), trabecular thickness (Tb.Th), and stiffness were better predictors. Meanwhile,
HR-pQCT parameters indicated better performance in predicting MOFs than incident fractures. Between the two standard measure-
ment sites of HR-pQCT, the non-weight-bearing distal radius was a more preferable site than distal tibia for fracture prediction. Fur-
thermore, most of the included studies were white-based, whereas very few studies were from Asia or South America. These regions
should build up their densitometric databases and conduct related prediction studies. It is expected that HR-pQCT can be usedwidely
for the diagnosis of osteoporosis and prediction of future fragility fractures. © 2021 The Authors. Journal of Bone and Mineral Research
published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
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Introduction

With the aging population, age-associated diseases have
become a major concern worldwide. Osteoporosis is a

skeletal disease characterized by low bone mass and bone struc-
tural deterioration leading to increased risk of fracture.(1) Osteo-
porosis has no symptoms until an individual encounters a
fracture. Currently, the dual energy X-ray absorptiometry (DXA)

is the gold-standard imaging tool in assessing bonemineral den-
sity (BMD) and fracture risk.(2) DXA can measure an integral BMD
(including cortical and trabecular BMD) and provide spatial distri-
bution of the bone mass. With the World Health Organization
(WHO) definition, a T-score derived from DXA is clinically useful
in identifying patients with osteoporosis (T-score of �2.5 or
below).(3) Previous prospective studies showed that the risk of
fracture is inversely related to the areal BMD (aBMD) measured
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by DXA.(4-6) Despite this, many fragility fractures are found in
osteopenic patients who have relatively high aBMD.(7) aBMD
values overlap substantially between patients with and without
fractures. The fracture prediction power of DXA is therefore
suboptimal.

According to the National Institutes of Health (NIH), major
parameters for defining osteoporosis is based on both bone
mass and structure that are the key determinants of bone
strength.(8) Recent advances in bone imaging permit the assess-
ment of bone microstructure in vivo using high-resolution
peripheral quantitative computed tomography (HR-pQCT).
HR-pQCT is a noninvasive three-dimensional (3D) imaging tech-
nique that quantitatively measures volumetric BMD (vBMD) at
the peripheral skeletal sites (distal radius and distal tibia). It pro-
vides accurate evaluation of the volumetric bone density in a 3D
manner within cortical and trabecular compartments, indepen-
dent of the bone size. vBMD is of intriguing potential to be used
for early detection of osteoporosis and incorporation into the
algorithm of fracture prediction. Therefore, HR-pQCT is of good
potential for clinical detection of osteoporosis and an updated
guideline of standardizing HR-pQCT imaging techniques has
recently been published.(9)

HR-pQCT has shown a good ability in predicting fracture risk,
as reported in a number of studies using HR-pQCT.(10-14) How-
ever, these studies reported successful predictions with different
and inconsistent HR-pQCT parameters, such as total vBMD
(Tt.BMD), trabecular vBMD (Tb.BMD), cortical thickness (Ct.Th),
and trabecular thickness (Tb.Th) in the Os des Femmes de Lyon
(OFELY) study(10); Tt.BMD, Tb.BMD, trabecular number (Tb.N,) and
trabecular separation (Tb.Sp) in the Canadian Multicentre
Osteoporosis Study (CaMos) study(11); Tb.N, Tb.Sp, and connectiv-
ity density (Conn.D) in Structure of Aging Men’s Bones (STRAMBO)
study.(13) HR-pQCT can generate up to 18 geometric, microstruc-
tural, and biomechanical (derived by finite element analysis)
parameters. These parameters carry differentmeanings and impli-
cations in various applications, yet they may be difficult for users
to understand their underlying impact. It is therefore useful to
understand these parameters and compare their strength in frac-
ture risk prediction. The objective of this systematic review and
meta-analysis is to investigate which HR-pQCT bone quality
parameters at distal radius and/or distal tibia can best predict fra-
gility fractures in various ethnic populations.

Materials and Methods

Search strategy

A literature search was performed in Embase, PubMed, and Web
of Science databases. The keywords “HR-pQCT OR high resolu-
tion peripheral quantitative computed tomography OR Xtre-
meCT” AND “fracture*” were used to search in all fields. Last
access to these databases was on January 31, 2021. The Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines were followed.

Search criteria

Inclusion criteria were as follows: (i) clinical studies, (ii) subjects
aged ≥50 years or postmenopausal, (iii) fragility fractures, ie,
those resulting from falling from standing height.(15) Exclusion
criteria were as follows: (i) non-English articles, (ii) review, con-
ference abstract, case report, protocol article, (iii) involving dis-
eases affecting bone metabolism, (iv) nonstandard HR-pQCT

parameters or evaluation, (v) precision or validation or
machine learning studies, and (vi) fractures of skull, face, fin-
gers, and toes.

Selection of studies

Study selection was conducted by two independent reviewers.
Duplicates were removed. Irrelevant papers were screened out
through the titles and abstracts based on inclusion and exclusion
criteria. Full text of relevant articles was retrieved and reviewed
for the eligibility. Disagreements were resolved by discussion
and consensus.

Data extraction

The following information was extracted by reviewers: study
design, ethnicity, sex, age, sample size, trauma degree, fragility
fracture site, fracture prediction results (odds ratio [OR], hazard
ratio [HR]), model of HR-pQCT, site of measurement, and data
of HR-pQCT–related parameters.

Assessment of quality of included studies

Two authors independently conducted quality assessment of the
selected studies. Disagreements were settled by discussion. The
methodological quality was assessed using the Newcastle-
Ottawa Scale validated for observational studies, for which sepa-
rate tools are developed for cohort and case control studies.(16)

The form assigns a maximum of four points for selection, two
points for comparability, and three points for exposure or
outcomes.

Data analysis

A meta-analysis on peripheral bone microarchitecture parame-
ters and estimated bone strength in patients with fragility frac-
ture was performed by computing risk ratios (RRs) and 95%
confidence intervals (CIs) using a fixed-effects model. Quantita-
tive analyses were performed on a time-to-event basis and were
confined to data derived from the period of follow-up. Data anal-
ysis was carried out based on (i) bone microarchitecture param-
eters and estimated bone strength and (ii) study design
(by cohort studies or case–control studies), followed by an over-
all effect by combining the outcomes from both study types.
Data heterogeneity was represented using chi-square test and
heterogeneity (I2) estimate. Test for overall effect was performed
using Z-statistics. Subgroup analysis was tested for the study
types (ie, cohort versus case control studies). Publication bias
was analyzed using Egger’s test. Publication bias was indicated
when p < 0.05. The Egger’s test was carried out by Meta-
Essentials (Erasmus Research Institute of Management [ERIM],
Rotterdam, Netherlands) and the corresponding funnel plots
were prepared by RevMan software (version 5.4; The Cochrane
Collaboration, London, UK). RevMan was used for all analyses
and production of plots. The inverse variance (IV) method was
used to weight the study effect size. Test of contrast comparing
the effect sizes of the three best performance HR-pQCT parame-
ters were carried out using Cohen’s d, which was derived
through the effect size calculations for t test in IBM SPSS version
27 (IBM Corp, Armonk, NY, USA). In brief, Cohen’s d point esti-
mates of �0.2 are regarded as small effects, values �0.5 as
medium-sized effects, and those ≥0.8 as large effects.(17)
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Results

Search results

In the search, 1941 papers were identified from various data-
bases. After removing duplicates, 695 papers remained, from
which 544 papers were excluded based on the selection criteria
after screening. The full texts of 151 papers were retrieved for fur-
ther assessment of eligibility; 126 papers were further excluded,
because these studies did not involve fracture discrimination or
prediction. Hence, 25 papers were finally included in this system-
atic review including 18 case–control studies(10,18-34) and seven
cohort studies.(11-14,35-37) Out of 25 papers, only 16 papers were
included for meta-analysis, in which there were 11 case–control
studies(10,18-27) and five cohort studies.(11-13,35,36) Figure 1 sum-
marizes the selection process of the included papers.

Characteristics of the papers

Among 25 included papers, the sample size ranged from 48 to
1794 participants, whereas one study involved up to 7254 partici-
pants because it grouped the participants from eight cohorts for
analysis.(14) Some studies used the participants from the same
cohort for different analyses; eg, five studies from OFELY
(France),(10,18-20,35) four studies from MrOS (The Osteoporotic Frac-
tures in Men Study, USA or Sweden),(12,24,32,37) two studies from
STRAMBO (France),(13,22) two studies from CaMOS (Canada),(11,23)

one study from Hertfordshire Cohort Study (HCS, UK),(25) one study
from Geneva Retirees Cohort (GERICO, Switzerland),(36) and one
study from Global Longitudinal Study of Osteoporosis in Women
(GLOW, UK).(34) One study assessed eight cohorts (Framingham,

Mayo Clinic, Qualité Osseuse Lyon Orléans [QUALYOR, France],
STRAMBO, OFELY, GERICO, CaMos, and MrOS).(14)

The mean age of the participants in the 25 studies was 65 to
85 years. Nine studies analyzed the prediction for incident
fractures,(11,14,20-23,25,32,34) eight studies for both incident and
major osteoporotic fractures,(10,12,13,24,30,35-37) five studies for ver-
tebral fractures only,(19,28,29,31,33) two studies for hip fractures
only,(26,27) and one for wrist fracture only.(18) Table 1 summarizes
the included 25 studies.

Quality of selected studies

Tables 2 and 3 summarizes the quality of the 25 studies using the
Newcastle-Ottawa Quality Scale. All studies were of good quality
and suitable for quantitative analysis.

Study design

Among 25 included studies, 18 papers were case–control stud-
ies(10,18-34) and seven were cohort studies.(11-14,35-37) In the
case–control studies, the fracture participants mostly had low
or moderate trauma, whereas four studies did not specify the
trauma degree of participants.(24,25,27,34) In the cohort studies,
the fracture participants were also of low trauma and 23% to
47% of participants had previous fractures (Table 1).

Gender and ethnicity

Sixteen of 25 studies included women only,(10,11,18-21,23,26-31,34-36)

six studies men only,(12,13,22,24,32,37) and three studies both gen-
ders.(14,25,33) For ethnicity, the 25 studies included participants as
follows: seven French,(10,13,18-20,22,35) five American,(12,21,28,29,32) four

Fig 1. Flowchart showing the selection process of literature search.
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Swedish,(24,27,31,37) two Canadian,(11,23) two British,(25,34) two
multiple,(14,30) one Swiss,(36) one Asian,(26) and one Brazilian.(33) In
summary, seven were from North America, one from South
America, 14 from Europe, one from Asia, and two from multiple
countries (Table 1).

Follow-up period

In the seven cohort studies included, the mean follow-up period
ranged from 1.7 to 9.4 years. There were two studies with mean
follow-up time of less than 5 years(12,14) and three studies with
up to around 5 years.(11,36,37) Two studies followed the patients
up to a mean period of 8 years(13) and 9.4 years,(35) respectively.

HR-pQCT machine

Almost all (22/25) studies used Scanco HR-pQCT (XtremeCT
version I, XT I; SCANCO Medical AG, Brüttisellen, Switzerland)
machines. Two studies used Scanco XtremeCT version II (XT II)
model(12,32); one study used a Scanco prototype machine.(28)

Among the 16 studies in meta-analysis, all of them used XT I,
except a cohort study by Langsetmo and colleagues(12) using
XT II (Table 4). According to Scanco information (http://www.
scanco.ch/), XT I and XT II are compatible but their major differ-
ences include resolution (82 μm in XT I versus 61 μm in XT II),
scanning time (3 minutes in XT I versus 2 minutes in XT II). For
the prototype machine, the spatial resolution was at
165 μm.(38) In Melton and colleagues’ study(28) using a prototype
machine, only microstructural parameters were reported,

whereas volumetric density and related finite element analysis
were measured by a single-energy QCT and a third-party soft-
ware (ON Diagnostics, Berkeley, CA, USA), respectively.

Due to the differences in spatial resolution, the image proces-
sing method is also different between XTI and XTII machines.
Higher spatial resolution in XTII allows direct measurement of
trabecular microarchitecture (bone volume/total volume
[BV/TV], Tb.Th, Tb.Sp) and cortical thickness (Ct.Th), whereas a
derived (indirect) morphological method of evaluation was used
in XTI. The image analysis methods for measuring bone area,
vBMD and Tb.N are the same in both generations of HR-pQCT
machine.(9,39,40) Fully automated threshold-based approach for
cortical porosity (Ct.Po) evaluation, as one of the standard
parameters, was used in XTII. In XTI, extended cortical analysis
by semiautomated contouring process for Ct.Po evaluation
(threshold-based approach) was required.(9)

Scanning position

Most of the studies (18/25) measured both distal tibia and distal
radius using HR-pQCT; three measured distal tibia only(24,27,37)

and four measured distal radius only.(18,25,28,29) All of them used
standard protocol (fixed offset scanning) to measure the extrem-
ities, whereas four studies also measured diaphyseal region in
addition to the standard sites(12,27,31,32) (Table 4). Regarding the
standard scanning protocol, the total scanning region was 9.02,
10.2, and 10 mm (in length) in XT I, XT II, and prototype machine,
respectively. For XT I, the first CT slice was 9.5 mm (for radius) and
22.5 mm (for tibia) proximal to the reference line (endplate). For

Fig 2. Forest plot of Ct.vBMD measured at distal radius and distal tibia for predicting incident fracture and MOF, (A) distal radius; incident fracture,
(B) distal tibia; incident fracture, (C) distal radius; MOF, and (D) distal tibia; MOF. Ct.vBMD= cortical volumetric bone mineral density; MOF =major oste-
oporotic fracture.
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XT II, the first CT slice was 9.0 mm (for radius) and 22.0 mm (for
tibia) proximal to the reference line (endplate).(9) For the proto-
type HR-pQCT machine, the first CT slice was 6.0 mm proximal
to the reference line (endplate) for distal radius only.(38)

Finite element analysis

In the 25 included studies, all of themmeasured volumetric den-
sity, geometric and/or structural parameters, whereas only
14 studies reported estimated bone strength generated by
micro-finite element analysis (μFEA).(11-14,18,20-22,26,32,33,35-37) Of
the 14 studies, almost all of them used Scanco default Image Pro-
cessing Language (IPL) for μFEA analysis, except one using a
third-party finite element software (FAIM, version 6; Numerics88
Solutions, Calgary, AB, Canada).(11) μFEA model inputs are sum-
marized in Table 4.

Meta-analysis

In the meta-analysis, only studies with crude OR or HR results
available or provided by the authors are included for analysis.
Nine of 25 studies were excluded from the analysis, because no
response was received for our request for crude data acquisi-
tion(28-34,37) or they involved repeated cohorts.(14) Although a
few studies adopted the patients from the same cohort, the
16 included studies should have no overlapping of database,
because they involved different fracture types, patient groups,
or ethnicities. In the meta-analysis, the included studies have
two types of study design: cohort and case–control. A total of
56 analyses were performed in the meta-analysis to analyze
14 HR-pQCT parameters, covering vBMD, cortical and trabecular

microarchitecture, and FEA parameters, involving two scanning
sites (distal radius and distal tibia) for predicting both incident
fracture and major osteoporotic fracture (MOF).

There were 16 studies included in the meta-analysis (five
cohort studies and 11 case control studies). The total number
of subjects for 16 studies was 6904 (female, n = 3288; male,
n = 3616). The total number of incident fracture was 1392, in
which 709 was MOF. Publication bias was not present in all
parameters (all p > 0.05), except Ct.Th at both distal radius
(p = 0.02), tibia (p = 0.01), and BV/TV at distal tibia (p = 0.04)
(Supplementary Table S1). Therefore, the risk of bias from the
selected publications was minimal.

For selection of the best performance HR-pQCT parameters in
predicting incident fracture and MOF, the meta-analysis results
should meet the following criteria: (i) risk ratio or effect size
>1.0 (except cortical porosity and trabecular separation <1.0),
(ii) I2 estimate <65%, (iii) generalizability in predicting both inci-
dent fractures and MOFs, and (iv) their successful prediction at
both distal radius and tibia.

The following highlights the meta-analysis results with effect
size over 1.0 (except cortical porosity and trabecular separation
<1.0) with low-to-moderate heterogeneity (I2 < 65%) in predict-
ing fractures. The parameters not meeting these criteria are sum-
marized in Supplementary Table S2.

Meta-analysis of incident fracture prediction

vBMD

Cortical vBMD measured at both radius and tibia could signifi-
cantly predict incident fracture (radius: RR = 1.50, 95%

Fig 3. Forest plot of Tb.Th measured at distal radius and distal tibia for predicting incident fracture and MOF, (A) distal radius; incident fracture, (B) distal
tibia; incident fracture, (C) distal radius; MOF, and (D) distal tibia; MOF. MOF = major osteoporotic fracture; Tb.Th = trabecular thickness.
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CI = 1.39–1.61, I2 = 18%, p < 0.01; tibia: RR = 1.64, 95%
CI = 1.52–1.76, I2 = 43%, p < 0.01) (Fig. 2A,B). Trabecular vBMD
measured at radius only showed significant prediction
(RR = 1.81, 95% CI = 1.68–1.96, I2 = 60%, p < 0.01)
(Supplementary Fig. S1A).

Cortical parameters

Ct.Thmeasured at radius only could significantly predict incident
fracture (RR = 1.64, 95% CI = 1.51–1.78, I2 = 42%, p < 0.01)
(Supplementary Fig. S2A).

Trabecular bone microarchitecture parameters

Tb.N measured at both radius and tibia could predict incident
fracture significantly (radius: RR = 1.68, 95% CI = 1.56–1.82,
I2 = 62%, p < 0.01; tibia: RR = 1.39, 95% CI = 1.29–1.49,
I2 = 61%, p < 0.01) (Supplementary Fig. S3A,B). Tb.Th measured
at both radius and tibia could predict incident fracture signifi-
cantly (radius: RR = 1.37, 95% CI = 1.25–1.49, I2 = 0%, p < 0.01;
tibia: RR = 1.30, 95% CI = 1.19–1.42, I2 = 15%, p < 0.01)
(Fig. 3A,B). Tb.Sp measured at radius only could predict incident
fracture significantly (RR = 0.63, 95% CI = 0.59–0.68, I2 = 60%,
p < 0.01) (Supplementary Fig. S4).

Finite element analysis parameters

Stiffness measured at both radius and tibia could predict inci-
dent fracture significantly (radius: RR = 1.67, 95% CI = 1.53–
1.83, I2 = 30%, p < 0.01; tibia: RR = 1.71, 95% CI = 1.54–1.89,
I2 = 50%, p < 0.01) (Fig. 4A,B). Estimated failure load measured
at both radius and tibia could predict incident fracture signifi-
cantly (radius: RR = 1.72, 95% CI = 1.57–1.88, I2 = 44%,

p < 0.01; tibia: RR = 1.76, 95% CI = 1.60–1.93, I2 = 0%,
p < 0.01) (Supplementary Fig. Supplementary Fig. S5A,B).

Meta-analysis of MOF prediction

vBMD

Cortical vBMD measured at radius and tibia could significantly
predict MOF (radius: RR = 1.65, 95% CI = 1.46–1.86, I2 = 0%,
p < 0.01; tibia: RR = 1.80, 95% CI = 1.63–2.00, I2 = 34%,
p < 0.01) (Fig. 2C,D). Trabecular vBMD measured at radius only
showed significant prediction (RR = 2.24, 95% CI = 1.95–2.57,
I2 = 42%, p < 0.01) (Supplementary Fig. S1C).

Cortical parameters

Ct.Th measured at radius only could significantly predict MOF
(RR = 1.77, 95% CI = 1.55–2.00, I2 = 62%, p < 0.01)
(Supplementary Fig. S2C). Only cortical porosity measured at
tibia could predict MOF significantly (RR = 0.59, 95% CI = 0.51–
0.68, I2 = 57%, p < 0.01) (Supplementary Fig. Supplementary
Fig. S6).

Trabecular bone microarchitecture parameters

Tb.N measured at radius only could predict MOF significantly
(RR = 2.10, 95% CI = 1.86–2.37, I2 = 50%, p < 0.01)
(Supplementary Fig. S3C). Tb.Th measured at both radius and
tibia could predict MOF significantly (radius: RR = 1.31, 95%
CI = 1.06–1.62, I2 = 0%, p < 0.01; tibia: RR = 1.31, 95%
CI = 1.12–1.53, I2 = 0%, p = 0.01) (Fig. 3C,D).

Fig 4. Forest plot of stiffnessmeasured at distal radius and distal tibia for predicting incident fracture andMOF, (A) distal radius; incident fracture, (B) distal
tibia; incident fracture, (C) distal radius; MOF, (D) distal tibia; MOF. MOF = major osteoporotic fracture.
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Finite element analysis parameters

Stiffness measured at both radius and tibia could predict MOF
significantly (radius: RR = 1.85, 95% CI = 1.60–2.15, I2 = 0%,
p < 0.01; tibia: RR = 1.90, 95% CI = 1.62–2.23, I2 = 0%,
p < 0.01) (Fig. 4C,D). Estimated failure load measured at tibia
could predict MOF significantly (RR = 2.07, 95% CI = 1.80–
2.38, I2 = 31%, p < 0.01) (Supplementary Fig. Supplementary
Fig. S5D).

Meta-analysis in predicting incident fracture and MOF by DXA

Among the 16 studies included in meta-analysis, there were six
studies (one cohort and five case control) involving both HR-
pQCT parameters and DXA areal BMD (aBMD) in predicting inci-
dent fracture or MOF. Due to limited number of studies, we
grouped the aBMD data of all DXA measuring sites (lumbar
spine, proximal femur and distal radius) together to perform
the meta-analysis. Results showed that aBMD could predict inci-
dent fracture and MOF significantly (incident fracture: RR= 1.30,
95% CI = 1.28–1.32, p < 0.01; MOF: RR = 1.53, 95% CI = 1.41–
1.65, p < 0.01). However, there were significant heterogeneity
from the dataset (incident fracture: I2 = 89%, p < 0.01; MOF:
I2 = 93%, p < 0.01) (Supplementary Table S3).

Effect sizes of the three best performance HR-pQCT
parameters

Cohen’s d was used to compare the effect size among cortical
vBMD, Tb.Th, and stiffness. All d values were equal to or larger
than 0.8, which means that large effects (not overlapping) were
observed (Supplementary Table S4).

Discussion

This review aimed to investigate which HR-pQCT parameters at
the distal radius and/or distal tibia can best predict fragility frac-
tures. All the included papers showed positive prediction of
HR-pQCT for incident fractures and/or MOFs, in which almost
all of the HR-pQCT parameters showed significant prediction.
Among all the parameters, the meta-analysis showed that corti-
cal vBMD, Tb.Th, and stiffness were best prediction parameters
of HR-pQCT, in terms of their effect size, heterogeneity, and their
generalizability in predicting incident fractures andMOFs at both
measurement sites. The three factors measured at distal radius
and distal tibia could successfully predict both incident fractures
and MOFs with the effect size up to 1.90, after screening out the
analyses with high heterogeneity (I2 > 65%).

Of the three outstanding predictors, stiffness is a HR-pQCT
parameter of estimated bone strength. This indicates that esti-
mated bone strength can predict fragility fractures well, whereas
vBMD or microarchitecture parameters are other important
ones. On the other hand, geometric parameters, eg, total area,
cortical area, trabecular area, show less predictive power. Almost
all the included studies with FEA consistently used the default
Image Processing Language (IPL) of HR-pQCT for analysis, except
one using third-party FEA software.(11) The possible reason why
estimated bone strength shows a good prediction power is that
μFEA analysis has included geometric, microarchitecture, and
vBMD data altogether to estimate mechanical parameters: stiff-
ness and estimated failure load.(41) Therefore, estimated bone
strength is relatively more all-round and advanced than other
individual geometric, structural or vBMD parameter.

The other two outstanding predictors are cortical vBMD and
Tb.Th. Because trabecular bone is metabolically more active than
cortical bone, trabecular bone loss usually occurs early in osteo-
porosis. The decrease in trabecular bone is caused by thinning of
the trabeculae and especially in early postmenopausal
women,(42) by disruption of the trabecular microstructure and
loss of trabecular elements. This will eventually reduce the tra-
becular number and increase the trabecular separation in later
phase. Hence, trabecular thinning is an early phenomenon of
osteoporosis, thus Tb.Th is a sensitive parameter. During trabec-
ular bone loss, cortical bone will share more loading. With the
progression of osteoporosis, cortical bone will deteriorate to be
more porous and cortical trabecularization will be resulted,(43)

leading to a great loss of cortical bone mass (yet Ct.vBMD may
increase, because the zone formally included in the cortical com-
partment will be included in the trabecular compartment
instead), whereas fracture risk will also be sharply increased. This
may explain why cortical vBMD is a sensitive HR-pQCT parameter
for fragility fracture prediction.

Between incident fracture and MOF prediction, most of the
HR-pQCT parameters performed better in MOF. A few parameters
showed the effect size >2.0 in MOF prediction, such as Tb.vBMD,
Tb.N measured at distal radius, and estimated failure load mea-
sured at distal tibia, whereas none of themdemonstrated the effect
size >2.0 in incident fracture prediction. These results revealed that
HR-pQCT parameters might reflect the mechanical competence or
bone quality of three MOF sites (wrist, spine, and hip) better than
other regions. A study by Liu and colleagues(44) substantiated that
the prediction of stiffness of proximal femur and vertebrae by
HR-pQCT parameters were comparable with direct measurements
of proximal femur and lumbar spine by DXA and central QCT,
respectively. Hence, HR-pQCT-based images and FEA of distal
radius and tibia were good indicators of mechanical properties of
the lumbar spine and proximal femur.(44)

HR-pQCT has two standard measurement sites: distal radius
and distal tibia. Our review showed that more parameters mea-
sured at the distal radius could significantly predict both incident
fractures andMOFs than those at the distal tibia. The distal radius
is therefore a more preferable measurement site for fracture pre-
diction. The distal radius has been reported to be an ideal site for
screening primary osteoporotic distal radius fracture.(45) Miya-
mura and colleagues(45) showed that fracture group had signifi-
cantly lower BMD and T-score of ultradistal, mid-distal, and
one-third distal forearm than control group; DXA measurements
exhibited high correlation with vBMD measured by computed
tomography (r = 0.83–0.92). Because distal radius of nondomi-
nant side is a non-weight-bearing region, osteoporosis devel-
oped in this region cannot be offset by most osteogenic
weight-bearing activities, thus providing a sensitive site for
osteoporosis detection. On the other hand, distal tibia, as a
weight-bearing site, will be influenced by most daily activities
and cannot predict fragility fractures as good as the distal radius.

Cortical porosity (Ct.Po) is a unique parameter provided by
HR-pQCT that no other imaging system can measure. This is
defined as the average fraction of void volumes within the cortical
bone volume.(46) Ct.Po has been reported to have prominent
increase at the fifth decade and reach a plateau before the sixth
decade,(47) whichmay be an important determinant of fracture risk.
In our meta-analysis, the results revealed that Ct.Po measured at
distal tibia could predict MOF significantly. Hung and colleagues(47)

also substantiated that Ct.Po at the distal tibia increased from
around 2.5% to 7.5% from the age of 50 to 60 years, which should
weaken the cortical strength substantially, thus supporting the
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MOF prediction power of Ct.Po. However, more studies should be
conducted to validate its ability of prediction, because many ana-
lyses on Ct.Po in our review showed high data heterogeneity, lead-
ing to difficult interpretation.

DXA is currently the gold standard tool in assessing BMDandpre-
dicting fracture risk. Our findings support that bone quality mea-
sured by HR-pQCT could predict both incident fracture and major
osteoporotic fracture. However, based on the results of this meta-
analysis, we cannot conclude whether HR-pQCT parameters predict
fractures better than DXA. The major reason is that significant het-
erogeneity (I2= 89–93) was found in the analysis of DXA in predict-
ing fractures, which is not suitable for direct comparison with HR-
pQCT. A large cohort prospective consortium study by Samelson
and colleagues(14) have shown that HR-pQCT parameters could pre-
dict incident fractures independently of femoral neck aBMD and
Fracture Risk Assessment Tool (FRAX) score. Moreover, the predic-
tive model (area under the receiver operating characteristic curve)
involving HR-pQCT parameters plus aBMD or FRAX score was signif-
icantly improved, as comparedwith aBMDor FRAX score alone. Fur-
ther review is suggested to compare the predictive ability between
HR-pQCT and DXA in predicting incident fractures.

This systematic review indicated that most of the studies
(21/25) included were from North America and Europe, whereas
very few were from South America, Asia, or multi-countries. This
means the fragility fracture prediction by HR-pQCT is mainly
white-based, yet these analyses may not be directly applicable
to Asians. Ethnic differences in BMD has been well reported;
eg, total hip and spine BMD were 4% to 5% lower among Chi-
nese women than US whites.(48) Vertebral fracture rate of Asians
was higher than that of whites but lower hip fracture rate, result-
ing in a high vertebral-to-hip fracture ratio.(49) Also, a report dem-
onstrated that Chinese women had cortical and trabecular
microstructural differences from white women.(50) This is there-
fore highly recommended to establish their countries’ bone
databases of HR-pQCT and conduct related fracture prediction
studies. Also, there is a lack of robust data fromAfrica and among
Africa descent, which will be an area of future research.

There are some limitations in this study. In the included cohort
studies, many of them involved participants with previous frac-
tures, while those in case–control studies were mostly first-time
fracture patients. Also, case–control studies were retrospective
in nature. These might cause substantial data heterogeneity
among the studies.

In conclusion, our study showed that HR-pQCT could predict fra-
gility fractures well and many parameters were of good prediction
power to predict fragility fractures or incident fractures. Of all the
HR-pQCT parameters, stiffness, cortical vBMD, and Tb.Th were the
outstanding predictor parameters. Also, of the two standard mea-
surement sites by theHR-pQCTof distal radius and tibia, distal radius
was shown to be a more preferable measurement site for fracture
prediction. To date, most of the studies were white-based; Asian
and African regions should build up their own densitometric data-
bases and conduct related prediction studies, and Asians have been
reported to exhibit different bone structure from whites. It is
expected that HR-pQCT can ultimately predict and prevent fragility
fractures in the future, if applied widely in the community.
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